Bandit algorithms for social network queries

Zahy Bnaya, Rami Puzis, Roni Stern, Ariel Felner

2013 international conference on social computing, 148-153, 2013

In many cases the best way to find a profile or a set of profiles matching some criteria in a social network is via targeted crawling. An important challenge in targeted crawling is to choose the next profile to explore. Existing heuristics for targeted crawling are usually tailored for specific search criterion and could lead to short-sighted crawling decisions. In this paper we propose and evaluate a generic approach for guiding a social network crawler that aims to provide a proper balance between exploration and exploitation based on the recently introduced variant of the Multi-Armed Bandit problem with volatile arms (VMAB). Our approach is general-purpose. In addition, it provides provable performance guarantees. Experimental results indicate that our approach compares favorably with the best existing heuristics on two different domains.