Embedding-centrality: Generic centrality computation using neural networks

Rami Puzis, Zion Sofer, Dvir Cohen, Matan Hugi

Complex Networks IX: Proceedings of the 9th Conference on Complex Networks …, 2018

DerivingPuzis, RamivectorSofer, ZionrepresentationsCohen, Dvir of verticesHugi, Matan in graphs, a.k.a. vertex embedding, is an active field of research. Vertex embedding enables the application of relational data mining techniques to network data. Unintended use of vertex embedding unveils a novel generic method for centrality computation using neural networks. The new centrality measure, termed Embedding Centrality, proposed in this paper is defined as the dot product of a vertex and the center of mass of the graph. Simulation results confirm the validity of Embedding Centrality which correlates well with other commonly used centrality measures. Embedding Centrality can be tailored to specific applications by devising the appropriate context for vertex embedding and can facilitate further understanding of supervised and unsupervised learning methods on graph data.