Implementing public-key cryptography on passive RFID tags is practical

Alex Arbit, Yoel Livne, Yossef Oren, Avishai Wool

International Journal of Information Security 14 (1), 85-99, 2015

Passive radio-frequency identification (RFID) tags have long been thought to be too weak to implement public-key cryptography: It is commonly assumed that the power consumption, gate count and computation time of full-strength encryption exceed the capabilities of RFID tags. In this paper, we demonstrate that these assumptions are incorrect. We present two low-resource implementations of a 1,024-bit Rabin encryption variant called WIPR—in embedded software and in hardware. Our experiments with the software implementation show that the main performance bottleneck of the system is not the encryption time but rather the air interface and that the reader’s implementation of the electronic product code Class-1 Generation-2 RFID standard has a crucial effect on the system’s overall performance. Next, using a highly optimized hardware implementation, we investigate the trade-offs between speed, area …