Lightweight collaborative anomaly detection for the IoT using blockchain

Yisroel Mirsky, Tomer Golomb, Yuval Elovici

Journal of Parallel and Distributed Computing 145, 75-97, 2020

Due to their rapid growth and deployment, the Internet of things (IoT) have become a central aspect of our daily lives. Unfortunately, IoT devices tend to have many vulnerabilities which can be exploited by an attacker. Unsupervised techniques, such as anomaly detection, can be used to secure these devices in a plug-and-protect manner. However, anomaly detection models must be trained for a long time in order to capture all benign behaviors. Furthermore, the anomaly detection model is vulnerable to adversarial attacks since, during the training phase, all observations are assumed to be benign. In this paper, we propose (1) a novel approach for anomaly detection and (2) a lightweight framework that utilizes the blockchain to ensemble an anomaly detection model in a distributed environment. Blockchain framework incrementally updates a trusted anomaly detection model via self-attestation and consensus …