Quantitative Analysis of Genealogy Using Digitised Family Trees

Michael Fire, Thomas Chesney, Yuval Elovici

arXiv preprint arXiv:1408.5571, 2014

Driven by the popularity of television shows such as Who Do You Think You Are? many millions of users have uploaded their family tree to web projects such as WikiTree. Analysis of this corpus enables us to investigate genealogy computationally. The study of heritage in the social sciences has led to an increased understanding of ancestry and descent but such efforts are hampered by difficult to access data. Genealogical research is typically a tedious process involving trawling through sources such as birth and death certificates, wills, letters and land deeds. Decades of research have developed and examined hypotheses on population sex ratios, marriage trends, fertility, lifespan, and the frequency of twins and triplets. These can now be tested on vast datasets containing many billions of entries using machine learning tools. Here we survey the use of genealogy data mining using family trees dating back centuries and featuring profiles on nearly 7 million individuals based in over 160 countries. These data are not typically created by trained genealogists and so we verify them with reference to third party censuses. We present results on a range of aspects of population dynamics. Our approach extends the boundaries of genealogy inquiry to precise measurement of underlying human phenomena.