Sensorless, Permissionless Information Exfiltration with {Wi-Fi}{Micro-Jamming}

Rom Ogen, Kfir Zvi, Omer Shwartz, Yossi Oren

12th USENIX Workshop on Offensive Technologies (WOOT 18), 2018

Listening devices, tracking devices, and other covert implants have to send any data they collect to a central command and control (C&C) server. This task can be difficult, since implants typically have a restricted power budget and cannot connect directly to the Internet. Several works have attempted to exfiltrate data in this setting by taking advantage of a nearby networked device, such as a computer or a mobile phone. To achieve this, the implant uses a covert channel to send the data to the networked device, that performs the exfiltration. Several constructions have been proposed for this covert channel between implant and target device, using sensors such as the microphone, magnetometer and gyroscope. In this work, we implement this covert channel using Wi-Fi micro-jamming, a new approach to jamming the 802.11 Wi-Fi protocol in a low-power, minimally intrusive manner. Our construction, which extends the work of Shah and Blaze from WOOT’09, does not attempt to overwhelm the Wi-Fi channel with a high-power transmission, but instead takes advantage of the high sensitivity of the 802.11 protocol’s Clear Channel Assessment (CCA) mechanism to introduce very brief delays to the channel. A JavaScript program, which can be embedded in an attacker-controlled website or online advertisement, is then used to measure these delays and upload them to the C&C server. Our channel works at a distance of over 15 meters between implant and target device, achieves a bit rate of 40 bits per second with minimal errors, and has a very low power requirement. We even show how the implant can be made completely passive by replacing the …