2022/8/24

Tantra: Timing-based adversarial network traffic reshaping attack

Yam Sharon, David Berend, Yang Liu, Asaf Shabtai, Yuval Elovici

IEEE Transactions on Information Forensics and Security 17, 3225-3237, 2022

Network intrusion attacks are a known threat. To detect such attacks, network intrusion detection systems (NIDSs) have been developed and deployed. These systems apply machine learning models to high-dimensional vectors of features extracted from network traffic to detect intrusions. Advances in NIDSs have made it challenging for attackers, who must execute attacks without being detected by these systems. Prior research on bypassing NIDSs has mainly focused on perturbing the features extracted from the attack traffic to fool the detection system, however, this may jeopardize the attack’s functionality. In this work, we present TANTRA, a novel end-to-end Timing-based Adversarial Network Traffic Reshaping Attack that can bypass a variety of NIDSs. Our evasion attack utilizes a long short-term memory (LSTM) deep neural network (DNN) which is trained to learn the time differences between the target network …