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Abstract—Physical layer security can ensure secure communi-
cation over noisy channels in the presence of an eavesdropper
with unlimited computational power. We adopt an information
theoretic variant of semantic-security (SS) (a cryptographic gold
standard), as our secrecy metric and study the open problem
of the type II wiretap channel (WTC II) with a noisy main
channel is, whose secrecy-capacity is unknown even under looser
metrics than SS. Herein the secrecy-capacity is derived and shown
to be equal to its SS capacity. In this setting, the legitimate
users communicate via a discrete-memoryless (DM) channel in
the presence of an eavesdropper that has perfect access to a
subset of its choosing of the transmitted symbols, constrained
to a fixed fraction of the blocklength. The secrecy criterion
is achieved simultaneously for all possible eavesdropper subset
choices. On top of that, SS requires negligible mutual information
between the message and the eavesdropper’s observations even
when maximized over all message distributions.

A key tool for the achievability proof is a novel and stronger
version of Wyner’s soft covering lemma. Specifically, the lemma
shows that a random codebook achieves the soft-covering phe-
nomenon with high probability. The probability of failure is
doubly-exponentially small in the blocklength. Since the com-
bined number of messages and subsets grows only exponentially
with the blocklength, SS for the WTC II is established by using
the union bound and invoking the stronger soft-covering lemma.
The direct proof shows that rates up to the weak-secrecy capacity
of the classic WTC with a DM erasure channel (EC) to the
eavesdropper are achievable. The converse follows by establishing
the capacity of this DM wiretap EC as an upper bound for the
WTC II. From a broader perspective, the stronger soft-covering
lemma constitutes a tool for showing the existence of codebooks
that satisfy exponentially many constraints, a beneficial ability
for many other applications in information theoretic security.

Index Terms—Erasure wiretap channel, information theoretic
security, physical-layer security, semantic-security, soft-covering
lemma, wiretap channel of type II, wiretap codes.

I. INTRODUCTION

Modern communication systems usually present an architec-
tural separation between error correction and data encryption.
The former is typically realized at the physical-layer by trans-
forming the noisy communication channel into a reliable “bit
pipe”. The data encryption is implemented on top of that by
applying cryptographic principles. The cryptographic approach
assumes no knowledge on the quality of the eavesdropper’s
channel and relies solely on restricting the computational
power of the eavesdropper. However, as the construction of
quantum computers edges closer (several companies have
recently reported a working prototype of a 512-qubit quantum
computer), the validity of the restricted computational power

assumption comes into question. Nonetheless, cryptography
remains the main practical tool for protecting data, at least for
the time being.

An alternative approach to secure communication is the
so-called physical layer security (or information theoretic
security), a concept that dates back to Wyner’s celebrated
paper on the wiretap channel (WTC) [1]. Essentially, Wyner’s
main idea was to exploit the noise of the communication
channel along with proper physical-layer coding to guarantee
secrecy against a computationally-unlimited eavesdropper.

Information theoretic security has adopted the weak- and
strong-secrecy metrics as a standard for measuring security.
Respectively, weak- and strong-secrecy refer to the normal-
ized and unnormalized mutual information between the se-
cret message and the channel symbol string observed by
the eavesdropper. However, recent work argues that, from a
cryptographic point of view, both these metrics are insuffi-
cient to provide security of applications [2], [3]. Their main
drawback lies is the assumption that the message is random
and uniformly distributed, as real-life messages are neither
(messages may be files, votes or any type of structured data,
often with low entropy). Semantic-security (SS) [4], [5] is
a cryptographic gold standard originally designed to ensure
that a computationally bounded adversary cannot extract secret
information in scenarios when information theoretic security
is impossible. Recently, an information theoretic adaptation of
SS that accounts for computationally unbounded adversaries
was proposed in [3] as an adequate alternative to the existing
information theoretic security metrics. The authors of [3]
showed that this information theoretic SS (henceforth simply
referred to as SS) is equivalent to a vanishing unnormalized
mutual information for all message distributions. Adopting
SS as our secrecy measure, we establish the SS-capacity of
the wiretap channel of type II (WTC II) with a noisy main
channel, for which even the weak-secrecy-capacity was an
open problem until now. On top of that, the SS-capacity and
the weak-secrecy-capacity are shown to coincide.

Secret communication over noisy channels dates back to
Wyner who introduced the degraded wiretap channel (WTC)
and derived its weak-secrecy-capacity [1]. Csiszár and Körner
extended Wyner’s result to the non-degraded WTC [6], which
is henceforth referred to as the WTC I. A special instance
of the WTC I is when the eavesdropper’s observation is
an outcome of a discrete-memoryless (DM) erasure channel
(EC), which essentially means that he observes a subset of

2016 IEEE International Conference on Software Science, Technology and Engineering

978-1-5090-1018-9/16 $31.00 © 2016 IEEE

DOI 10.1109/SWSTE.2016.12

17

2016 IEEE International Conference on Software Science, Technology and Engineering

978-1-5090-1018-9/16 $31.00 © 2016 IEEE

DOI 10.1109/SWSTE.2016.12

17



the transmitted symbols that is chosen at random by nature.
The WTC II was proposed by Ozarow and Wyner [7] as
a generalization of this instance, where a more powerful
eavesdropper selects which subset to observe. In [7], the rate-
equivocation region for the case where the main channel is
noiseless was established by using a unique randomized coset
coding scheme in the proof of achievability. The WTC II with
a general (i.e., possibly noisy) DM main channel, however,
remained an open problem ever since.

A recent endeavor at the optimal secrecy rate of the WTC
II with a noisy main channel was presented in [8] (see also
[9]–[12] for related work). Requiring a vanishing average
error probability and security with respect to the weak-secrecy
metric (namely, while assuming a uniformly distributed mes-
sage and a normalized mutual information), the authors of
[8] extended the coset coding scheme from [7] to obtain an
inner bound on the rate-equivocation region. An outer bound
was also established in [8] by assuming that the subset the
eavesdropper chooses to observe is revealed to all parties (i.e.,
to the legitimate users). Specializing these bounds to the case
where equivocation is maximal results in an inner and an outer
bound on the weak-secrecy-capacity of a general WTC II;
these bounds do not match.

In this work, we strengthen both the reliability and the
security criteria, and derive the SS-capacity of the WTC II
with a noisy main channel under a vanishing maximal error
probability requirement. In the heart of the proof stands a
stronger version of the soft-covering lemma. Wyners original
soft-covering lemma [13, Theorem 6.3] is a valuable tool for
achievability proofs of information theoretic security [14]–
[16], resolvability [17], channel synthesis [18], and source
coding [19] (see also references therein). The result herein
sharpens the claim of soft-covering by moving away from
an expected value analysis. Instead, we show that a random
codebook achieves the soft-covering phenomenon with high
probability. The probability of failure is doubly-exponentially
small in the blocklength, enabling more powerful applications
through the union bound.

As a simple preliminary application of the stronger soft-
covering lemma, we derive the SS-capacity of the DM-WTC
I under a maximal error probability requirement. The SS-
capacity under an average error probability constraint was
established in [3] for the DM scenario and in [20] for the
Gaussian case. These works presented efficient code construc-
tions with polynomial complexity. Complexity not being in
the scope of this work, we focus on the fundamental limits
of semantically-secure communication and give an alterna-
tive proof of the WTC I SS-capacity based on the stronger
soft-covering lemma and classic wiretap codes. Since the
number of secret messages is only exponentially large, the
double-exponential decay the lemma provides insures SS with
arbitrarily high probability. In other words, even though a
codebook that satisfies exponentially many constraints related
to soft-covering is required, the union bound yields that such
a codebook exists. This code is then amended to be reliable
with respect to the maximal error probability by relying on

the well-known expurgation technique (e.g., cf. [21, Theorem
7.7.1]). The derivation of the WTC I SS-capacity

Somewhat surprisingly, our optimal code construction for
the WTC II is just the same. Here, SS involves a vanish-
ing unnormalized mutual information (between the message
and the eavesdropper’s observation), when maximized over
all message distributions and eavesdropper’s subset choices.
However, noting that their combined number grows only
exponentially with the blocklenght, the stronger soft-covering
lemma is still sharp enough to imply that the probability
of an insecure random wiretap code is doubly-exponentially
small. Using the expurgation method once more establishes
achievability and shows that any rate up to the weak-secrecy-
capacity of the WTC I with a DM-EC1 to the eavesdropper, is
achievable. The converse follows by showing that the weak-
secrecy-capacity of this WTC I upper bounds the SS-capacity
of the WTC II. An important consequence of the WTC II SS-
capacity proof is that Wyner’s wiretap codes for the erasure
WTC I, are optimal. The binary version of these codes is,
in fact, one of the few examples for which there are explicit
constructions of practical secure encoders and decoders with
optimal performance [22], [23].

II. NOTATIONS AND PRELIMINARIES

We use the following notations. Given two real numbers
𝑎, 𝑏, we denote by [𝑎 : 𝑏] the set of integers

{
𝑛 ∈ ℕ

∣∣⌈𝑎⌉ ≤
𝑛 ≤ ⌊𝑏⌋}. We define ℝ+ = {𝑥 ∈ ℝ∣𝑥 ≥ 0}. Calligraphic
letters denote sets, e.g., 𝒳 , the complement of 𝒳 is denoted by
𝒳 𝑐, while ∣𝒳 ∣ stands for its cardinality. 𝒳𝑛 denoted the 𝑛-fold
Cartesian product of 𝒳 . An element of 𝒳𝑛 is denoted by 𝑥𝑛 =
(𝑥1, 𝑥2, . . . , 𝑥𝑛); whenever the dimension 𝑛 is clear from the
context, vectors (or sequences) are denoted by boldface letters,
e.g., x. For any 𝒮 ⊆ [1 : 𝑛], we use x𝒮 = (𝑥𝑖)𝑖∈𝒮 to denote
the substring of 𝑥𝑛 defined by 𝒮, with respect to the natural
ordering of 𝒮. For instance, if 𝒮 = [𝑖 : 𝑗], where 1 ≤ 𝑖 < 𝑗 ≤
𝑛, then x𝒮 = (𝑥𝑖, 𝑥𝑖+1, . . . , 𝑥𝑗).

Let
(
Ω,ℱ ,ℙ) be a probability space, where Ω is the sample

space, ℱ is the 𝜎-algebra and ℙ is the probability measure.
Random variables over

(
Ω,ℱ ,ℙ) are denoted by uppercase

letters, e.g., 𝑋 , with similar conventions for random vectors.
The probability of an event 𝒜 ∈ ℱ is denoted by ℙ(𝒜), while
ℙ(𝒜∣∣ℬ ) denotes conditional probability of 𝒜 given ℬ. We
use 1𝒜 to denote the indicator function of 𝒜. The set of
all probability mass functions (PMFs) on a finite set 𝒳 is
denoted by 𝒫(𝒳 ). PMFs are denoted by the capital letter 𝑃 ,
with a subscript that identifies the random variable and its
possible conditioning. For example, for a discrete probability
space

(
Ω,ℱ ,ℙ) and two correlated random variables 𝑋 and

𝑌 over that space, we use 𝑃𝑋 , 𝑃𝑋,𝑌 and 𝑃𝑋∣𝑌 to denote,
respectively, the marginal PMF of 𝑋 , the joint PMF of (𝑋,𝑌 )
and the conditional PMF of 𝑋 given 𝑌 . In particular, 𝑃𝑋∣𝑌
represents the stochastic matrix whose elements are given by
𝑃𝑋∣𝑌 (𝑥∣𝑦) = ℙ

(
𝑋 = 𝑥∣𝑌 = 𝑦

)
. We omit subscripts if the

1the erasure probability corresponds to the portion of symbols the eaves-
dropper in the WTC II does not intercept
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𝑊 ℬ𝑛=
{
u(𝑤)

} U(𝑊 )
𝑄𝑉 ∣𝑈

V ∼ 𝑃
(ℬ𝑛)
V

Fig. 1: Coding problem with the goal of making 𝑃
(ℬ𝑛)
V ≈ 𝑄𝑛

𝑉 .

arguments of the PMF are lowercase versions of the random
variables. The support of a PMF 𝑃 and the expectation of
a random variable 𝑋 are denoted by supp(𝑃 ) and 𝔼

[
𝑋
]
,

respectively.
For a discrete measurable space (Ω,ℱ), a PMF 𝑄 ∈ 𝒫(Ω)

gives rise to a probability measure on (Ω,ℱ), which we
denote by ℙ𝑄; accordingly, ℙ𝑄

(𝒜) = ∑
𝜔∈𝒜𝑄(𝜔), for every

𝒜 ∈ ℱ . We use 𝔼𝑄 to denote an expectation taken with
respect to ℙ𝑄. For a random variable 𝑋 , we sometimes
write 𝔼𝑋 to emphasize that the expectation is taken with
respect to 𝑃𝑋 . For a sequence of random variable 𝑋𝑛, if the
entries of 𝑋𝑛 are drawn in an independent and identically
distributed (i.i.d.) manner according to 𝑃𝑋 , then for every
x ∈ 𝒳𝑛 we have 𝑃𝑋𝑛(x) =

∏𝑛
𝑖=1 𝑃𝑋(𝑥𝑖) and we write

𝑃𝑋𝑛(x) = 𝑃𝑛
𝑋(x). Similarly, if for every (x,y) ∈ 𝒳𝑛 × 𝒴𝑛

we have 𝑃𝑌 𝑛∣𝑋𝑛(y∣x) =
∏𝑛

𝑖=1 𝑃𝑌 ∣𝑋(𝑦𝑖∣𝑥𝑖), then we write
𝑃𝑌 𝑛∣𝑋𝑛(y∣x) = 𝑃𝑛

𝑌 ∣𝑋(y∣x). We often use 𝑄𝑛
𝑋 or 𝑄𝑛

𝑌 ∣𝑋
when referring to an i.i.d. sequence of random variables. The
conditional product PMF 𝑄𝑛

𝑌 ∣𝑋 given a specific sequence
x ∈ 𝒳𝑛 is denoted by 𝑄𝑛

𝑌 ∣𝑋=x.

The empirical PMF 𝜈x of a sequence x ∈ 𝒳𝑛 is 𝜈x(𝑥) ≜
𝑁(𝑥∣x)

𝑛 , where 𝑁(𝑥∣x) =
∑𝑛

𝑖=1 1{𝑥𝑖=𝑥}. We use 𝒯 𝑛
𝜖 (𝑃𝑋)

to denote the set of letter-typical sequences of length 𝑛 with
respect to the PMF 𝑃𝑋 and the non-negative number 𝜖 [24,
Chapter 3], i.e., we have

𝒯 𝑛
𝜖 (𝑃𝑋) =

{
x ∈ 𝒳𝑛

∣∣∣ ∣∣𝜈x(𝑥)−𝑃𝑋(𝑥)
∣∣ ≤ 𝜖𝑃𝑋(𝑥), ∀𝑥 ∈ 𝒳

}
.

(1)
The relative entropy between two probability measures 𝑃

and 𝑄 on the same 𝜎-algebra ℱ of subsets of the sample space
𝒳 , with 𝑃 ≪ 𝑄 (i.e., 𝑃 is absolutely continuous with respect
to 𝑄) is

𝐷(𝑃 ∣∣𝑄) =

∫
𝒳
𝑑𝑃 log

(
𝑑𝑃

𝑑𝑄

)
, (2)

where 𝑑𝑃
𝑑𝑄 denotes the Radon-Nikodym derivative between 𝑃

and 𝑄. If the sample space 𝒳 is countable, (2) reduces to

𝐷(𝑃 ∣∣𝑄) =
∑

𝑥∈supp(𝑃 )
𝑃 (𝑥) log

(
𝑃 (𝑥)

𝑄(𝑥)

)
. (3)

III. THE STRONGER SOFT-COVERING LEMMA

We use notation from [25, Section II]. Wyner’s soft-covering
lemma [13, Theorem 6.3] states that the distribution induced
by selecting a 𝑢-sequence at random from an appropriately
chosen set ℬ𝑛 and passing it through a memoryless channel
𝑄𝑉 ∣𝑈 , results in a good approximation of 𝑄𝑛

𝑉 in the limit
of large 𝑛, as long as the set is of size ∣ℬ𝑛∣ = 2𝑛𝑅, where
𝑅 > 𝐼(𝑈 ;𝑉 ) (Fig. 1). In fact, the set ℬ𝑛 can be chosen quite

carelessly - by random codebook construction, drawing each
sequence independently from the distribution 𝑄𝑛

𝑈 .
The soft-covering lemmas in the literature use a distance

metric on distributions (commonly total variation or relative
entropy) and claim that the distance between the induced
distribution 𝑃

(ℬ𝑛)
V and the desired distribution 𝑄𝑛

𝑉 vanishes in
expectation over the random selection of the set2. Here we give
a stronger claim. With high probability with respect to the set
construction, the distance vanishes exponentially quickly with
the blocklength 𝑛. The negligible probability of the random
set not producing this desired result is doubly-exponentially
small.

Let 𝒲 =
[
1 : 2𝑛𝑅

]
and 𝔹𝑛 =

{
U(𝑤)

}
𝑤∈𝒲 be a set of

random vectors that are i.i.d. according to 𝑄𝑛
𝑈 . We refer to 𝔹𝑛

as the random codebook. Let ℬ𝑛 =
{
u(𝑤,ℬ𝑛)

}
𝑤∈𝒲 denote a

realization of 𝔹𝑛. For every fixed ℬ𝑛, the induced distribution
is:

𝑃
(ℬ𝑛)
V (v) = 2−𝑛𝑅

∑
𝑤∈𝒲

𝑄𝑛
𝑉 ∣𝑈

(
v
∣∣u(𝑤,ℬ𝑛)

)
. (4)

Lemma 1 (Stronger Soft-Covering Lemma) For any 𝑄𝑈 ,
𝑄𝑉 ∣𝑈 , and 𝑅 > 𝐼(𝑈 ;𝑉 ), where ∣𝒱∣ < ∞, there exist
𝛾1, 𝛾2 > 0, such that for 𝑛 large enough

ℙ

(
𝐷
(
𝑃
(𝔹𝑛)
V

∣∣∣∣∣∣𝑄𝑛
𝑉

)
> 𝑒−𝑛𝛾1

)
≤ 𝑒−𝑒

𝑛𝛾2
. (5)

More precisely, for any 𝑛 ∈ ℕ and 𝛿 ∈ (
0, 𝑅− 𝐼(𝑈 ;𝑉 )

)
ℙ

(
𝐷
(
𝑃
(𝔹𝑛)
V

∣∣∣∣∣∣𝑄𝑛
𝑉

)
> 𝑐𝛿𝑛2

−𝑛𝛾𝛿

)
≤ (

1 + ∣𝒱∣𝑛)𝑒− 1
3 2

𝑛𝛿

, (6)

where

𝛾𝛿 = sup
𝛼>1

𝛼− 1

2𝛼− 1

(
𝑅− 𝛿 − 𝑑𝛼(𝑄𝑈,𝑉 , 𝑄𝑈𝑄𝑉 )

)
, (7a)

𝑐𝛿 = 3 log 𝑒+ 2𝛾𝛿 log 2 + 2 log

(
max

𝑣∈supp(𝑄𝑉 )

1

𝑄𝑉 (𝑣)

)
,

(7b)

and 𝑑𝛼(Γ,Π) = 1
𝛼−1 log2

∫
𝑑Γ

(
𝑑Π
𝑑Γ

)1−𝛼
is the Rényi diver-

gence of order 𝛼.

The proof of the lemma is given in Section VI-A.

Remark 1 The inequality (6) is trivially true for 𝛿 outside of
the expressed range.

The important quantity in the lemma above is 𝛾𝛿 , which
is the exponent that soft-covering achieves. We see in (6) that
the double-exponential convergence of probability occurs with
exponent 𝛿 > 0. Thus, the best soft-covering exponent that the
lemma achieves with confidence, over all 𝛿 > 0, is

𝛾∗ = sup
𝛿>0

𝛾𝛿 = 𝛾0 = sup
𝛼>1

𝛼− 1

2𝛼− 1

(
𝑅− 𝑑𝛼(𝑄𝑈,𝑉 , 𝑄𝑈𝑄𝑉 )

)
.

(8)
The double-exponential confidence rate 𝛿 acts as a reduction in
codebook rate 𝑅 in the definition of 𝛾𝛿 . Consequently, 𝛾𝛿 = 0

2Many of the theorems only claim existence of a good codebook, but all
of the proofs use expected value to establish existence.
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𝑚
Trans.

X 𝑄𝑌,𝑍∣𝑋

Channel Y

Z

Rec.

Eave.

�̂�

𝑚

Fig. 2: The classic wiretap channel, referred to as the WTC I.

for 𝛿 ≥ 𝑅− 𝐼(𝑈 ;𝑉 ).

IV. WIRETAP CHANNELS OF TYPE I

As a rather simple application of stronger soft-covering
lemma, we give an alternative derivation of the SS-capacity of
the WTC I [3], [20], [26]. Since the channel to the legitimate
user is the same in both WTCs I and II, the maximal error
probability analysis presented here is subsequently used to
establish reliability for the WTC II.

Our direct proof relies on classic wiretap codes and SS
is established using the union bound and the stronger soft-
covering lemma. In a wiretap code, a subcode is associated
with each confidential message. To transmit a certain message,
a codeword from its subcode is selected uniformly at random
and transmitted over the channel. Letting these subcodes be
large enough while noting that the number of confidential
messages only grows exponentially with the blocklength, the
union bound and the double-exponential decay the lemma
provides show the existence of a semantically-secure sequence
of codes. Using these codes, each transmitted message induces
an output PMF at the eavesdropper that appears i.i.d. and does
not depend on the message.

A. Problem Definition

The DM-WTC I is illustrated in Fig. 2. The sender chooses a
message 𝑚 from the set [1 : 2𝑛𝑅] and maps it into a sequence
x ∈ 𝒳𝑛 (the mapping may be random). The sequence x is
transmitted over the DM-WTC I with transition probability
𝑄𝑌,𝑍∣𝑋 . The output sequences y ∈ 𝒴𝑛 and z ∈ 𝒵𝑛 are
observed by the receiver and the eavesdropper, respectively.
Based on y, the receiver produces an estimate �̂� of 𝑚. The
eavesdropper tries to glean whatever it can about the message
from z.

Definition 1 (Code) An (𝑛,𝑅) WTC I code 𝒞1,𝑛 has: (i) A
message set ℳ =

[
1 : 2𝑛𝑅

]
; (ii) A stochastic encoder 𝑓1 :

ℳ→ 𝒫(𝒳𝑛), where 𝒫(𝒳𝑛) denotes the set of all PMFs on
𝒳𝑛; (iii) A decoding function 𝜙1 : 𝒴𝑛 →ℳ.

Definition 2 (Maximal Error Probability) The maximal er-
ror probability of an (𝑛,𝑅) WTC II code 𝒞1,𝑛 is 𝑒★(𝒞1,𝑛) =
max
𝑚∈ℳ

𝑒𝑚(𝒞𝑛,1), where

𝑒𝑚(𝒞𝑛,1) =
∑

x∈𝒳𝑛

𝑓1(x∣𝑚)
∑

y∈𝒴𝑛:
𝜙1(y) ∕=𝑚

𝑄𝑛
𝑌 ∣𝑋(y∣x). (9)

Definition 3 (SS Metric) The SS metric with respect to an
(𝑛, 2𝑛𝑅) WTC I code 𝒞𝑛,1 is 3

Sem(𝒞𝑛,1) = max
𝑃𝑀

𝐼𝒞𝑛,1
(𝑀 ;Z), (10)

where 𝐼𝒞𝑛,1
denotes a mutual information term that is calcu-

lated with respect to the joint PMF of 𝑀 and Z induced by
𝒞𝑛,1. Namely, for any 𝑃𝑀 ∈ 𝒫(ℳ), 𝑃 (𝒞𝑛,1)

𝑀,Z is

𝑃
(𝒞𝑛,1)
𝑀,Z (𝑚, z)=𝑃 (𝑚)

∑
x∈𝒳𝑛

𝑓1(x∣𝑚)
∑
y∈𝒴𝑛

𝑄𝑌,𝑍∣𝑋(y, z∣x).

Remark 2 SS requires that a single codebook works well for
all message PMF. Accordingly, the maximization over 𝑃𝑀 in
(10) is preformed when the code 𝒞𝑛,1 is known. In other words,
although not stated explicitly, 𝑃𝑀 is a function of 𝒞𝑛,1.

Definition 4 (Semantically-Secure Codes) A sequence of
(𝑛, 2𝑛𝑅) WTC I codes

{𝒞𝑛,1}𝑛≥1 is semantically-secure if
there is a constants 𝛾 > 0 and an 𝑛0 ∈ ℕ, such that for every
𝑛 > 𝑛0, Sem(𝒞𝑛,1) ≤ 𝑒−𝑛𝛾 .

Remark 3 By Definition 4, for a sequence of WTC I codes to
be semantically-secure, the SS metric from (10) must vanish
exponentially fast. This is a standard requirement in the
cryptography community, commonly referred to as strong-SS
(see, e.g., [3, Section 3.2]).

Definition 5 (SS-Achievability) A rate 𝑅 ∈ ℝ+ is SS-
achievable if there is a sequence of (𝑛, 2𝑛𝑅) WTC I
semantically-secure codes

{𝒞𝑛,1}𝑛≥1 with 𝑒★(𝒞𝑛,1) −−−−→
𝑛→∞ 0.

Definition 6 (SS-Capacity) The SS-capacity of the WTC I,
𝐶Sem, is the supremum of the set of SS-achievable rates.

B. Results

As stated in the following theorem, the SS-capacity of
the WTC I under a maximal error probability constraint is
the same as its weak-secrecy-capacity under an average error
probability constraint.

Theorem 2 (WTC I SS-Capacity) The SS-capacity of the
WTC I is

𝐶Sem = max
𝑄𝑉,𝑋 :

𝑉−𝑋−(𝑌,𝑍)

[
𝐼(𝑉 ;𝑌 )− 𝐼(𝑉 ;𝑍)

]
, (11)

and one may restrict the cardinality of 𝑉 to ∣𝒱∣ < ∣𝒳 ∣.
The direct proof of Theorem 2 is given in Section VI-B. The

converse is straightforward because the weak-secrecy capacity
of the WTC I upper bounds its SS-capacity.

V. WIRETAP CHANNELS OF TYPE II

A. Problem Definition

The WTC II is illustrated in Fig. 3. The sender chooses a
message 𝑚 from the set

[
1 : 2𝑛𝑅

]
and maps it into a sequence

3Sem(𝒞𝑛,1) is actually the mutual-information-security metric, which is
equivalent to SS by [3]. We use the representation in (10) rather than
the formal definition of SS (see, e.g., [3, Equation (4)]) out of analytical
convenience.
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𝑚
Trans. 𝒮 ⊆ [1 :𝑛], ∣𝒮∣=𝜇

𝑍𝑖=

{
𝑋𝑖 , 𝑖 ∈ 𝒮
?, 𝑖 /∈ 𝒮

X

𝑄𝑌 ∣𝑋
Y

Z

Rec.

Eave.

�̂�

𝑚

Fig. 3: The type II wiretap channel.

x ∈ 𝒳𝑛 (the mapping may be random). The sequence x is
transmitted over a point-to-point DMC with transition proba-
bility 𝑄𝑌 ∣𝑋 . Based on the received channel output sequence
y ∈ 𝒴𝑛, the receiver produces an estimate �̂� of 𝑚. The
eavesdropper noiselessly observes a subset of its choice of
the 𝑛 transmitted symbols. Namely, the eavesdropped chooses
𝒮 ⊆ [1 : 𝑛], ∣𝒮∣ = 𝜇 ≤ 𝑛, and observes z ∈ (𝒳 ∪ {?})𝑛,
where

𝑧𝑖 =

{
𝑥𝑖 , 𝑖 ∈ 𝒮
?, 𝑖 /∈ 𝒮 . (12)

An (𝑛,𝑅) WTC II code 𝒞2,𝑛 and the corresponding maxi-
mal error probability 𝑒★(𝒞2,𝑛) are defined similarly to Defini-
tions 1 and 2, respectively.

Definition 7 (SS Metric) The SS metric with respect to a
(𝑛,𝑅) WTC II code 𝒞𝑛,2 is

Sem𝜇(𝒞𝑛,2) = max
𝑃𝑀∈𝒫(ℳ),
𝒮⊆[1:𝑛]: ∣𝒮∣=𝜇

𝐼𝒞𝑛,2
(𝑀 ;Z), (13)

where 𝐼𝒞𝑛,2
denotes that the mutual information term is

calculated with respect to

𝑃
(𝒞𝑛,2,𝒮)
𝑀,Z (𝑚, z)=𝑃 (𝑚)

∑
x∈𝒳𝑛

𝑓(x∣𝑚)1{
𝑧𝑖=𝑥𝑖, 𝑖∈𝒮

}
∩
{
𝑧𝑖=?, 𝑖/∈𝒮

}.
Remark 4 Similarly to Remark 2, the mutual information
term in (13) is maximized over 𝑃𝑀 and 𝒮 when the code
𝒞𝑛,2 is known.

Definition 8 (Semantically-Secure Codes) Let 𝛼 ∈ [0, 1]
and 𝜇 = ⌊𝛼𝑛⌋, a sequence of (𝑛,𝑅) WTC II codes

{𝒞𝑛,2}𝑛≥1
is 𝛼-semantically-secure if there is a constants 𝛾 > 0, such
that Sem𝜇(𝒞𝑛,2) ≤ 𝑒−𝑛𝛾 for sufficiently large 𝑛.

Definition 9 (SS-Achievability) Let 𝛼 ∈ [0, 1] and 𝜇 =
⌊𝛼𝑛⌋, a rate 𝑅 ∈ ℝ+ is 𝛼-SS-achievable if there is a sequence
of (𝑛,𝑅) 𝛼-semantically-secure WTC II codes

{𝒞𝑛,2}𝑛≥1 with
𝑒★(𝒞𝑛,2) −−−−→

𝑛→∞ 0.

Definition 10 (SS-Capacity) For any 𝛼 ∈ [0, 1], the 𝛼-SS-
capacity of the WTC II 𝐶Sem(𝛼) is the supremum of the set
of 𝛼-SS-achievable rates.

B. Capacity Results

The following proposition is subsequently used for the
converse proof of the WTC II SS-capacity. The proposition
states that the strong-secrecy-capacity of a WTC I with a

DM-EC to the eavesdropper is an upper bound on the strong-
secrecy-capacity of the WTC II. Strong-secrecy-capacity is
defined with respect to the average error probability (instead
of the maximal error probability from Definition 2) and the
strong-secrecy metric (instead of the SS-metric from Definition
7). For example, the strong-secrecy metric of the WTC II is
defined similarly to (13) while removing the maximization
over 𝑃𝑀 ∈ 𝒫(ℳ) and letting 𝑀 be a random variable
uniformly distributed overℳ. See [25] for the full definitions.

Proposition 3 (WTC I Upper Bounds WTC II) Let 𝛼 ∈
[0, 1] and 𝐶II

S (𝛼) be the 𝛼-strong-secrecy-capacity of the
WTC II with a main channel 𝑄

(2)
𝑌 ∣𝑋 . Furthermore, let 𝐶I

S(𝛼)
be the strong-secrecy-capacity of the WTC I with transition
probability 𝑄

(1)
𝑌,𝑍∣𝑋 = 𝑄

(2)
𝑌 ∣𝑋ℰ(𝛼)𝑍∣𝑋 , where ℰ(𝛼)𝑍∣𝑋 is a DM-EC

with erasure probability �̄� = 1− 𝛼, i.e.,

ℰ(𝛼)𝑍∣𝑋(𝑧∣𝑥) =
{
𝛼, 𝑧 = 𝑥

�̄�, 𝑧 =?
, ∀𝑥 ∈ 𝒳 . (14)

Then

𝐶II
𝑆 (𝛼) ≤ 𝐶I

𝑆(𝛼) = max
𝑄𝑉,𝑋 :

𝑉−𝑋−𝑌

[
𝐼(𝑉 ;𝑌 )− 𝛼𝐼(𝑉 ;𝑋)

]
. (15)

Due to space limitations, Section VI-C gives only an outline
of the proof of Proposition 3 (see [25] for the full derivation).
The proof leverages Sanov’s Theorem and the continuity of
mutual information.

Theorem 4 (WTC II SS-Capacity) For any 𝛼 ∈ [0, 1],

𝐶Sem(𝛼) = max
𝑄𝑉,𝑋 :

𝑉−𝑋−𝑌

[
𝐼(𝑉 ;𝑌 )− 𝛼𝐼(𝑉 ;𝑋)

]
, (16)

and one may restrict the cardinality of 𝑉 to ∣𝒱∣ < ∣𝒳 ∣.
The direct part of Theorem 4 is proven in Section VI-D. The

stronger soft-covering lemma is key in the security analysis.
The converse is a direct consequence of Proposition 3 by
noting that the 𝛼-strong-secrecy-capacity of the WTC II upper
bounds its 𝛼-SS-capacity.

Remark 5 Theorem 4 recovers the achievability result from
[8, Equation 7] by setting 𝑉 = 𝑋 and taking 𝑋 to be
uniformly distributed over 𝒳 . Although we require security
with respect to a stricter metric than used in [8] (SS versus
weak-secrecy), we achieve higher rates than [8, Equation 7]
and establish their optimality. Moreover, 𝐶Sem(𝛼) is achieved
via classic wiretap codes, making the (rather convoluted) coset
coding scheme from [8] (inspired by [7]) no longer required.

VI. PROOFS

A. Proof of Lemma 1

We state the proof in terms of arbitrary distributions (not
necessarily discrete). When needed, we will specialize to the
case that 𝒱 is finite. For any fixed codebook ℬ𝑛, let the Radon-
Nikodym derivative between the induced and desired distribu-

tions be denoted as Δℬ𝑛
(v) ≜ 𝑑𝑃

(ℬ𝑛)
V

𝑑𝑄𝑛
𝑉

(v). In the discrete case,
this is just a ratio of probability mass functions. Accordingly,
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the relative entropy of interest, which is a function of the
codebook ℬ𝑛, is given by

𝐷
(
𝑃
(ℬ𝑛)
V

∣∣∣∣∣∣𝑄𝑛
𝑉

)
=

∫
𝑑𝑃

(ℬ𝑛)
V logΔℬ𝑛

. (17)

To describe the jointly-typical set over 𝑢- and 𝑣-sequences,
we first define information density 𝑖𝑄𝑈,𝑉

, which is a function
on the space 𝒰 × 𝒱 specified by

𝑖𝑄𝑈,𝑉
(𝑢, 𝑣) ≜ log

(
𝑑𝑄𝑉 ∣𝑈=𝑢

𝑑𝑄𝑉
(𝑣)

)
. (18)

In (18), the argument of the logarithm is the Radon-Nikodym
derivative between 𝑄𝑉 ∣𝑈=𝑢 and 𝑄𝑉 . Let 𝜖 ≥ 0 be arbitrary,
to be determined later, and define

𝒜𝜖 ≜
{
(u,v) ∈ 𝒰𝑛×𝒱𝑛

∣∣∣∣ 1𝑛𝑖𝑄𝑛
𝑈,𝑉

(u,v) < 𝐼(𝑈 ;𝑉 ) + 𝜖

}
,

and note that 𝑖𝑄𝑛
𝑈,𝑉

(u,v) =
∑𝑛

𝑡=1 𝑖𝑄𝑈,𝑉
(𝑢𝑡, 𝑣𝑡).

We split 𝑃 (ℬ𝑛)
V into two parts, making use of the indicator

function. For every v ∈ 𝒱𝑛, define

𝑃ℬ𝑛,1(v)≜ 2−𝑛𝑅
∑
𝑤∈𝒲

𝑄𝑛
𝑉 ∣𝑈

(
v
∣∣u(𝑤,ℬ𝑛)

)
1{(

u(𝑤,ℬ𝑛),v
)
∈𝒜𝜖

},
𝑃ℬ𝑛,2(v)≜ 2−𝑛𝑅

∑
𝑤∈𝒲

𝑄𝑛
𝑉 ∣𝑈

(
v
∣∣u(𝑤,ℬ𝑛)

)
1{(

u(𝑤,ℬ𝑛),v
)
/∈𝒜𝜖

}.
The measures 𝑃ℬ𝑛,1 and 𝑃ℬ𝑛,2 on the space 𝒱𝑛 are not
probability measures, but 𝑃ℬ𝑛,1 + 𝑃ℬ𝑛,2 = 𝑃

(ℬ𝑛)
V for each

codebook ℬ𝑛. We also split Δℬ𝑛
into two parts. Namely, for

every v ∈ 𝒱𝑛, we set

Δℬ𝑛,𝑗(v) ≜
𝑑𝑃ℬ𝑛,𝑗

𝑑𝑄𝑛
𝑉

(v), 𝑗 = 1, 2. (19)

With respect to the above definitions, Lemma 5 states an upper
bound on the relative entropy of interest.

Lemma 5 For every fixed codebook ℬ𝑛, we have

𝐷
(
𝑃
(ℬ𝑛)
V

∣∣∣∣∣∣𝑄𝑛
𝑉

)
≤ ℎ

(∫
𝑑𝑃ℬ𝑛,1

)

+

∫
𝑑𝑃ℬ𝑛,1 logΔℬ𝑛,1 +

∫
𝑑𝑃ℬ𝑛,2 logΔℬ𝑛,2, (20)

where ℎ(⋅) is the binary entropy function.

Due to space limitations the proof of Lemma 5 is omitted. The
reader is referred to [25, Appendix B] for the proof. Based on
Lemma 5, if the relative entropy of interest does not decay
exponentially fast, then the same is true for the terms on the
right-hand side (RHS) of (20). Therefore, to establish Lemma
1, its suffices to show that the probability (with respect to
a random codebook) of the RHS not vanishing exponentially
fast to 0 as 𝑛→∞, is double-exponentially small.

Notice that 𝑃ℬ𝑛,1 usually contains almost all of the proba-
bility. That is, for any fixed ℬ𝑛, we have∫

𝑑𝑃ℬ𝑛,2 = 1−
∫

𝑑𝑃ℬ𝑛,1

=
∑
𝑤∈𝒲

2−𝑛𝑅ℙ𝑄𝑛
𝑉 ∣𝑈

((
u(𝑤,ℬ𝑛),V

)
/∈ 𝒜𝜖

∣∣∣U = u(𝑤,ℬ𝑛)
)
.

(21)

For a random codebook, (21) becomes∫
𝑑𝑃𝔹𝑛,2

=
∑
𝑤∈𝒲

2−𝑛𝑅ℙ𝑄𝑛
𝑉 ∣𝑈

((
U(𝑤,𝔹𝑛),V

)
/∈ 𝒜𝜖

∣∣∣U = U(𝑤,𝔹𝑛)
)
.

(22)

The RHS of (22) is an average of exponentially many i.i.d.
random variables bounded between 0 and 1. Furthermore,
the expected value of each one is the exponentially small
probability of correlated sequences being atypical:

𝔼𝔹𝑛
ℙ𝑄𝑛

𝑉 ∣𝑈

((
U(𝑤,𝔹𝑛),V

)
/∈ 𝒜𝜖

∣∣∣U = U(𝑤,𝔹𝑛)
)

= ℙ𝑄𝑛
𝑈,𝑉

((
U,V

)
/∈ 𝒜𝜖

)
(𝑎)
= ℙ𝑄𝑛

𝑈,𝑉

(
2𝜆

∑𝑛
𝑡=1 𝑖𝑄𝑈,𝑉

(𝑈𝑡,𝑉𝑡) ≥ 2𝑛𝜆(𝐼(𝑈 ;𝑉 )+𝜖)
)

(𝑏)

≤
𝔼𝑄𝑛

𝑈,𝑉
2𝜆

∑𝑛
𝑡=1 𝑖𝑄𝑈,𝑉

(𝑈𝑡,𝑉𝑡)

2𝑛𝜆(𝐼(𝑈 ;𝑉 )+𝜖)

=

(
𝔼𝑄𝑈,𝑉

2𝜆𝑖𝑄𝑈,𝑉
(𝑈,𝑉 )

2𝜆(𝐼(𝑈 ;𝑉 )+𝜖)

)𝑛

(𝑐)
= 2

𝑛𝜆

(
1
𝜆 log2 𝔼𝑄𝑈,𝑉

[
2
𝜆𝑖𝑄𝑈,𝑉

(𝑈;𝑉 )
]
−𝐼(𝑈 ;𝑉 )−𝜖

)

(𝑑)
= 2𝑛𝜆

(
𝑑𝜆+1(𝑄𝑈,𝑉 ,𝑄𝑈𝑄𝑉 )−𝐼(𝑈 ;𝑉 )−𝜖

)
, (23)

where (a) is true for any 𝜆 ≥ 0, (b) is Markov’s inequality,
(c) follows by restricting 𝜆 to be strictly positive, while
(d) is from the definition of the Rényi divergence of order
𝜆+ 1. We use units of bits for mutual information and Rényi
divergence to coincide with the base two expression of rate.
Now, substituting 𝛼 = 𝜆+ 1 into (23) gives

𝔼𝔹𝑛
ℙ𝑄𝑛

𝑉 ∣𝑈

((
U(𝑤,𝔹𝑛),V

)
/∈𝒜𝜖

∣∣∣U = U(𝑤,𝔹𝑛)
)
≤ 2−𝑛𝛽𝛼,𝜖 ,

(24)
where 𝛽𝛼,𝜖 = (𝛼 − 1)

(
𝐼(𝑈 ;𝑉 ) + 𝜖 − 𝑑𝛼(𝑄𝑈,𝑉 , 𝑄𝑈𝑄𝑉 )

)
for every 𝛼 > 1 and 𝜖 ≥ 0, over which we may optimize.
The optimal choice of 𝜖 is apparent when all bounds of the
proof are considered together (some yet to be derived), but the
formula may seem arbitrary at the moment. Nevertheless, fix
𝛿 ∈ (

0, 𝑅− 𝐼(𝑈 ;𝑉 )
)
, as found in the theorem statement, and

set

𝜖𝛼,𝛿 =
1
2 (𝑅− 𝛿) + (𝛼− 1)𝑑𝛼(𝑄𝑈,𝑉 , 𝑄𝑈𝑄𝑉 )

1
2 + (𝛼− 1)

− 𝐼(𝑈 ;𝑉 ).

(25)
Substituting into 𝛽𝛼,𝜖 gives

𝛽𝛼,𝛿 ≜ 𝛽𝛼,𝜖𝛼,𝛿
=

𝛼− 1

2𝛼− 1

(
𝑅− 𝛿− 𝑑𝛼(𝑄𝑈,𝑉 , 𝑄𝑈𝑄𝑉 )

)
. (26)

Observe that 𝜖𝛼,𝛿 in (25) is nonnegative under the as-
sumption that 𝑅 − 𝛿 > 𝐼(𝑈 ;𝑉 ), because 𝛼 > 1 and
𝑑𝛼(𝑄𝑈,𝑉 , 𝑄𝑈𝑄𝑉 ) ≥ 𝑑1(𝑄𝑈,𝑉 , 𝑄𝑈𝑄𝑉 ) = 𝐼(𝑈 ;𝑉 ).
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Next, we use the following version of the Chernoff bound
to bound the probability of (22) not being exponentially small.

Lemma 6 (Chernoff Bound [25]) Let
{
𝑋𝑚

}𝑀
𝑚=1

be a col-
lection of i.i.d. random variables with 𝑋𝑚 ∈ [0, 𝐵] and
𝔼𝑋𝑚 ≤ 𝜇 ∕= 0, for all 𝑚 ∈ [1 : 𝑀 ]. Then for any 𝑐 with
𝑐
𝜇 ∈ [1, 2],

ℙ

(
1

𝑀

𝑀∑
𝑚=1

𝑋𝑚 ≥ 𝑐

)
≤ 𝑒−

𝑀𝜇
3𝐵 ( 𝑐

𝜇−1)
2

. (27)

Using (27) with 𝑀 = 2𝑛𝑅, 𝜇 = 2−𝑛𝛽𝛼,𝛿 , 𝐵 = 1, and 𝑐
𝜇 = 2,

assures that
∫
𝑑𝑃ℬ𝑛,2 is exponentially small with probability

doubly-exponentially close to 1. That is

ℙ

(∫
𝑑𝑃ℬ𝑛,2 ≥ 2 ⋅ 2−𝑛𝛽𝛼,𝛿

)
≤ 𝑒−

1
3 2

𝑛(𝑅−𝛽𝛼,𝛿)

. (28)

Similarly, Δ𝔹𝑛,1 is an average of exponentially many i.i.d.
and uniformly bounded functions, each one determined by one
sequence in the random codebook:

Δ𝔹𝑛,1(v)

=
∑
𝑤∈𝒲

2−𝑛𝑅
𝑑𝑄𝑛

𝑉 ∣𝑈=U(𝑤,𝔹𝑛)

𝑑𝑄𝑛
𝑉

(v)1{(
U(𝑤,𝔹𝑛),v

)
∈𝒜𝜖

}. (29)

For every term in the average, the indicator function bounds
the value to be between 0 and 2𝑛(𝐼(𝑈 ;𝑉 )+𝜖𝛼,𝛿). The expected
value of each term with respect to the codebook is bounded
above by one, which is observed by removing the indicator
function. Therefore, the Chernoff bound assures that Δ𝔹𝑛,1 is
exponentially close to one for every v ∈ 𝒱𝑛. Setting 𝑀 =
2𝑛𝑅, 𝜇 = 1, 𝐵 = 2𝑛(𝐼(𝑈 ;𝑉 )+𝜖𝛼,𝛿), and 𝑐

𝜇 = 1 + 2−𝑛𝛽𝛼,𝛿 into
(27), gives

ℙ

(
Δ𝔹𝑛,1(v) ≥ 1 + 2−𝑛𝛽𝛼,𝛿

)
≤ 𝑒−

1
3 2

𝑛(𝑅−𝐼(𝑈;𝑉 )−𝜖𝛼,𝛿−2𝛽𝛼,𝛿)

= 𝑒−
1
3 2

𝑛𝛿

, ∀v ∈ 𝒱𝑛, (30)

which decays doubly-exponentially fast for any 𝛿 > 0.

At this point, we specialize to a finite set 𝒱 . Consequently,
Δ𝔹𝑛,2 is bounded as

Δ𝔹𝑛,2(v) ≤
(

max
𝑣∈supp(𝑄𝑉 )

1

𝑄𝑉 (𝑣)

)𝑛

, ∀v ∈ 𝒱𝑛, (31)

with probability 1. Notice that the maximum is only over
the support of 𝑄𝑉 , which makes this bound finite. The
underlying reason for this restriction is that with probability
one a conditional distribution is absolutely continuous with
respect to its associated marginal distribution.

Having (28), (30) and (31), we can now bound the proba-
bility that the RHS of (20) is not exponentially small. Let 𝒮
be the set of codebooks ℬ𝑛, such that all of the following are
true:∫

𝑑𝑃ℬ𝑛,2 < 2 ⋅ 2−𝑛𝛽𝛼,𝛿 , (32a)

Δℬ𝑛,1(v) < 1 + 2−𝑛𝛽𝛼,𝛿 , ∀v ∈ 𝒱𝑛, (32b)

Δℬ𝑛,2(v) ≤
(

max
𝑣∈supp(𝑄𝑉 )

1

𝑄𝑉 (𝑣)

)𝑛

, ∀v ∈ 𝒱𝑛. (32c)

First, we use the union bound, while taking advantage of the
fact that the space 𝒱𝑛 is only exponentially large, to show
that the probability of a random codebook not being in 𝒮 is
double-exponentially small:

ℙ
(
𝔹𝑛 /∈ 𝒮) (𝑎)

≤ ℙ

(∫
𝑑𝑃𝔹𝑛,2 ≥ 2 ⋅ 2−𝑛𝛽𝛼,𝛿

)

+
∑
v∈𝒱𝑛

ℙ

(
Δ𝔹𝑛,1(v) ≥ 1 + 2−𝛽𝛼,𝛿𝑛

)

+
∑
v∈𝒱𝑛

ℙ

(
Δ𝔹𝑛,2(v) >

(
max

𝑣∈supp(𝑄𝑉 )

1

𝑄𝑉 (𝑣)

)𝑛
)

(𝑏)

≤ 𝑒−
1
3 2

𝑛(𝑅−𝛽𝛼,𝛿)

+ ∣𝒱∣𝑛 ⋅ 𝑒− 1
3 2

𝑛𝛿

(𝑐)

≤ (1 + ∣𝒱∣𝑛) 𝑒− 1
3 2

𝑛𝛿

, (33)

where (a) is the union bound, (b) uses (28), (30) and (31),
while (c) follows because 𝛽𝛼,𝛿 ≤ 1

2 (𝑅− 𝛿).

Next, we claim that for every codebook in 𝒮, the RHS of
(20) is exponentially small. Let ℬ𝑛 ∈ 𝒮 and consider the
following. For every 𝑥 ∈ [0, 1], ℎ(𝑥) ≤ 𝑥 log 𝑒

𝑥 , using which
(32a) implies that

ℎ

(∫
𝑑𝑃ℬ𝑛,2

)
< 2

(
log 𝑒+ 𝛽𝛼,𝛿 log 2

)
𝑛2−𝑛𝛽𝛼,𝛿 . (34)

Furthermore, by (32b) and since log(1 + 𝑥) ≤ 𝑥 log 𝑒, for
every 𝑥 > 0, we have∫

𝑑𝑃ℬ𝑛,1 logΔℬ𝑛,1 < 2−𝑛𝛽𝛼,𝛿 log 𝑒. (35)

Finally, using (32a) and (32c) we obtain∫
𝑑𝑃ℬ𝑛,2 logΔℬ𝑛,2 < 2 log

(
max

𝑣∈supp(𝑄𝑉 )

1

𝑄𝑉 (𝑣)

)
𝑛2−𝑛𝛽𝛼,𝛿 .

(36)
Combining (34)-(36), yields

ℎ

(∫
𝑑𝑃ℬ𝑛,1

)
+

∫
𝑑𝑃ℬ𝑛,1 logΔℬ𝑛,1+

∫
𝑑𝑃ℬ𝑛,2 logΔℬ𝑛,2

(𝑎)
< 𝑐𝛼,𝛿𝑛2

−𝑛𝛽𝛼,𝛿 , (37)

where (a) comes from setting

𝑐𝛼,𝛿 ≜ 3 log 𝑒+ 2𝛽𝛼,𝛿 log 2 + 2 log

(
max

𝑣∈supp(𝑄𝑉 )

1

𝑄𝑉 (𝑣)

)
.

Through Lemma 5, the above implies that for all 𝛼 > 1 and
𝛿 ∈ (

0, 𝑅− 𝐼(𝑈 ;𝑉 )
)
,

ℙ

(
𝐷
(
𝑃
(𝔹𝑛)
V

∣∣∣∣∣∣𝑄𝑛
𝑉

)
≥ 𝑐𝛼,𝛿𝑛2

−𝑛𝛽𝛼,𝛿

)
≤ ℙ

(
𝔹𝑛 /∈ 𝒮)

(𝑎)

≤ (1 + ∣𝒱∣𝑛) 𝑒− 1
3 2

𝑛𝛿

,
(38)

where (a) follows from (33). Denoting 𝑐𝛿 ≜ sup𝛼>1 𝑐𝛼,𝛿 , (38)
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further gives

ℙ

(
𝐷
(
𝑃
(𝔹𝑛)
V

∣∣∣∣∣∣𝑄𝑛
𝑉

)
≥ 𝑐𝛿𝑛2

−𝑛𝛽𝛼,𝛿

)
≤ (1 + ∣𝒱∣𝑛) 𝑒− 1

3 2
𝑛𝛿

.

(39)
Since (39) is true for all 𝛼 > 1, it must also be true, with
strict inequality in the LHS, when replacing 𝛽𝛼,𝛿 with

𝛾𝛿 ≜ sup
𝛼>1

𝛽𝛼,𝛿 = sup
𝛼>1

𝛼− 1

2𝛼− 1

(
𝑅− 𝛿 − 𝑑𝛼(𝑄𝑈,𝑉 , 𝑄𝑈𝑄𝑉 )

)
,

which is the exponential rate of convergence stated in (7a) that
we derive for the strong soft-covering lemma. This establishes
the statement from (6) and proves Lemma 1.

Concluding, if 𝑅 > 𝐼(𝑈 ;𝑉 ) and for any 𝛿 ∈ (
0, 𝑅 −

𝐼(𝑈 ;𝑉 )
)
, we get exponential convergence of the relative

entropy at rate 𝑂(2−𝛾𝛿𝑛) with doubly-exponential certainty.
Discarding the precise exponents of convergence and coeffi-
cients, we state that there exist 𝛾1, 𝛾2 > 0, such that for 𝑛
large enough

ℙ

(
𝐷
(
𝑃
(𝔹𝑛)
V

∣∣∣∣∣∣𝑄𝑛
𝑉

)
> 𝑒−𝑛𝛾1

)
≤ 𝑒−𝑒

𝑛𝛾2
. (40)

B. Direct Proof of Theorem 2

We show the achievability of (11) when 𝑉 = 𝑋 . Then,
a standard channel prefixing argument extends the proof to
any 𝑉 with 𝑉 − 𝑋 − 𝑌 . Furthermore, we present here a
construction of a sequence of semantically-secure codes with a
vanishing average error probability. The expurgation technique
[21, Theorem 7.7.1] allows upgrading reliability to achieve a
vanishing maximal error probability, while preserving SS.

Fix 𝜖 > 0 and a PMF 𝑄𝑋 ∈ 𝒫(𝒳 ), and let 𝑀 and 𝑊 be
independent random variables uniformly distributed over ℳ
and 𝒲 =

[
1 : 2𝑛�̃�

]
, respectively.

Codebook Construction: Let 𝔹𝑛 be a random code-
book given by a collection of i.i.d. random vectors
𝔹𝑛 =

{
X(𝑚,𝑤)

}
(𝑚,𝑤)∈ℳ×𝒲 , each distributed accord-

ing to 𝑄𝑛
𝑋 . A realization of 𝔹𝑛 is denoted by ℬ𝑛 ={

x(𝑚,𝑤,ℬ𝑛)
}
(𝑚,𝑤)∈ℳ×𝒲 , with respect to which we con-

struct a classic wiretap code.
Encoder 𝒇1: To send 𝑚 ∈ ℳ the encoder randomly and

uniformly chooses 𝑤 from 𝒲 and transmits x(𝑚,𝑤,ℬ𝑛).
Decoder 𝝓1: Upon observing y, the receiver searches for a

unique pair (�̂�, �̂�) ∈ ℳ×𝒲 such that
(
x(�̂�, �̂�,ℬ𝑛),y

) ∈
𝒯 𝑛
𝜖 (𝑄𝑋,𝑌 ). If such a unique pair is found, then �̂� is declared

as the decoded message; otherwise, an error is declared.
The triple (ℳ, 𝑓1, 𝜙1) defined with respect to the codebook
ℬ𝑛 constitute an (𝑛,𝑅) code for the WTC II. When a random
codebook 𝔹𝑛 is used, we denote the corresponding random
code by ℂ𝑛. Standard joint-typicality decoding arguments
show that

𝔼ℂ𝑛

1

∣ℳ∣
∑
𝑚∈ℳ

𝑒𝑚(ℂ𝑛) −−−−→
𝑛→∞ 0, (41)

(see (9)) provided that

𝑅+ �̃� < 𝐼(𝑋;𝑌 ). (42)

For any 𝒞𝑛 (defined by fixing ℬ𝑛) and 𝑃𝑀 ∈ 𝒫(ℳ), the
relative entropy chain rule implies

𝐼𝒞𝑛(𝑀 ;Z) = 𝐷
(
𝑃
(𝒞𝑛)
Z∣𝑀

∣∣∣∣∣∣𝑃 (𝒞𝑛)
Z

∣∣∣𝑃𝑀

)
= 𝐷

(
𝑃
(𝒞𝑛)
Z∣𝑀

∣∣∣∣∣∣𝑄𝑛
𝑍

∣∣∣𝑃𝑀

)
−𝐷

(
𝑃
(𝒞𝑛)
Z

∣∣∣∣∣∣𝑄𝑛
𝑍

∣∣∣𝑃𝑀

)
, (43)

where 𝑄𝑍 is the marginal of 𝑄𝑋𝑄𝑌,𝑍∣𝑋 . Therefore

max
𝑃𝑀∈𝒫(ℳ)

𝐼𝒞𝑛(𝑀 ;Z) ≤ max
𝑃𝑀∈𝒫(ℳ)

𝐷
(
𝑃
(𝒞𝑛)
Z∣𝑀

∣∣∣∣∣∣𝑄𝑛
𝑍

∣∣∣𝑃𝑀

)
≤ max

𝑃𝑀∈𝒫(ℳ)

∑
𝑚∈ℳ

𝑃 (𝑚) max
�̃�∈ℳ

𝐷
(
𝑃
(𝒞𝑛)
Z∣𝑀=�̃�

∣∣∣∣∣∣𝑄𝑛
𝑍

)

= max
𝑚∈ℳ

𝐷
(
𝑃
(𝒞𝑛)
Z∣𝑀=𝑚

∣∣∣∣∣∣𝑄𝑛
𝑍

)
. (44)

Now, for an arbitrary 𝛾 > 0 (to be determined later) consider

ℙ

({
Sem(ℂ𝑛) ≤ 𝑒−𝑛𝛾

}𝑐
)

(𝑎)

≤ ℙ

(
max
𝑚∈ℳ

𝐷
(
𝑃
(ℂ𝑛)
Z∣𝑀=𝑚

∣∣∣∣∣∣𝑄𝑛
𝑍

)
> 𝑒−𝑛𝛾

)
(𝑏)

≤
∑
𝑚∈ℳ

ℙ

(
𝐷

(
𝑃
(ℂ𝑛)
Z∣𝑀=𝑚

∣∣∣∣∣∣𝑄𝑛
𝑍

)
> 𝑒−𝑛𝛾

)
, (45)

where (a) uses (44), and (b) is the union bound.

By the stronger soft-covering lemma, if

�̃� > 𝐼(𝑋;𝑍), (46)

then there are 𝛾1, 𝛾2 > such that

ℙ

(
𝐷

(
𝑃
(ℂ𝑛)
Z∣𝑀=𝑚

∣∣∣∣∣∣𝑄𝑛
𝑍

)
> 𝑒−𝑛𝛾

)
≤ 𝑒−𝑒

𝑛𝛾2
, (47)

for sufficiently large 𝑛. Inserting (47) into (45) while setting
𝛾 = 𝛾1, we have

ℙ

({
Sem(ℂ𝑛) ≤ 𝑒−𝑛𝛾1

}𝑐
)
≤ 2𝑛𝑅 ⋅ 𝑒−𝑒𝑛𝛾2 −−−−→

𝑛→∞ 0. (48)

Inequality (48) implies that if �̃� satisfies (46), the probabil-
ity that a randomly generated sequence of codes meets the
SS criterion for large 𝑛 is arbitrarily close to 1. In fact,
because (48) decays so rapidly, the Borel-Cantelli lemma
implies that almost every sequence of realizations of

{
ℂ𝑛

}
𝑛≥1

is semantically-secure. Having (41) and (48), the selection
lemma [25, Lemma 5] implies that there exists a sequence of
(𝑛,𝑅) semantically-secure codes

{𝒞𝑛,1}𝑛≥1 with a vanishing
average error probability.

The final step is to amend
{𝒞𝑛,1}𝑛≥1 to be reliable with

respect to the maximal error probability (cf. Definition 2). This
is done using the standard expurgation technique (see, e.g.,
[21, Theorem 7.7.1]). Namely, we discard the worst half of the
codewords in each 𝒞𝑛,1. Denoting the amended sequence of
codes by

{𝒞★𝑛,1}𝑛≥1, we have 𝑒★(𝒞★𝑛,1) −−−−→
𝑛→∞ 0. To conclude

the proof, note that in each 𝒞★𝑛,1 there are 2𝑛𝑅−1 codewords,
i.e., throwing out half the codewords has changed the rate from
𝑅 to 𝑅− 1

𝑛 , which is negligible for large 𝑛. Further note that
because

{𝒞𝑛,1}𝑛≥1 is semantically-secure, so is
{𝒞★𝑛,1}𝑛≥1.
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Combining (42) with (46), we have that every

0 ≤ 𝑅 < max
𝑄𝑋

[
𝐼(𝑋;𝑌 )− 𝐼(𝑋;𝑍)

]
(49)

is SS-achievable. If the RHS of (49) is non-positive, then we
set 𝑅 = 0.

To establish the achievability of 𝐶Sem from (11), we prefix
a DM-channel (DMC) 𝑄𝑋∣𝑉 to the original WTC I 𝑄𝑌,𝑍∣𝑋
to obtain a new channel 𝑄𝑌,𝑍∣𝑉 , where

𝑄𝑛
𝑌,𝑍∣𝑉 (y, z∣v) =

∑
x∈𝒳𝑛

𝑄𝑛
𝑋∣𝑉 (x∣v)𝑄𝑛

𝑌,𝑍∣𝑋(y, z∣x). (50)

Using a similar analysis as above with respect to 𝑄𝑌,𝑍∣𝑉 , any
𝑅 ∈ ℝ

+ satisfying

𝑅 < max
𝑄𝑉,𝑋 :

𝑉−𝑋−(𝑌,𝑍)

[
𝐼(𝑉 ;𝑌 )− 𝐼(𝑉 ;𝑍)

]
(51)

is achievable.

C. Proof Outline of Proposition 3

The equality in (15) follows by evaluating the strong-
secrecy-capacity formula of a general WTC I, i.e.,

max
𝑄𝑉,𝑋 :

𝑉−𝑋−(𝑌,𝑍)

[
𝐼(𝑉 ;𝑌 )− 𝐼(𝑉 ;𝑍)

]
, (52)

under the transition probability matrix 𝑄
(1)
𝑌,𝑍∣𝑋 .

To prove the inequality in (15), we first show that for any
𝛼 ∈ (0, 1] and 𝛽 ∈ [0, 𝛼), an 𝛼-strong-secrecy-achievable
rate for the WTC II is also achievable for the WTC I with
erasure probability 𝛽. Having this, Proposition 3 follows by a
continuity argument of the strong-secrecy-capacity of WTC I
with respect to 𝛽.

For any 𝛼-strong-secrecy-achievable rate 𝑅 ∈ ℝ+ for the
WTC II, let

{𝒞II𝑛 }
𝑛≥1 be the corresponding sequence of (𝑛,𝑅)

codes. Since the channels to the legitimate receivers are the
same for both versions of the WTC,

{𝒞II𝑛 }
𝑛≥1 also achieves

reliability for the WTC I.
Denote by Z(1) and Z(2) the eavesdroppers observation in

the WTC I and the WTC II, respectively, that is induced
by

{𝒞II𝑛 }
𝑛≥1. To establish (15), it suffices to show that

𝐼𝒞II
𝑛

(
𝑀 ;Z(1)

)
can be made arbitrarily small with the block-

length 𝑛. To this end, for every z ∈ 𝒵𝑛, where 𝒵 ≜ 𝒳 ∪{?},
define

𝒜(z) ≜ {
𝑖 ∈ [1 : 𝑛]

∣∣𝑧𝑖 =?
}

(53)

Θ(Z) ≜ 1{∣𝒜(Z)∣≤⌈�̄�𝑛⌉}. (54)

Namely, Θ indicates if the number of erasures in a sequence
z ∈ 𝒵𝑛 is greater than or equal to ⌈�̄�𝑛⌉ or not.

By conditioning the mutual information term 𝐼𝒞II
𝑛

(
𝑀 ;Z(1)

)
on Θ(Z(1)), we distinguish between the two cases of Z(1)

being better or worse than Z(2). When Θ(Z(1)) = 0, i.e.,
Z(1) is worse that Z(2), security for the WTC I is ensured
since

{𝒞II𝑛 }
𝑛≥1 achieve security for the WTC II. Otherwise,

for the case that Θ(Z(1)) = 1 and Z(1) is better than Z(2), we
use Sanov’s theorem to show that the probability of such an

event exponentially decreases with the blocklength 𝑛, while
the mutual information grows linearly at most.

D. Direct Proof of Theorem 4

As before, we start by showing the achievability of (16)
when 𝑉 = 𝑋 . After doing so, we use channel prefixing to
extend the proof for any 𝑉 with 𝑉 −𝑋 − 𝑌 .

Fix 𝛼 ∈ [0, 1], 𝜖 > 0 and a PMF 𝑄𝑋 on 𝒳 . Letting 𝑀
and 𝑊 be independent random variables uniformly distributed
over ℳ and 𝒲 =

[
1 : 2𝑛�̃�

]
, respectively, we repeat the code

construction from Section VI-B and set 𝑓2 = 𝑓1 and 𝜙2 = 𝜙1.
A similar analysis of the average error probability shows that
if

𝑅+ �̃� < 𝐼(𝑋;𝑌 ), (55)

then (41) holds for the WTC II scenario as well.
Security Analysis: Fix 𝒮 ⊆ [1 : 𝑛] with ∣𝒮∣ = 𝜇 = ⌊𝛼𝑛⌋

and define the following PMF on 𝒵𝑛,

Γ
(𝒮)
Z (z) =

∏
𝑗∈𝒮𝑐

1{
𝑧𝑗=?

} ∏
𝑗∈𝒮
ℐ𝑍(𝑧𝑗), ∀z ∈ 𝒵𝑛, (56)

where ℐ𝑍 is the marginal output PMF of the identity DMC
with input distribution 𝑄𝑋 :

ℐ𝑍(𝑧) =
∑
𝑥∈𝒳

𝑄𝑋(𝑥)1{𝑧=𝑥} = 𝑄𝑋(𝑧)1{𝑧∈𝒳}. (57)

For any 𝒞𝑛 (defined by fixing ℬ𝑛) and 𝑃𝑀 ∈ 𝒫(ℳ), the
relative entropy chain rule implies

𝐼𝒞𝑛(𝑀 ;Z) = 𝐷
(
𝑃
(𝒞𝑛,𝒮)
Z∣𝑀

∣∣∣∣∣∣𝑃 (𝒞𝑛,𝒮)
Z

∣∣∣𝑃𝑀

)
= 𝐷

(
𝑃
(𝒞𝑛,𝒮)
Z∣𝑀

∣∣∣∣∣∣Γ(𝒮)Z

∣∣∣𝑃𝑀

)
−𝐷

(
𝑃
(𝒞𝑛,𝒮)
Z

∣∣∣∣∣∣Γ(𝒮)Z

∣∣∣𝑃𝑀

)
, (58)

and therefore

max
𝑃𝑀∈𝒫(ℳ)

𝐼𝒞𝑛(𝑀 ;Z) ≤ max
𝑃𝑀∈𝒫(ℳ)

𝐷
(
𝑃
(𝒞𝑛,𝒮)
Z∣𝑀

∣∣∣∣∣∣Γ(𝒮)Z

∣∣∣𝑃𝑀

)
≤ max

𝑃𝑀∈𝒫(ℳ)

∑
𝑚∈ℳ

𝑃 (𝑚) max
�̃�∈ℳ

𝐷
(
𝑃
(𝒞𝑛,𝒮)
Z∣𝑀=�̃�

∣∣∣∣∣∣Γ(𝒮)Z

)

= max
𝑚∈ℳ

𝐷
(
𝑃
(𝒞𝑛,𝒮)
Z∣𝑀=𝑚

∣∣∣∣∣∣Γ(𝒮)Z

)
. (59)

For any ∅ ∕= 𝒜 ⊆ [1 : 𝑛] and z ∈ 𝒵𝑛, let z𝒜 ≜ (𝑧𝑖)𝑖∈𝒜
be the sub-vector of z indexed by the elements of 𝒜. The
relative entropy chain rule further simplifies the RHS of (59)
as follows. For any 𝑚 ∈ℳ, we have

𝐷
(
𝑃
(𝒞𝑛,𝒮)
Z∣𝑀=𝑚

∣∣∣∣∣∣Γ(𝒮)Z

)
= 𝐷

(
𝑃
(𝒞𝑛,𝒮)
Z𝒮 ,Z𝒮𝑐 ∣𝑀=𝑚

∣∣∣∣∣∣Γ(𝒮)Z𝒮 ,Z𝒮𝑐

)
(𝑎)
= 𝐷

(
𝑃
(𝒞𝑛,𝒮)
Z𝒮 ∣𝑀=𝑚

∣∣∣∣∣∣Γ(𝒮)Z𝒮

)
(𝑏)
= 𝐷

(
𝑃
(𝒞𝑛,𝒮)
Z𝒮 ∣𝑀=𝑚

∣∣∣∣∣∣ℐ𝜇𝑍) , (60)

where (a) is because 𝑃
(𝒞𝑛,𝒮)
Z𝒮𝑐 ∣𝑀=𝑚,Z𝒮=z𝒮 = 1{

𝑍𝑖=?, 𝑖∈𝒮𝑐
} =

Γ
(𝒮)
Z𝒮𝑐 , for every z𝒮 ∈ 𝒵 ∣𝒮∣, and (b) follows from (56).
Combining (58)-(60) while maximizing over all subsets 𝒮,

for every 𝒞𝑛 we have

Sem𝜇(𝒞𝑛) ≤ max
𝑚∈ℳ,

𝒮⊆[1:𝑛]: ∣𝒮∣=𝜇

𝐷
(
𝑃
(𝒞𝑛,𝒮)
Z𝒮 ∣𝑀=𝑚

∣∣∣∣∣∣ℐ𝜇𝑍) . (61)
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Now, for an arbitrary 𝛾 > 0 (to be determined later) consider

ℙ

({
Sem𝜇(ℂ𝑛) ≤ 𝑒−𝑛𝛾

}𝑐
)

(𝑎)

≤ ℙ

⎛
⎝ max

𝑚∈ℳ,
𝒮⊆[1:𝑛]: ∣𝒮∣=𝜇

𝐷
(
𝑃
(ℂ𝑛,𝒮)
Z𝒮 ∣𝑀=𝑚

∣∣∣∣∣∣ℐ𝜇𝑍) > 𝑒−𝑛𝛾

⎞
⎠

(𝑏)

≤
∑

𝑚∈ℳ,
𝒮⊆[1:𝑛]: ∣𝒮∣=𝜇

ℙ

(
𝐷

(
𝑃
(ℂ𝑛,𝒮)
Z𝒮 ∣𝑀=𝑚

∣∣∣∣∣∣ℐ𝜇𝑍) > 𝑒−𝑛𝛾
)
, (62)

where (a) uses (61), and (b) is the union bound.
Each term in the sum on the RHS of (62) falls into the

framework of the stronger soft-covering lemma, with respect
to a blocklength of 𝜇 and the identity channel. Noting that

∣𝒲∣ = 2𝑛�̃� = 2𝜇
𝑛�̃�
𝜇 , we have that as long as

𝑛�̃�

𝜇
> 𝐻(𝑋), (63)

there exist 𝛾1, 𝛾2 > 0 that for sufficiently large 𝑛 satisfy

ℙ

(
𝐷

(
𝑃
(ℂ𝑛,𝒮)
Z𝒮 ∣𝑀=𝑚

∣∣∣∣∣∣ℐ𝜇𝑍) > 𝑒−𝑛𝛾1

)
≤ 𝑒−𝑒

𝑛𝛾2
. (64)

Since 𝜇 = ⌊𝛼𝑛⌋ ≤ 𝛼𝑛, taking �̃� > 𝛼𝐻(𝑋) satisfies (63).
Setting 𝛾 = 𝛾1 into (62) and using (64), gives

ℙ

(
Sem𝜇(ℂ𝑛) ≥ 𝑒−𝑛𝛾1

)
≤ 2𝑛 ⋅ 2𝑛𝑅 ⋅ 𝑒−𝑒𝑛𝛾2 −−−−→

𝑛→∞ 0. (65)

Having (41) and (65), the selection lemma [25, Lemma 5]
implies the existance of a sequence of (𝑛,𝑅) 𝛼-semantically-
secure codes

{𝒞𝑛,2}𝑛≥1 with a vanishing average error proba-
bility. The expurgation technique again upgrades reliability to
be with respect to the maximal error probability while preserv-
ing SS. Combining both rate bounds shows the achievability of

𝑅 < max
𝑄𝑋

[
𝐼(𝑋;𝑌 )− 𝛼𝐻(𝑋)

]
. (66)

Finally, we prefix a DMC 𝑄𝑋∣𝑉 to the original WTC II to
obtain a new main channel 𝑄𝑌 ∣𝑉 , given by

𝑄𝑛
𝑌 ∣𝑉 (y∣v) =

∑
x∈𝒳𝑛

𝑄𝑛
𝑋∣𝑉 (x∣v)𝑄𝑛

𝑌 ∣𝑋(y∣x). (67)

Furthermore, Γ(𝒮)Z from (56) is redefined as

Γ
(𝒮)
Z (z) =

∏
𝑗∈𝒮𝑐

1{
𝑧𝑗=?

} ∏
𝑗∈𝒮

𝑄𝑍(𝑧𝑗), ∀z ∈ 𝒵𝑛, (68)

where 𝑄𝑍 is given by

𝑄𝑍(𝑧) =

{∑
𝑣∈𝒱 𝑄𝑉 (𝑣)𝑄𝑋∣𝑉 (𝑧∣𝑣), 𝑧 ∈ 𝒳

0, 𝑧 =?
. (69)

Repeating a similar analysis as above shows that reliability is
achieved if

𝑅+ �̃� < 𝐼(𝑉 ;𝑌 ), (70)

while the rate needed for the stronger soft-covering lemma is

�̃� > 𝛼𝐼(𝑉 ;𝑋). (71)

Putting (70)-(71) together completes the proof of Theorem 4.
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