
MIMO Gaussian Broadcast Channels with

Common, Private and Confidential Messages

Ziv Goldfeld

Ben Gurion University of the Negev

gziv@post.bgu.ac.il

Abstract—The two-user multiple-input multiple-output
(MIMO) Gaussian broadcast channel (BC) with common,
private and confidential messages is considered. The transmitter
sends a common message to both users, a confidential message
to User 1 and a private (non-confidential) message to User
2. The secrecy-capacity region is characterized by showing
that certain inner and outer bounds coincide and that the
boundary points are achieved by Gaussian inputs. The proof
relies on factorization of upper concave envelopes and a variant
of dirty-paper coding (DPC). The entire region is exhausted
by using DPC to cancel out the signal of the non-confidential
message at Receiver 1, making DPC against the signal of the
confidential message unnecessary. The secrecy-capacity results
are visualized using a numerical example.

I. INTRODUCTION

Channels with an additive Gaussian noise are a common

model for wireless communication, whose open nature makes

it susceptible to eavesdropping. However, eavesdroppers are

not always a malicious entity from which all transmissions

are concealed. Rather, a legitimate receiver of a certain mes-

sage may serve as an eavesdropper for other messages. We

encapsulate this notion in a two-user multiple-input multiple-

output (MIMO) Gaussian broadcast channel (BC) with com-

mon, private and confidential messages (Fig. 1). The common

message M0 is intended to both users, while M1 and M2 are

private messages that are sent to users 1 and 2, respectively.

Further, M1 is confidential and is kept secret from user 2.

Secrecy is insured in terms of weak-secrecy, i.e., a vanishing

information-rate leakage.

In recent years, information-theoretic study of secret MIMO

communication over Gaussian channels has been an active area

of research (see [1] for a recent survey of progress in this area).

The optimality of Gaussian inputs in typically established

based on channel enhancement arguments, originally used in

[2] to characterise the private message capacity region of the

MIMO Gaussian BC (without secrecy constraints).

In this work we take a different approach and prove the op-

timality of Gaussian inputs via factorization of upper concave

envelopes (UCE). This approach was proposed in [3], where

the capacity region of the MIMO Gaussian BC with common

and private messages was established. We first characterize the

secrecy-capacity region under an input covariance constraint

for the setting with private and confidential messages only

(i.e., when no common message is present). The derivation
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Fig. 1: MIMO Gaussian BC with common, private and confidential
messages.

leverages UCEs to show that the boundary point of a certain

outer bound are achieved by Gaussian inputs. Then, using an

adaptation of dirty-paper coding (DPC) [4], we establish the

equivalence of the outer bound to a particular inner bound,

thus characterizing the secrecy-capacity region. Interestingly,

optimality is achieved by using DPC to cancel out the signal

of the non-confidential message M2 at Receiver 1 only. The

other variant, i.e., DPC against the signal of the confidential

message M1, turns out to be unnecessary.

We then focus on the MIMO Gaussian BC with common,

private and confidential messages (Fig. 1). The result without

a common message is used to show that Gaussian inputs are

optimal for a certain portion of the region with a common

message. The rest of the region is characterized by extending

the tools from [3] and introducing the notion of a double-

nested UCE. Gaussian inputs once again are shown to exhaust

the entire region. Finally, we visualize our results by a nu-

merical example which provides a comparison to the scenario

where both private messages are confidential. The comparison

shows that while in the MIMO Gaussian BC with confidential

messages the transmission rate of each user cannot exceed

the secrecy-capacity of the MIMO Gaussian WTC, removing

the secrecy requirement from one of the messages allows

the corresponding user to achieve strictly higher transmission.

Since the regions derived in this work are described as non-

convex matrix optimization problems, we simplify them into

a computational from by relying on matrix decomposition

properties from [5].

A. Problem Definition

We use notation from [6, Section II]. The outputs of a

MIMO Gaussian BC at the i-th channel use is:

Yj(i) = GjX(i) + Zj(i), j = 1, 2, i ∈ [1 : n], (1)
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where G1,G2 ∈ R
t×t are channel gain matrices,

{

Zj(i)
}

i∈[1:n]
, for j = 1, 2, is an independent and identically

distributed (i.i.d.) additive vector Gaussian noise process, and
{

X(i)
}

i∈[1:n]
is the channel input process that is subject to

the covariance constraint

1

n

n
∑

i=1

E
[

X(i)X⊤(i)
]

� K, (2)

where K � 0.

Remark 1 By reasoning similar to this of [3, Remark 1] we

assume that G1 and G2 are invertible and that the Gaussian

noise processes,
{

Zj(i)
}

i∈[1:n]
, for j = 1, 2, are i.i.d. ac-

cording to N (0, I), where I is the t × t-identity matrix. The

first assumption is essentially justified since invertible matrices

are dense in the set of all t × t matrices, while the second

assumption relies on standard noise whitening arguments.

We study the scenario of a MIMO Gaussian BC with

common, private and confidential messages (Fig. 1). The

sender communicates three messages (M0,M1,M2) over a

MIMO Gaussian BC. M0 is a common message intended

for both users, while Mj , for j = 1, 2, is delivered to

user j only. The receivers are to recover their intended

messages with arbitrarily small error probability. Moreover,

a weak-secrecy constraint is imposed on M1 at the 2nd

receiver, i.e., we require 1
n
I(M1;Y

n
2 ) −−−−→

n→∞
0, where Y

n
2 =

(

Y2(1),Y2(2), · · · ,Y2(n)
)

and n is the number of channel

uses. Achievability is defined in a standard manner and the

secrecy-capacity region CK is the closure of all achievable

rate triples (R0, R1, R2) ∈ R
3
+.

II. SECRECY-CAPACITY RESULTS

To state our results we set the following shorthand notations:

r
(j)
0 (A,B) =

1

2
log

∣

∣

∣

∣

∣

I + GjKG
⊤
j

I + Gj(A + B)G⊤
j

∣

∣

∣

∣

∣

(3a)

r1(B) =
1

2
log

∣

∣

∣

∣

I + G1BG
⊤
1

I + G2BG⊤
2

∣

∣

∣

∣

(3b)

r2(A,B) =
1

2
log

∣

∣

∣

∣

I + G2(A + B)G⊤
2

I + G2BG⊤
2

∣

∣

∣

∣

, (3c)

where j = 1, 2 and A,B ∈ R
t×t. Furthermore, define

CK(K1,K2),











(R0, R1, R2)∈R
3
+

∣

∣

∣

∣

∣

∣

R0 ≤ r0(K1,K2)

R1 ≤ r1(K2)

R2 ≤ r2(K1,K2)











(4)

where r0(K1,K2) = min
{

r
(1)
0 (K1,K2), r

(2)
0 (K1,K2)

}

.

Theorem 1 (Secrecy-Capacity with Common Message)

The secrecy-capacity region CK of the MIMO Gaussian BC

with common, private and confidential messages under the

covariance constraint (2) is

CK =
⋃

0�K1,K2:

K1+K2�K

CK(K1,K2). (5)

Due to space limitations, in Section IV we give the proof

for the setting without a common message (i.e., when R0 =
0), whose secrect-capacity region is state in Corollary 2. The

proof of Theorem 1 follows similar lines but requires stronger

technical tools, viz. the notion of double-nested UCEs. The

reader is referred to [7] for details.

Remark 2 We interpret the structure of CK as follows. First,

r1(K2) indicates that User 1 achieves rates up to the secrecy-

capacity of the MIMO Gaussian WTC with input covariance

K2. The 2nd user treats this signal as an additive Gaus-

sian noise when decoding its private message M2, which

is transmitted using another (independent) Gaussian signal

with covariance K1 (see r2(K1K2)). Finally, the structure of

r
(j)
0 (K1,K2) implies that the remaining portion of the total

covariance matrix, that is, K − (K1 + K2), is employed to

encode the common message M0, which is decoded by each

receiver while treating all other signals as noise. As in the

case without a common message, a layered coding scheme,

when optimized over the choices of K1 and K2, exhausts the

entire secrecy-capacity region.

Corollary 2 (Secrecy-Capacity without Common Message)

The secrecy-capacity region ĈK of the MIMO Gaussian BC

with private and confidential messages but without a common

message (R0 = 0) under the covariance constraint (2) is

ĈK =
⋃

0�K⋆�K

ĈK(K
⋆), (6)

where

ĈK(K
⋆) ,

{

(R1, R2) ∈ R
2
+

∣

∣

∣

∣

R1 ≤ r1(K
⋆)

R2 ≤ r2(K−K⋆,K⋆)

}

. (7)

Corollary 2 follows from Theorem 1 by setting K2 = K⋆

and K1 = K−K⋆. A self-contained proof of the corollary is

found in Section IV.

Remark 3 As evident in the proof of Corollary 2 (Proposition

8 in Section IV), the entire secrecy-capacity region ĈK is

achieved by using DPC to cancel out the signal of the non-

confidential message M2 at Receiver 1 only. The other variant,

i.e., DPC against the signal of the confidential message M1

at Receiver 2, is unnecessary. This is in contrast to when

there in no secrecy requirement on M1 (namely, the private

message BC), where the capacity region is exhausted by taking

the convex hull of both variants (DPC against M1 and DPC

against M2).

We also characterize the secrecy-capacity regions under the

average total power constraint. This is a simple consequence

of [2, Lemma 1].

Corollary 3 The secrecy-capacity region of the MIMO Gaus-

sian BC with common, private and confidential messages un-

der the average total power constraint 1
n

∑n

i=1

∣

∣

∣

∣X(i)
∣

∣

∣

∣

2
≤ P

is

CP =
⋃

0�K: tr(K)≤P

CK. (8)
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Similarly, for the setting without a common message, we have

ĈP =
⋃

0�K: tr(K)≤P

ĈK. (9)

A. Numerical Example

We visualize the secrecy-capacity region ĈP of the MIMO

Gaussian BC with private and confidential messages (without

a common message) under an average total power constraint P

given in (9). The region is described as a union of all secrecy-

capacity regions under a covariance constraint ĈK, with K that

satisfies tr(K) ≤ P . However, ĈK itself is described by matrix

optimization problems that is not convex in general.

To compute the region under a covariance constraint ĈK, we

use the decomposition proposed in [5, Equation (10)]: Every

positive semidefinite matrix K⋆ ∈ R
t×t with K⋆ � K can

be expressed as K⋆ = K
1

2VDV⊤K
1

2

⊤

, where V ∈ R
t×t

is a unitary matrix and D ∈ R
t×t is a diagonal matrix

whose diagonal values are between 0 and 1. The region ĈP is

computed according to (9), while noting that one may restrict

the optimization domain to positive semidefinite matrices K
with tr(K) = P . This follows because for every K′ with

tr(K′) = π < P , there is a K with tr(K) = P , such that

Ĉ′
K ⊆ ĈK. (10)

The matrix K is constructed by increasing the (1, 1)-th entry

of K′ by P−π, while keeping all other entries unchanged. The

construction satisfied K′ � K and the inclusion in (10) follows

because fixing K⋆ � K′ � K and replacing K′ with K in (7)

does not alter r1(K
⋆) while strictly increasing r2(K−K⋆,K⋆).

Let the channel matrices and the average total power be

G1 =

[

0.3 2.5

2.2 1.8

]

, G2 =

[

1.3 1.2

1.5 3.9

]

(11)

and P = 12, respectively. The secrecy-capacity region ĈP
is given by the solid blue curve in Fig. 2. For comparison,

the secrecy-capacity region of the MIMO Gaussian BC with

confidential messages [8] (i.e., when each user serves as an

eavesdropped to the message of the other user) is depicted

by the dashed red curve. Fig. 2 shows that imposing a secrecy

constraint on M2 at the 1st receiver strictly shrinks the secrecy-

capacity region. Although in both regions the maximal value

of R1 is the secrecy-capacity of the corresponding MIMO

Gaussian WTC (see (3b) and [8, Equation (4)]), the achievable

values of R2 drop due to the additional secrecy requirement.

III. MATHEMATICAL BACKGROUND AND UCES

This section provides a brief mathematical background for

characterizing the secrecy-capacity region of the considered

MIMO Gaussian BC without a common message (Corollary

2). More specifically, we define some generic functions and

claim that they are maximized by Gaussian distributions. The

proofs of all the properties stated in this section are omitted

due to space limitations (see [7, Sections IV and VI]).

The UCE of and arbitrary function is defined as follow.

0.6 0.8 10.2 0.4

1

2

3

4

5

0

0

M1 Confidential

Both Confidential

Fig. 2: Secrecy-capacity region under average total power constraint
of the MIMO Gaussian BC with: private and confidential messages
(solid blue) vs. confidential messages (dashed red).

Definition 1 (Upper Concave Envelope) Let f : D → R be

a function defined on a convex set D. The UCE C(f) : D → R

of f is the pointwise smallest concave function F such that

F (x) ≥ f(x), ∀x ∈ D.

A representation of the UCE F = C(f) using the supporting

hyperplanes of f is

F (x) = sup
V : E[V ]=x

Ef(V ). (12)

A. Difference of Mutual Information Terms

Consider a broadcast channel QY1,Y2|X. For any η > 1, let

sQη be a function of PX defined by

sQη (X) , I(X;Y2)− ηI(X;Y1). (13)

For a pair of random variables (V,X) such that V −X −
(Y1,Y2) forms a Markov chain, set

sQη (X|V ) , I(X;Y2|V )− ηI(X;Y1|V ), (14)

and note the UCE of sQη (cf. (12)) is given by

SQ
η (X) , C

(

sQη
)

(X) = sup
PV |X:

V−X−(Y1,Y2)

sQη (X|V ). (15)

We also set SQ
η (X|V ) ,

∑

v P (v)SQ
η (X|V = v), for a

discrete random variable V and its natural extension for an

arbitrary V .

Proposition 4 (Continuity) SQ
η (X) is convex in η inside

(0, 2), and therefore, it is contentious in η at η = 1.

Definition 2 (Maximized Concave Envelope) For a MIMO

Gaussian BC QY1,Y2|X and K � 0, define

V Q
η (K) , sup

X: E[XX⊤]�K

SQ
η (X) = sup

(V,X): E[XX
⊤]�K,

V−X−(Y1,Y2)

sQη (X|V ).

B. Nested Upper Concave Envelopes

For a BC QY1,Y2|X, η > 1 and λ = (λ1, λ2), where λj >

0, j = 1, 2, define

t
Q
λ,η(X),λ1I(X;Y1)−(λ1+λ2)I(X;Y2)+λ1S

Q
η (X), (16)
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where SQ
η (X) is given by (15). As before, for a pair of random

variables (V,X) for which V −X−(Y1,Y2) forms a Markov

chain, let

t
Q
λ,η(X|V ) , λ1I(X;Y1|V )− (λ1+λ2)I(X;Y2|V )

+ λ1S
Q
η (X|V ). (17)

Thus T
Q
λ,η(X) , C

(

t
Q
λ,η

)

(X) = sup
PV |X:

V−X−(Y1,Y2)

t
Q
λ,η(X|V ).

Define T
Q
λ,η(X|V ) analogously to the definition of SQ

η (X|V ).

Remark 4 (Nested UCE Properties) Since T
Q
λ,η(X) is con-

cave in PX, Jensen’s inequality implies that T
Q
λ,η(X|V ) ≤

T
Q
λ,η(X). Moreover, if W − V − X forms a Markov chain,

then T
Q
λ,η(X|W,V ) = T

Q
λ,η(X|V ), because PX|W,V = PX|V .

Finally, T
Q
λ,η(X) is convex in η inside (0, 2), and therefore, it

is contentious in η at η = 1.

Definition 3 (Maximized Nested UCE) For a MIMO Gaus-

sian BC QY1,Y2|X and K � 0, define

V̂
Q
λ,η(K) , sup

X: E[XX⊤]�K

T
Q
λ,η(X) = sup

(V,X): E[XX
⊤]�K,

V−X−(Y1,Y2)

t
Q
λ,η(X|V ).

Proposition 5 (Continuity of Maximum) V̂λ,η(K) is con-

tentious in η at η = 1.

Theorem 6 (Existence of Gaussian Maximizer) Let X ∼
N (0,K). There exists a unique decomposition X = X

⋆
1+X

⋆
2+

X
′ into independent random variables (X⋆

1,X
⋆
2,X

′), where

X
⋆
j ∼ N (0,Kj), j = 1, 2, and X

′ ∼ N (0,K − (K1 + K2)
)

,

K1 +K2 � K, such that

T
Q
λ,η(X) = t

Q
λ,η(X

⋆
1 +X

⋆
2) = V̂

Q
λ,η(K) (18a)

SQ
η (X⋆

1 +X
⋆
2) = sQη (X

⋆
1) = V Q

η (K1 +K2). (18b)

IV. PROOF OF THEOREM 2

We show that certain outer bound and inner bounds on the

secrecy-capacity region (see Theorems 1 and 2 of [9]) match.

To state the bounds, let Ĉ denote the secrecy-capacity region

of the corresponding discrete-memoryless (DM) BC.

Bound 1 (Outer Bound) Let Ô be the closure of the union

of rate pairs (R1, R2) ∈ R
2
+ satisfying:

R1 ≤ I(U ;Y1|V )− I(U ;Y2|V ) (19a)

R2 ≤ I(V ;Y2) (19b)

over all (V,U)−X − (Y1, Y2). Then Ĉ ⊆ Ô.

Bound 2 (Inner Bound) Let Î be the closure of the union of

rate pairs (R1, R2) ∈ R
2
+ satisfying:

R1 ≤ I(U ;Y1)− I(U ;V )− I(U ;Y2|V ) (20a)

R2 ≤ I(V ;Y2) (20b)

over all (V,U)−X − (Y1, Y2). Then Î ⊆ Ĉ.

Let ĈK, ÔK and ÎK denote secrecy-capacity region, the

outer bound and the inner bound for a MIMO Gaussian BC

computed under a covariance input constraint E
[

XX
⊤
]

� K.

By definition, we thus have ÎK ⊆ ĈK ⊆ ÔK .

The opposite inclusion, i.e., ÔK ⊆ ÎK , is shown next. The

regions ÎK and ÔK are closed, convex and bounded subsets

of the first quadrant, and therefore, are characterised by the

intersection of their supporting hyperplanes.

Lemma 7 (Supporting Hyperplanes) The following are

supporting hyperplanes of ÔK and ÎK:

R1 ≥ 0 , R1 ≤ HK
1 , R2 ≥ 0 , R2 ≤ HK

2 , (21)

where HK
1 , max

(V,U)−X−(Y1,Y2):

E[XX
⊤]�K

I(U ;Y1|V ) − I(U ;Y2|V )

and HK
2 , max

X: E[XX
⊤]�K

I(X;Y2). Furthermore, (HK
1 ,0) and

(0,HK
2 ) are boundary points of ÔK and ÎK .

The proof of Lemma 7 is omitted due to space limitations

(see [7] for details). Based on the lemma, to show that the

regions coincide, it suffices to show that

max
(R1,R2)∈ÔK

λ1R1 + λ2R2 ≤ max
(R1,R2)∈ÎK

λ1R1 + λ2R2, (22)

for λ1, λ2 > 0. Observe that

max
(R1,R2)∈ÔK

λ1R1 + λ2R2

(a)

≤ sup
(V,U)−X−(Y1,Y2):

E[XX
⊤]�K

{

λ1

[

I(U ;Y1|V )− I(U ;Y2|V )
]

+λ2I(V ;Y2)

}

(b)
= sup
(V,U)−X−(Y1,Y2):

E[XX
⊤]�K















λ1I(X;Y1|V )−(λ1+λ2)I(X;Y2|V )

+λ1

[

I(X;Y2|V,U)−I(X;Y1|V,U)
]

+λ2I(X;Y2)















(c)

≤ sup
V−X−(Y1,Y2):

E[XX
⊤]�K

{

λ1I(X;Y1|V )−(λ1+λ2)I(X;Y2|V )

+ limη↓1 λ1S
Q
η (X|V ) + λ2I(X;Y2)

}

≤ sup
E[XX⊤]�K

λ2I(X;Y2) + sup
V−X−(Y1,Y2):

E[XX
⊤]�K

lim
η↓1

tλ,η(X|V )

(d)
= sup

E[XX⊤]�K

λ2I(X;Y2) + sup
E[XX⊤]�K

lim
η↓1

Tλ,η(X)

(e)
= sup

E[XX⊤]�K

λ2I(X;Y2) + lim
η↓1

V̂λ,η(K), (23)

where (a) is from (19); (b) uses the Markov relation (V,U)−
X − (Y1,Y2); (c) follows by the definition of SQ

η (·|·) and

since conditioned on V , U −X− (Y1,Y2) forms a Markov

chain. Furthermore, (c) uses the continuity of SQ
η (X|V ) in η

at η = 1 (see Proposition 4), which implies that S
Q
1 (X|V ) ,

S
Q
limη↓1 η(X|V ) = limη↓1 S

Q
η (X|V ); (d) is by the definition of

T
Q
λ,η(·|·), the Markov relation V −X−(Y1,Y2), and because

T
Q
λ,η(X|V ) is continuous in η at η = 1 (see Remark 4);

(e) follows by Proposition 5.

By Theorem 6, for every η > 1, there exist independent

random variables X
⋆
1 ∼ N (0,K1), X

⋆
2 ∼ N (0,K2) and
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X
′ ∼ N

(

0,K − (K1 + K2)
)

, K1 + K2 � K, such that

V̂ Q
η (K) = t

Q
λ,η(X

⋆
1 + X

⋆
2) and SQ

η (X⋆
1 + X

⋆
2) = sQη (X

⋆
1).

Moreover, setting X = X
⋆
1+X

⋆
2+X

′ maximizes λ2I(X;Y2)
and attains V̂ Q

η (K) simultaneously. To conform to notation in

the bounds, let V ⋆ = X
′. Taking the limit as η ↓ 1, we have

max
(R1,R2)∈ÔK

λ1R1 + λ2R2

≤ λ1I(X;Y1|V
⋆)−(λ1+λ2)I(X;Y2|V

⋆)+λ2I(X;Y2)

+ λ1

[

I(X;Y2|V
⋆,X⋆

2)− I(X;Y2|V
⋆,X⋆

2)
]

≤ λ1

[

I(X⋆
2;Y1|V

⋆)−I(X⋆
2;Y2|V

⋆)
]

+λ2I(V
⋆;Y2). (24)

Proposition 8 (Partial DPC) Let X, X⋆
1, X

⋆
2 and V be as

described above. Let Y1 = G1X + Z1, where Z1 ∼ N (0, I)
is independent of (X⋆

1,X
⋆
2, V

⋆). If U = X
⋆
2 + AV ⋆, where

A = K2G̃
⊤
1

[

I+G̃1K2G̃
⊤
1

]−1
and G̃1 = (I+G1K1G

⊤
1 )

− 1

2G1,

then

I(X⋆
2;Y1|V

⋆)− I(X⋆
2;Y2|V

⋆)

= I(U⋆;Y1)− I(U⋆;V ⋆)− I(X⋆
2;Y2|V

⋆). (25)

Proof Outline: Setting X̃ , X
⋆
2 + V ⋆ and Z

′
1 ,

G1X
⋆
1 +Z1, we have Y1 = G1X̃+Z

′
1. By the independence

of X
⋆
1, X

⋆
2, V ⋆ and Z1, we have that X̃ and Z

′
1 are also

independent. Moreover, Z
′
1 ∼ N (0, I + G1K1G

⊤
1 ), where

the covariance matrix I + G1K1G
⊤
1 is diagonalizable (due to

its symmetry) and invertible (because it is positive-definite).

Denoting Σ , I + G1K1G
⊤
1 , we decompose Σ = QΛQ⊤,

where Q is a unitary matrix and Λ is diagonal, and further

Σ− 1

2 = QΛ− 1

2Q⊤. Defining Ỹ1 = Σ− 1

2Y1 gives

Ỹ1 = G̃1X̃+ Z̃1, (26)

where G̃1 = Σ− 1

2G1, Z̃1 = Σ− 1

2Z
′
1 and Z̃1 ∼ N (0, I).

Setting U⋆ as above and invoking the classic DPC Theorem

(as formulated in [3, Proposition 12]), we obtain

I(X̃; Ỹ1|V
⋆) = I(U⋆; Ỹ1)− I(U⋆;V ⋆). (27)

Since U⋆ = X
⋆
2 +AV ⋆ we also have

I(X⋆
2;Y2|V

⋆) = I(U⋆;Y2|V
⋆). (28)

Note that Y1 7→ Σ− 1

2Y1 is an invertible mapping, and as

such, preserves mutual information. Concluding, we have

I(X⋆
2;Y1|V

⋆)− I(X⋆
2;Y2|V

⋆)

(a)
= I(X̃;Y1|V

⋆)− I(U⋆;Y2|V
⋆)

(b)
= I(X̃; Ỹ1|V

⋆)− I(U⋆;Y2|V
⋆)

(c)
= I(U⋆; Ỹ1)− I(U⋆;V ⋆)− I(U⋆;Y2|V

⋆)

(d)
= I(U⋆;Y1)− I(U⋆;V ⋆)− I(U⋆;Y2|V

⋆), (29)

where (a) is because X̃ = X
⋆
2 + V ⋆ and by (28), (b) and (d)

are since Y1 7→ Σ− 1

2Y1 is invertible, while (c) uses (27).

Inserting U⋆ into the RHS of (24) while (25) gives

max
(R1,R2)∈ÔK

λ1R1 + λ2R2

=λ1

[

I(U⋆;Y1)−I(U⋆;V ⋆)−I(U⋆;Y2|V
⋆)
]

+λ2I(V
⋆;Y2)

(a)

≤ max
(R1,R2)∈ÎK

λ1R1 + λ2R2, (30)

where (a) follows since (U⋆, V ⋆) − X − (Y1,Y2) forms

a Markov chain and E
[

XX
⊤
]

� K is satisfied, which

implies that the rate pair R1 = I(U⋆;Y1) − I(U⋆;V ⋆) −
I(U⋆;Y2|V

⋆) and R2 = I(V ⋆;Y2) belongs to ÎK , which

implies that ÎK = ĈK = ÔK . The equality (and hence the

extreme points of ĈK) is attained by Gaussian inputs as stated

in Proposition 8, thus making the region computable.

By evaluating ÎK with respect to this input distribution,

the secrecy-capacity region ĈK is the union of rate pairs

(R1, R2) ∈ R
2
+ satisfying:

R1 ≤
1

2
log

∣

∣

∣

∣

I + G1(K1 +K2)G
⊤
1

I + G1K1G⊤
1

·
I + G2K1G

⊤
2

I + G2(K1 +K2)G⊤
2

∣

∣

∣

∣

(31a)

R2 ≤
1

2
log

∣

∣

∣

∣

I + G2KG
⊤
2

I + G2(K1 +K2)G⊤
2

∣

∣

∣

∣

, (31b)

where the union is over all positive semi-definite matrices

K1,K2, with K1 + K2 � K. To further simplify (31) note

that the RHS of (31a) is the secrecy-capacity of the MIMO

Gaussian WTC as derived in [3, Appendix III], which is

maximized by setting K1 = 0 (see [10]–[12]). Further note

that K1 = 0 cannot decrease the RHS of (31b) and relabel

K2 , K⋆ to obtain (6).
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