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Abstract—Attack propagation models within honeypot systems 
aim at providing insights about attack strategies that target 
multiple honeypots, rather than analyzing attacks on each 
honeypot separately. Traditional attack propagation models 
focus on building a single probabilistic model. This modeling 
approach may be misleading, since it does not take into 
consideration contextual information such as the country from 
which the attack is initiated. In addition, with the massive 
increase in the magnitude of attacks on honeypots, a scalable 
modeling approach is required.  

In this work we present a novel attack propagation model that 
can utilize contextual information about the attacks by training 
multiple Markov Chain models. Moreover, we add additional 
layers of analysis: first, we present a likelihood estimation 
procedure that can identify new and evolving attack patterns; 
and second, we introduce a method for generating simulated 
attack sequences that can be used for training or sensitivity 
analysis. Lastly, we present, in details, a MapReduce design for 
all suggested algorithms in order to address scalability issues. 
We evaluate our methods on a massive dataset which includes 
approximately 170 million attacks on an operational honeypot 
system. Results indicate that contextual modeling is important 
for explaining attack propagation that may vary by country. In 
addition, we show the effectiveness of the suggested method for 
generating simulated sequences by comparing the attack 
propagation patterns we learned in the generated dataset and 
the original one. Finally, we demonstrate the scalability of all 
of the proposed algorithms on real and synthetic datasets that 
include over a billion records.  
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I.  INTRODUCTION 
Honeypots are computer resources which are designed to 

attract attackers by presenting false or misleading 
information that an attacker will want to obtain, attack, or 
control. Attackers that compromise the honeypot system 
leave valuable tracks about their attack methods that can be 
further analyzed by security experts in order to discover 
common and new attack patterns. In recent years, we have 
observed a significant increase in the volume and variety of 
data collected by honeypots. When first introduced, 
honeypot initiatives such as the Honeynet Project [1] 
observed a limited amount of traffic and generated small 
datasets of several megabytes per day. Nowadays, 

frameworks such as T-Pot1 may observe millions of attacks 
per day and generate gigabytes of summarized metadata on 
those attacks. The large scale of data collected raise new 
challenges in designing effective and efficient solutions for 
analysis of the massive amount of data collected by honeypot 
systems. 

In this work we present a scalable framework for 
modeling attack propagation patterns within honeypot 
systems. Propagation patterns between honeypots are 
assumed to occur in situations in which the same attacker 
attacks or scans for vulnerabilities several honeypots under 
the same circumstances, e.g., within a one hour time frame. 
The propagation of attacks within a honeypot system is most 
likely to occur in the context of scan activities, worm 
activity, or systematic planned attacks. In particular, we 
utilize, formalize, and extend the probabilistic propagation 
model presented in [2]. The proposed modeling approach is 
based on Markov chains modeling [3], and we present 
several algorithms for handling three types of tasks:  1) 
Training contextual Markov chain models that capture 
propagation patterns within a honeypot system. 2) 
Estimating the likelihood of observed attacks according to 
the trained models. 3) Generating synthetic attack sequences 
that follow the characteristics of the propagation patterns.  
To the best of our knowledge, this is the first work that 
addresses the scalability issues of attack propagation models 
within honeypots, and the first to include contextual 
modeling, maximum likelihood estimation, and synthetic 
data generation components in the model.                 

The proposed framework is implemented in the 
MapReduce[4, 5] programing model. The first two tasks in 
the suggested framework, which concern training Markov 
models and likelihood estimation are ideal for the 
MapReduce model, since they require processing a large 
amount of available data. However, the task of generating 
simulated sequences is unusual for MapReduce frameworks. 
In this scenario, we need to create an enormous dataset from 
the beginning, as very little data is available from start. 

We evaluate the effectiveness and efficiency of the 
proposed algorithms using several massive datasets. We first 
analyze a real-world dataset of cyber-attacks on a honeypot 
system. The dataset contains 114G of data, with 
approximately 170 million atomic attacks collected for over 
a year.  Second, we analyze synthetically generated datasets 
containing up to 100 million sequences and over a billion 
atomic records in various configurations. Results in all 

                                                           
1 http://dtag-dev-sec.github.io/ 
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experiments are consistent and demonstrate the high 
scalability of the proposed solution. 

The rest of this paper is organized as follows: in Section 
II we present related work on analytical attack propagation 
models within honeypot systems; Section III includes a 
detailed review of the proposed methods and algorithms. 
Empirical evaluation is described in Section IV; and finally, 
in Section V we conclude our work and outline several 
directions for further research.           

II. RELATED WORK 
One of the main research areas in honeypot technology 

concerns with utilization of the output data collected by the 
honeypots [6]. The propagation model suggested in [2] is 
designed to detect attack propagations which occur when the 
IP address of an attacking machine is observed on multiple 
honeypots. This scenario is most likely to occur in the 
context of scan activities or worm propagation. Propagation 
from honeypot  to honeypot  is assumed to happen if 
the same attacker attacks  immediately after  The 
suggested model is a propagation graph, where each node 
represents a honeypot; a link between two nodes represents 
propagation between two honeypots, and each link is 
assigned with a transition probability. This model serves as 
the basis for our work, and we extend by formalizing it as 
contextual Markov chain model and adding additional layers 
of analysis. 

Previous works [7, 8] suggested classification models 
which aim to distinguish between two families of malicious 
web sessions: "attacks" and "vulnerability scans". The data 
was collected by honeypots, while the main modeling 
process included feature extraction and training supervised 
machine learning models that classify whether a session is an 
attack or a scan activity.  We can consider these types of 
works parallel and complementary to ours, since scan 
activities are an example of attack propagation.  

Analysis and detection of polymorphic worms may also 
be considered parallel and complementary to our work in the 
same vein. Two examples of such works can be found in [9, 
10]. The first work identified signatures of polymorphic 
worms by examining special tokens (substrings) in the 
worms' payload data; while the latter identified worm 
signatures by examining sequences of operations on the 
SMB protocol that were triggered by the worm. 

On a broader perspective, the suggested algorithms 
concerns with scaling up Markov chain models. The 
mechanisms that are presented in the sugeested algorithms 
can be applied in domains that utilize Markov chain models 
such as in chemistry [11], biology [12], computer science 
[13], and others. Many of these works also indicate that 
handling large amounts of data is a challenging task so a 
scalable approach such as presented in this work may be 
beneficial to these works as well. 

III. METHOD  

A. Learning Contextual Propagation Models 
The first task in the proposed modeling approach is to 

learn a set of Markov chain models that capture the 

propagation patterns. A key concept in the suggested 
modeling approach is to train a set of Markov chain models 
rather than a single global one. The main assumption behind 
the modeling approach is that propagation patterns may vary 
according to the context in which the attacks occur. 
Examples of such contextual features may include the time 
of the attack and the country that originated those attacks. 

In essence, we model sequences of attacks on the 
honeypot system where an attacker attacks one honeypot 
after another. Given a dataset of atomic attack records on the 
honeypot framework, where each record contains the source 
IP of the attacker, a timestamp, and the attacked Honeypot 
identifier, we model these attacks according as a Markov 
process. We start with defining an attack session as all 
atomic attack records from the same attacker in a limited 
time interval. The attacks in a session are then ordered 
according to their timestamps. Attackers are identified by 
their source IP within a time window of 1 hour in order to 
handle scenarios of dynamic IP changes. Next, for each 
attack session we assign the relevant contextual features such 
the contrary that originated the attack sessions using Geo-
Location APIs.  Once the attack sequences are formed, the 
honeypot IDs, denoted by  are considered as states in 
the Markov chain model. 

The most demanding computational process of learning 
Markov chain models is calculating the estimated 
probabilities of the transition matrix and starting states 
probability vector. These probabilities can be estimated by 
scanning the observed data: Given a state space with 
cardinality , the probability a sequence will start at state  
(denoted as ) is presented in equation 1. The probability is 
equal to the number of sequences which started at state  
divided by the total number of sequences. Assuming that 
each sequence starts from a certain state , the total 
number of sequences is equal to the sum of the starting state 
counters over all .  

In the same way, equation 2 describes the required 
calculations for estimating the transition matrix's 
probabilities. The probability of moving from the current 
state  to state  (denoted as ) is equal to the number of 
observed transitions from state  to state , divided by the 
number of all observed transitions from  to any state .  

   (1) 

   (2)  

In order to learn contextual attack propagation models, 
we present two MapReduce algorithms. The first algorithm 
serves as a preprocessing step which is designed to build 
sequence records from atomic ones. The second algorithm is 
responsible for calculating all the required statistics for the 
Markov models.  

The input for Algorithm 1 is a dataset of atomic records, 
when each record contains an  (identifies the 
monitored entity), a  (identifies the status of the 
monitored entity) and a  specifying when this 
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record was collected. The atomic attack records on the 
honeypots are easily mapped to this schema: the IP address 
of the attacker and the time interval of the observed attacks 
are mapped to , the attack time is mapped to 

 and the attacked honeypot is mapped to the 
.  

The output of this algorithm is a dataset of sequences 
modeled in a key-value format, where the key is the 

 and the value is the sequence associated to it. 
Sequences are modeled as a list of , , 
and the original data record triplets, ordered chronologically 
by the timestamp. The map function (lines 1-5) works on 
each atomic record and emits intermediate key-value pairs, 
while the reduce function (lines 6-8) collects pairs with the 
same   and builds the sequence. 

The process of calculating the Markov chain models 
statistics is described in Algorithm 2. The input for the 
algorithm is a dataset of sequences, in a key-value format, 
where the key is an  and the value is the sequence. 
The output of the algorithm is a sparse representation of all 
count-statistics for each of the contextual Markov chain 
models as required for equations 1 and 2. In particular, the 
results is a set of key-value pairs, where the keys are 
composed of ,  and  triplets that 
indicate that transitions between these two states have been 
observed under the relevant context. The associated value 
for each key is the number of observed/relevant transitions. 
The map function (lines 1-8) emits key-value pairs of all the 
observed transitions in the current sequence: First, we 
extract all the relevant context values of the current 
sequence (lines 2-3). Second for each of extracted contexts, 
we emit all the observed transitions with a value of 1.0 
(lines 4-7). Notice that the first observed stated id uses a 
wild card token denoted by "*" that specifics this is the 
beginning of the sequence in order to be consistent with the 
rest triplet structure. The reduce function simply sums all 
the values that are associated with same key (lines 8-9). 

 

 
After computing all the transition count statistics that 

resulted from Algorithm 2, we can compute for each context 
 the associated Markov chain model probabilities 

according to equations 1 and 2. Given context  the number 
of sequences starting at state  is the value associated to 
the key , and the number of transitions between 
states  and  is the value associated to the 
key . 

B.  Likelihood Estimation 
Given an attack propagation model, we apply a likelihood 

estimation procedure in order to estimate whether a new 
observed attack sequence in length  is common or not. The 
likelihood is calculated by series probabilities' 
multiplications:  

  (5) 
In order to avoid a series of long multiplications, a more 
convenient way is to calculate the log likelihood of a 
sequence: 

  (6) 
A sequence with a small log likelihood measure indicates 
that it does not fit to the learned probabilities in the model, 
and may be considered abnormal. We extend this procedure 
to a set of contextual Markov chain models by repeating it 
for each of the models. Moreover, we treat each of 
contextual models as a separate expert and combine their 
likelihood estimations using a predefined aggregation 
function. For example, if we observed an attack sequence 
that originated from "China" on a "weekend", we can take 
the likelihood estimation of the two relevant contextual 
models and return the maximum of the two.      

In Algorithm 3 we present a MapReduce algorithm for 
calculating the log likelihood of sequences given a series of 

 

Algorithm 1: Pre-Processing  

Input:  – Dataset of atomic data records 
Output: Sequence dataset.  
1. function: MAP Preprocess  
2.  extract object id from  
3.  extract timestamp from  
4.  extract state id form  
5. emit  
6. function: REDUCE Preprocess  

7.  sort by timestamp all triplets in 
 

8.  

 

 

Algorithm 2: Building Markov Chain  

Input:  – Dataset of sequences  
Output: Key, value pairs of all the required counting 
statistics for the Markov chain Model.  
1. function: MAP BuildMarkov  
2.   
3.   extract all contextual features from   
4. For each  
5.  
6. For    //  is the length of   
7.  

8. function: REDUCE BuildMarkov  

9.  
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contextual Markov chain models.  The input for algorithm is 
a set of sequences (denoted as ). In addition 
several global parameters are shared cross the algorithm: 

 is the set of contextual Markov chain models;  is the 
aggregation function for estimating the combined 
likelihood; and  is a very small probability value which 
replaces starting states or transition probabilities which are 
equal to 0. The output of the algorithm is a series of log 
likelihood estimations ( ) – one for each of the 
models in , and additional one for the combined model 
using  as an aggregation function. In addition, the 
algorithm reruns the number of sequences in each context 
for calculating the average log likelihood per sequence.  

In particular, the map (lines 1-13) function takes as an 
input single sequence, extracts the relevant contexts and 
calculates the matching log-likelihood estimations according 
to equation 6. In addition, we calculate the log estimation 
using the combined model using  and a constant token 
" ". The reduce (lines 14-15) function sums separately the 
likelihood estimation associated for each key/model. 

 
C. Random Walk Simulation 

A random walk is a formalization of a path that consists 
of a succession of random steps on a certain distribution. 
The process of performing a random walk on a Markov 

chain model is straightforward: first, one needs to sample a 
random starting state aligned to the starting states 
probability vector; second, in an iterative process, sample 
the next state according to the current one and with respect 
to the probabilities on the transition matrix. This process can 
be repeated many times, and as a result, generate a large set 
of simulated sequences. Designing a MapReduce algorithm 
for this task is challenging since unlike data processing 
algorithms, the goal of this algorithm is to create a massive 
dataset of  sequences, given a relatively compact Markov 
chain model.  

The main idea of proposed approach is to create a 
temporary distributed numeric data structure with values 
between 1 to . Initializing the temporary distributed has a 
low computation cost and its contribution is two-fold: 1) 
This dataset serves as an artificial starting point for the 
MapReduce algorithm. 2) Each id serves as a seed number 
for initializing a temporal random number generator (RNG) 
for sampling the states of the current sequence. Relying on 
controlled and local RNGs assures persistent simulation 
results and removes computational bottlenecks in 
maintaining global read/write RNG resource. Once we 
generated this data structure, the map function is responsible 
to sample the states of the current sequence using a roulette 
wheel selection method [14]. 

IV. EVALUATION 

A. The T-Pot Use Case 
In this section we present experimental results from 

applying the suggested methods on a massive data set of 
attacks on the T-Pot Multi-Honeypot Platform, an 
operational and globally deployed honeypot system. Each 
record in the analyzed dataset contains meta-data about an 
atomic attack on the system and includes the attacked 
honeypot, the source IP of the attacker and the timestamp. 
Overall, we analyzed a 114 GB dataset which includes 
approximately 170 million attack records between July 2014 
and August 2015. The attacks targeted 253 different 
honeypots. Attacks were originated from almost 1 million 
distinct IP addresses from 229 countries. 

The first experiment with the T-Pot datasets was training 
contextual propagation models. We applied algorithm 1 in 
order to create attack sequences using the attacker IP address 
and intervals of 1 hour as the object IDs. Next, we applied 
algorithm 2 and trained a series of contextual Markov chain 
models taking into consideration the country that originated 
the attacks. Overall we created multiple Markov chain 
models: a global one for all of the attacks, and country-wise 
specific models. The structure of the transition graph of 
global model is presented in figure 1.  Each node/state on the 
graph represents a honeypot; while, each directed link 
between two pairs of nodes represents the relevant non-zero 
entry in the model's transition matrix. The nodes' color is a 
function of the number of its adjacent states. Deeper colors 
are indicators for more connected states. 

 

Algorithm 3: Likelihood  Estimation  

Input:  – Dataset of sequences.  
Global: 

  – Set of Markov Chain models for each 
contextual value (|C| Markov models). 

  – Minimum transition/starting state probability. 
  – Aggregation function. 

Output: MLE aggregative values on the observed data.  
1. function: MAP Likelihood  
2.   
3.   extract all contextual features from  
4. Initialize     
5. For each  
6.  

7.  
8. For              //  is the length of   
9.  

10.  
11. For each  

12. 

13. 
14. function: REDUCE Likelihood 

15.  
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Figure 1.  T-Pot Propagation Model (All Attacks) 

Next, we analyzed whether the contextual modeling 
according to the attacking country revels different patterns. 
In particular, we focused on the top 3 attacking countries: 
China (CN), Russia (RU) and USA (US). These countries are 
responsible in total for 63.4% of the observed attacks in the 
dataset. To evaluate the effectiveness of the country based 
modeling we compered the results of the likelihood 
estimation measures from Algorithm 3. 

We evaluated the likelihood of each of the four subsets of 
attacks: "All attacks", "CN attacks", "RU attacks" and "US 
attacks" on all of the four matching models "ALL", "CN", 
"RU "and "US". In table 1 we present normalized likelihood 
estimation results of all 16 <attacks, model> combinations. 
The normalized measure for each pair is the ratio between 
the likelihood of the attacks according to the "native" model 
and the likelihood according to the current evaluated model.  
The native "model" of an attack set is defined as the model 
that derived directly from those attacks. Overall we observed 
that contextual modeling is effective as it is preferable to 
model attacks from different countries separately, rather than 
relying on a global model. The most noticeable difference 
relates to attacks that originated from Russia. The likelihood 
ratio is less than 0.7, meaning relying solely on the global 
model when analyzing RU attacks will cause approximately 
30% decrease the likelihood accuracy and may flag many 
common attacks sequences as new or abnormal while they 
are not.     

TABLE I.  CONTEXTUAL MODELING COMPARASION 

       Model 
 
Attacks 

ALL CN RU US 

ALL 1 0.878 0.541 0.851 
CN 0.939 1 0.491 0.722 
RU 0.693 0.314 1 0.284 
US 0.889 0.705 0.553 1 

 

Our last experiment with the T-Pot dataset concerned 
with creating simulated attack sequences. We applied the 
suggested approach on the four Markov chain models from 
the previous experiment i.e. the "ALL", "CN", "RU" and 
"US" models. For each model we produced 10 million 
simulated attack sequences. In order to evaluate the quality 
of the simulated sequences, we trained a new set of Markov 
chain models based on the simulated sequences and 
compered them to the original ones using likelihood 
estimation as preformed in the previous experiment.  The 
pairwise comparison of similarity ranged between 0.998 and 
0.99994. These high similarity values indicate that the 
generation process captures the dynamics of the sequences' 
transitions very well, as the Models trained on the simulated 
data are almost identical the ones from the original data. 

B. Scalability and Synthitic Data Experiments.  
In order to evaluate the scalability of the proposed 

algorithms, we implemented them on the Apache Spark 
framework with the Java API. All the experiments described 
in this section were performed in Spark's standalone mode 
with a quad-core 3.6 GHz CPU, 8G Ram and 500G hard 
drive. In addition to the T-Pot dataset, we generated 
synthetic ones from predefined Markov chain models. In our 
analysis we focused on two important characteristics of 
Markov chain models – the number of states and the density 
of the transition matrix. We evaluated Markov chains with 
10, 100 and 1000 states along with density levels of 20%, 
50% and 80%. For each of the 9 Markov chain 
configurations we generated a massive dataset containing 
100 million sequences. On average each dataset contained 22 
GB of data and more than a billion atomic records in the 
structure of <objecid, timestamp, stated> triplets as required 
for applying the suggested algorithms.  

We applied the suggested MapReduce algorithms on the 
synthetic data records in a similar protocol to the T-Pot 
dataset and analyzed the three modeling tasks: 

 Train Markov Chain Models – applying algorithms 1 
and 2 on the available dataset. 

 Likelihood Estimation – applying algorithms 1 and 3 
on the trained models from the previous step and the 
available datasets. 

 Random Walk Simulation - generating 100 million 
sequences using the trained models. 

Table 2 summarizes the runtime results for both the T-pot 
dataset sets and the synthetic ones. The synthetic datasets are 
denoted as "synth" with the number of states and density 
level in parentheses. For each dataset and modeling task, we 
compered the run time in seconds when modifying the 
number of workers (ranged from 1 to 4) in the MapReduce 
environment. In the last row on table 2 we present the 
average scaling factor for each task and worker. The scaling 
factor is defined as the ratio between the runtime results of a 
single worker and the results with multiple workers. On 
average, cross all modeling tasks, we observed that adding 
more computational resources improves the run-time 
performances linearly, demonstrating the high scalability of 
the proposed approach.   
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TABLE II.  SCALABLLITY ANALYSIS (RUN TIME RESLUTS IN SECONDS, 100 MLLION SEQUENCES) 

Task/ #  of Workers 
Dataset 

Train Markov Chain Models Likelihood Estimation Random Walk Simulation 

1 2 3 4 1 2 3 4 1 2 3 4 

T-Pot 13140 6821 4423 3404 10281 5080 3316 2396 284 153 108 87 

Synth (10, 20%) 2634 1416 1022 762 2040 1046 771 545 58 33 25 18 

Synth (10, 50%) 2683 1467 1084 799 2019 1134 788 562 64 36 26 20 

Synth (10, 80%) 2691 1473 1100 818 2116 1056 874 610 68 38 28 20 

Synth (100, 20%) 2952 1597 1234 871 2131 1188 952 627 160 84 59 42 

Synth (100, 50%) 2986 1619 1215 834 2371 1228 900 597 278 146 102 76 

Synth (100, 80%) 3054 1650 1211 923 2361 1286 867 674 270 144 99 74 

Synth (1000, 20%) 3987 2201 1627 1102 2966 1604 1290 815 342 183 130 92 

Synth (1000, 50%) 4980 2765 1971 1340 3856 2037 1549 961 665 346 262 203 

Synth (1000, 80%) 5885 3211 2384 1600 4181 2562 1770 1206 972 446 376 281 

Average Scaling Factor 1.84 2.53 3.53 1.87 2.55 3.71 1.88 2.58 3.47 
 

V. CONCLUSIONS 
In this work we presented a novel method for modeling 

contextual attack propagations patterns within honeypot 
systems. The suggested method extends previous work by 
adding new layers of analysis which include contextual 
modeling, likelihood estimation, and synthetic data 
generation. Empirical results on a massive dataset with 
approximately 170 million attacks on a honeypot system 
indicate that contextual features, such as the country from 
which the attack was initiated, have a substantial effect on 
the models and should be taken into consideration during the 
modeling phase. In addition, our findings show that the 
algorithm for generating synthetic attack sequences is 
capable of preserving the propagation patterns observed in 
the original data. Moreover, we demonstrate the high 
scalability of the proposed algorithms by experimenting with 
real and synthetic datasets consisting of over a billion 
records. We showed that the processing time decreases 
linearly when adding more computational resources in 
various configurations. These findings indicate that the 
proposed solution is applicable for analyzing massive 
datasets of operational honeypot systems.    

Future research directions include the design of 
additional scalable methods for detecting contextual 
propagation patterns within honeypots, such as clustering 
methods or association rules. In addition, we want to explore 
methods which add additional layers of analysis to our 
analytical models, such as profiling and ranking the attackers 
according to the discovered propagation patterns. 
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