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A new context-based model (CoBAn) for accidental and intentional data leakage prevention
(DLP) is proposed. Existing methods attempt to prevent data leakage by either looking for
specific keywords and phrases or by using various statistical methods. Keyword-based
methods are not sufficiently accurate since they ignore the context of the keyword, while
statistical methods ignore the content of the analyzed text. The context-based approach we
propose leverages the advantages of both these approaches. The new model consists of two
phases: training and detection. During the training phase, clusters of documents are gen-
erated and a graph representation of the confidential content of each cluster is created. This
representation consists of key terms and the context in which they need to appear in order
to be considered confidential. During the detection phase, each tested document is
assigned to several clusters and its contents are then matched to each cluster’s respective
graph in an attempt to determine the confidentiality of the document. Extensive experi-
ments have shown that the model is superior to other methods in detecting leakage
attempts, where the confidential information is rephrased or is different from the original
examples provided in the learning set.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

Information leakage is defined by [64] as the ‘‘accidental or unintentional distribution of private or sensitive data to an
unauthorized entity’’. The definition of ‘‘sensitive data’’ is wide and can include (among other things) financial data, intellec-
tual property, and customer details. In addition, once information has leaked it is nearly impossible to stop it from spreading.

One of the greatest threats to information security is the leakage of data by the organization’s own employees. One com-
mon threat arises from the use of email. Confidential information can be sent to individuals outside the organization very
easily and cause serious damage. There are many examples of such incidents:

1. In May 2000, a Walt Disney CEO accidentally sent out an email containing the company’s quarterly earnings to a reporter,
just prior to a public announcement about them.

2. In June 2001, an Eli Lilly employee sent an email to a group of e-mail service subscribers informing them that the service
was about to be terminated. Due to a human error, the ‘‘To:’’ line contained all of the subscribers’ names and email
addresses, exposing the whole list.

3. In June 2002, a confidential e-mail containing information regarding Prince Charles’ visit to Poland was accidentally sent
to an incorrect address.
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Various laws and regulations have been passed, requiring organizations to protect their clients’ private information. These
include the Sarbanes–Oxley Act (SOX)1; HIPPA,2 and the Gramm-Leach Bliley act.3 These laws focus on specific types of client
information. The HIPAA, for example, mainly deals with medical records, while the Sarbanes–Oxley Act focuses on financial
information. Infractions of these statues carry severe punishments with violators facing hundreds of thousands of dollars in
fines and up to 20 years in jail.

To address the many problems that arise from data leakage and content protection, many software and hardware solu-
tions have been developed. The hardware solutions include the use of encrypted communication, fingerprint readers, and the
disabling or removal of USB ports on computers. The software solutions are even more diverse and are discussed in Section 2
below.

In this study, we present a new context based model (CoBAn), which can deal with accidental and intentional data leak-
age via an organization’s monitored channels of communication. Our model generates a representation of the confidential
content of the documents with the context in which it is used. We propose an algorithm that can generate this representa-
tion and train a system with confidential content; another algorithm detects confidential documents. Our solution can accu-
rately detect a document containing confidential information even when most of the document consists of non-confidential
content, including cases in which the confidential content has been rephrased. This property is very important, as mixed-con-
tent documents (confidential and non-confidential) are very common. For example, an employee may send a non-confiden-
tial email message to her friend (unintentionally or intentionally), which also mentions a confidential project within it.

The remainder of this paper is organized as follows. In Section 2, we present previous work on content protection and
data leakage prevention. In Section 3, we present the proposed model and the detection and decision algorithms. The exper-
iments conducted to evaluate the model are discussed in Section 4. Section 5 concludes the paper with a summary and dis-
cussion of future research directions (see Tables 1–3).
2. Related work

In this section we review three topics relevant to this study: information leakage detection and prevention (ILD&P) meth-
ods; graph representation of textual documents; and the use of graph representations in the field of information security.

2.1. Information Leakage Detection & Prevention (ILD&P) methods

Considering the enormity of the threat of information leakage, there has been relatively little published research on the
matter. Existing research can be divided into two main areas: content and behavior-based methods.

The content-based approach includes the rule and classifier-based approaches. In the rule-based approach, various rules
are defined with regard to words and terms that may appear in a scanned text. When used to protect information, these rules
determine the ‘‘confidentiality level’’ of the scanned text based on the number of appearances of certain words and/or
phrases. This technique is discussed in various academic studies [32,11,55,67] and is implemented in several commercial
products4 as well.

The well explored classifier-based approach consists of various classification and other machine learning techniques, such
as support vector machines (SVM) [12,18] and naïve Bayes [57,5,36]. In this approach, documents are represented as vectors,
while the terms of the documents and their frequencies are the features of the vectors [58]. These vectors form the learning
set for a probabilistic model that classifies documents as confidential or not. These techniques are often used in spam detec-
tion, a field related to ILD&P [15,16].

Recent studies attempt to not only identify confidential content but to determine the level of threat its leakage presents to
the organization; works such as [26,31] proposes a ‘‘score’’ for determining how detrimental a leak of the analyzed content
would be and a framework for applying it. Others focus on the identification of entities (people, places, companies etc.’) [28]
as a mean of improving their detection abilities.

Another approach, which does not exactly fit in either category is fingerprinting, used mostly in commercial products. In
fingerprinting, documents are represented as a set of strings generated by using a hash function on a sliding window that
spans X characters/words of a document. Each tested document is analyzed in the same manner and its hash values are com-
pared against those in the database. If a sufficient number of matches are found, the document is considered confidential.
Fingerprinting is used in commercial products offered by companies engaged in computer security, such as Symantec5

and Websense,6 but is studied in academic literature in relation to plagiarism detection [35], finding near-duplicate files
[47], authorship detection [63] and even website summarization [2] rather than in relation to leakage prevention.

The behavior-based approach to ILD&P focuses on identifying anomalies in behavior. These anomalies can be tracked in
the communication, in and out of the organization as a whole [66], or the analysis of past and current email communication
1 http://www.soxlaw.com/.
2 http://www.hhs.gov/ocr/privacy/.
3 http://www.ftc.gov/privacy/privacyinitiatives/glbact.html.
4 http://www.symantec.com/business/theme.jsp?themeid=vontu.
5 http://www.symantec.com/business/products/family.jsp?familyid=data-loss-prevention.
6 http://www.websense.com/assets/white-papers/PA_Information_Identification_Fingerprinting.pdf.
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for a single person [39]. Other studies propose the use of decision trees to access illegitimate access to customers’ personal
data [44] and the identification of similar behavior when accessing databases [49].

The above methods do not effectively handle the following type of scenarios: an employee of a certain organization at-
tempts to leak confidential details about a new, well-publicized project, on which his firm is working (via email) to a jour-
nalist. The majority of the document is not confidential but it includes a paragraph containing sensitive technical data. The
methods mentioned above would probably fail to detect the confidentiality of the document due to the following reasons:

(a) Rule-based systems are probably too rigid to deal with this sort of ILD&P, since they tend to suffer from a high rate of
false-positives, according to [1]. Organizations that use rule-based systems for ILD&P generally set a high threshold for
detecting confidential content in documents to minimize false-positive detection. Thus, a document that is mostly
non-confidential (except one paragraph, for example) would probably go undetected by such systems. It should be
noted that because of their high false-positive rate, rule-based methods are not very common nowadays.

(b) Classifiers, such as SVM and naïve Bayes are also likely to fail in detection of such documents, as most of the document
is not confidential and statistic-based classifiers look at the most significant features when classifying documents (our
experiments, presented in Section 4, reinforce this statement).

(c) The fingerprint detection method usually maintains low false-positives as it looks for exact matches to sequences that
only appear in confidential documents. It will also perform well in scenarios where a confidential sequence is inserted
into a non-confidential document using ‘‘copy-paste’’ (because a bulk of hash sequences could be detected in those
cases, almost ensuring detection). However, we hypothesize that the fingerprint performance will deteriorate consid-
erably when the confidential text differs from the training set examples (because of the rephrasing of the text, for
example). Since the amount of confidential text is relatively small, the method will have difficulties in detecting a suf-
ficient number of matches in the modified text.

The behavior-based methods – those that analyze communication patterns, for example – are useless for this type of data
leakage scenario since the email was sent to its intended recipient and, as noted previously, the vast majority of email’s con-
tent is not confidential.

In contrast to the above methods, CoBAn is capable of tackling the problems posed by this scenario. The proposed method
takes the best of both the keyword and classifier-based approaches. First, we use clustering to group together documents of
similar content. Then, we extract the confidential content of each cluster and represent it in a graph. The graph contains both
the terms that can identify a document as confidential and the context in which they appear. When attempting to determine
whether a document is confidential, the proposed model looks for the key terms in a confidential context, thus reducing false-
positives.
2.2. Graph representation of textual documents

Graphs offer an alternative method to the vector-space model for representing textual information. In the literature, a
large number of methods for creating graphs from documents have been suggested, [33,21,40] being just a few examples.
Aside from replacing existing models for text representation, graphs have also been used in many text-related tasks such
as summarization [70], entity linking for the improvement of information retrieval [30] and the augmentation of matrix fac-
torization techniques [8]. Another interesting study [37] integrates graph (and sub-graphs) mining together with the extrac-
tion of textual features for the purposes of text classification, and [15] utilizes graphs for the problem of topic detection. In
this review, we focus on methods for the representation of text using graphs.

Schenker [62] presented six major groups of graph-related algorithms: standard, simple, n-distance, n-simple distance,
absolute frequency, and relative frequency. In general, these methods present a graph, in which words appear as nodes con-
nected by edges to words that appear in their vicinity. The differences between the various algorithms are related to vari-
ations in term-based techniques, such as whether to represent the order of appearance in the document; presenting the
distance between each word (up to a certain predefined distance) and whether the frequencies of the terms’ appearances
together should be calculated.

The main advantage of a graph-based model for a document rather than a common vector representation is that the for-
mer is capable of capturing the structure of the document as well as its content. Graph-based methods represent the prox-
imity of words in a document as well as capture its structure.

When using the vector space model for text-related tasks, the distance between vectors (calculated by methods such as
Euclidean distance or Cosine measure) is used to determine the similarity among documents. This method is quite efficient,
since a single vector needs to be read only once for it to be compared to another. When using graphs, the problem of detect-
ing/retrieving similar objects is referred to as graph matching. As mentioned in [68,25,56], the standard methods for graph
matching are graph isomorphism, subgraph isomorphism [50], and maximum common subgraphs [43,22]. All these methods will
find an optimal solution, but they are NP in their complexity. Various methods for overcoming these problems have been
proposed, including neural networks [14], genetic algorithms [9] and probabilistic relaxation schemes. Recently, hybrid ap-
proaches, which combine graph and vector representations have been proposed by [48]. These methods appear to achieve
better results than earlier approaches in terms of both accuracy and running time.
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Our method uses graphs to represent textual content as well as to capture the context of the content. The graphs gener-
ated by our model refer to confidential content only and not to the whole document. The graphs we utilize include two
types of nodes; confidential and contextual. The creation process of the graphs is described in Section 3.

2.3. The use of graph representations in the field of information security

To the best of our knowledge, graphs have not been used in the field of ILD&P for the purposes of text representation.
However, they have been used in the fields of access control (AC) [52,41]; network vulnerability analysis [53,3,20]; malware
detection [10]; and network forensics [69]. They have also been utilized in conjuncture with online social networks for the
purpose of spam detection [27] and organization mining [23] (inferring the structure of an organization based on the social
network of its employees). In all these studies, graphs are used to represent states and entities. The reasons graphs are used
in these areas are that they are easy to modify and expand and because they assist users in understanding (using visualiza-
tion), the connections between states, rules, and entities.

3. The proposed model

CoBAn consists of two phases, learning and detection. During the learning phase, a context-based confidential terms graph is
generated for each type of the organization’s confidential documents, using a training set. During the detection phase, doc-
uments are analyzed and matched to one or several graphs to calculate their confidentiality score. If this score exceeds a pre-
defined threshold, the document is considered confidential. In the following subsections, we describe each of these phases in
detail.

3.1. The learning phase

The detailed learning phase algorithm is presented in Algorithm 1, while Fig. 1 is its graphic representation. The objective
of this phase is to generate a representation of the confidential content of each of the organization’s fields of activity. This
representation should include not only key words and terms, but also the context in which they appear and the strength of
the connection between the two. This idea of an ‘‘augmented’’ representation has been previously proposed in related fields,
such as information retrieval [38] and concept analysis [13].

The learning phase requires two sets of documents as input:
C – a set of confidential documents reflecting the complete set of the organization’s confidential fields of activity (e.g.,

financial reports, client information, R&D, etc.).
N – a set of non-confidential documents. Some of the non-confidential documents may be of the same type or subject as

the confidential ones, but not necessarily; this could be the case as there are types of documents, which are entirely confi-
dential. More formally put, for each of the organization’s areas of interest v:

� v � N if the area of interest contains only non-confidential documents.
� v � C if the area of interest contains only confidential documents.
� v \ C – £, v \ N – £ if the area of interest contains both confidential and non-confidential documents.

The learning phase begins by identifying the various subjects represented by all documents (both confidential and non-
confidential). This is done by first applying stemming [45] and stop-words removal to the documents, transforming them
into vectors of weighted terms [59] and applying unsupervised clustering [60,46,16,24]. For clustering, we used the k-means
algorithm with the cosine measure as the distance function. The resulting clusters represent an approximation of the various
subjects found in the dataset, many of which may contain both confidential and non-confidential documents.

The next step is aimed at representing the confidential content for all clusters containing confidential documents. This is
accomplished by applying the following procedures:

(1) Detect the confidential key terms, which are the key terms that provide the initial indication of the existence of con-
fidential content.

(2) For each of the detected confidential terms, analyze the context in which it appears in the learning set.
(3) Create a graph representation of the confidential content and context on the cluster level.

We now review each of these procedures in detail.

(1) Detecting the confidential ‘‘key terms’’
The purpose of this step is to identify the terms,7 which indicate with a high probability that a document in a cluster is
confidential. We refer to these terms as confidential key terms. Our first intuition was to choose terms with a high prob-
7 Throughout this paper, we define ‘‘terms’’ as a sequence of words whose length varies between one and three.



Fig. 1. The learning phase. (Red circles = confidential documents; blue circles = non-confidential documents.) (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)
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ability of appearing in confidential documents and a low probability of appearing in non-confidential documents. The
former probability could be divided by the latter in order to generate a ‘‘confidentiality score’’ for each term. This type
of computation is referred to as language modeling [54,65,42] and is usually used in the field of information retrieval.
Language modeling utilizes the probability of randomly sampling a word (or a sequence of words), from a corpus of doc-
uments P(w1, w2, w3. . .nC) for tasks such as choosing terms for a query or ranking documents [42].
Implementing this approach, however, presents some difficulty in the selection of the non-confidential documents used
in this calculation. On the one hand, using only the non-confidential documents of the currently analyzed cluster may
pose the following problems:
1. The cluster may have only a few non-confidential documents or possibly none at all. This may result in an

inadequate representation of the non-confidential content.
2. Adjacent clusters may contain similar documents to those in the analyzed cluster. Not considering these may

result in an incorrect representation of the confidential content. This is the case because the adjacent clusters may
have non-confidential terms with content similar to those of the analyzed cluster’s confidential documents. Such a
scenario may result in choosing non-indicative confidential terms.

On the other hand, selecting the non-confidential documents from a broader scope (for example, the adjacent fifty clusters),
may also have a negative effect on the produced probabilities due to the inclusion of unrelated documents. If this is the case,
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many terms could be considered as indications of confidential content simply because they are related to the general subject
of the documents in the examined cluster.
We solved this problem by using what we call hierarchical language modeling. We first create a separate language model for
the confidential and non-confidential documents of the cluster itself. Then, we iteratively expand the non-confidential lan-
guage model to include a larger number of clusters. The effect of each term on the language model diminishes as the number
of clusters grows. We use the similarity between the original cluster and the candidate cluster to choose the clusters that are
added to the language model (thus, similar clusters are added first and we lower the required similarity threshold every
iteration). The formula for calculating the score of each term is presented in Eq. (1), where Pconfidential_ LM(term) and
Pnon_confidential_ LM(term) denote the probability of randomly sampling the analyzed term from the confidential and
non-confidential language models, respectively, and iteration is a simple counter of the iterations already performed.
8 A lo
8term 2 confidential Lm; scoretermþ ¼
1

iteration
Pconfidential LMðtermÞ

Pnon confidential LMðtermÞ

� �
ð1Þ
We believe that this method incorporates the best of both worlds. By giving larger weight to the examined cluster and its
adjacent clusters, we are able to estimate accurately which terms are most likely to indicate the confidentiality of the doc-
ument. At the same time, we are able to take into account the attributes of a larger portion of the documents in the dataset
and to adjust the terms’ weights accordingly.
Upon completion of this phase, a list of confidential terms is obtained for each cluster containing confidential documents.
From this list, only the terms whose assigned score is greater than 1 are used in order to determine the confidentiality of
documents during the detection phase (that is, we only use terms, which are more likely to appear in confidential documents
than in non-confidential ones).

(2) For every cluster, analyze the context of the confidential key terms
The incorporation of the context in the representation of the confidential information is important because it enables a
better understanding of the confidentiality of each term. Intuitively, the probability of a term being a part of confiden-
tial information is higher if it appears in similar contexts in other confidential documents. If a confidential term
appears in an unrecognized context (or in a context only found in non-confidential documents), it is much less likely
to be related to confidential content.
In the proposed model, the context of a term is defined using a parameter referred to as the context span, which is used
to determine what the scope of terms surrounding the confidential term to be used as context should be. For example,
if the context span is defined as twenty words, the context of a term is defined as the ten words that precede it and the
ten that follow it. After experimenting with various values of this parameter, we found that the optimal value for our
experiments is 20.8 We chose the context terms of each confidential term from the context span.
Intuitively, the terms that ought to be considered as context terms are those that appear near the confidential terms in
confidential documents. For this reason, when attempting to determine the context of a confidential term, only the doc-
uments in which that term appears are considered.
We calculated the probability of each context term to appear near the confidential term both in the confidential and non-
confidential documents. This probability is defined as the number of documents in which the context term appeared near
the confidential term divided by the total number of documents in which the confidential term appeared. This probability
is calculated separately for the confidential and non-confidential documents.
The score of each context term is computed by subtracting the probability of its appearance in a non-confidential context
from the probability of its appearance in a confidential one. This method is initially applied only to clusters containing the
confidential documents, but then it is iteratively expanded to include other clusters, in the same manner as described in
the previous section. The formula for calculating the score of each context term is presented in Eq. (2), where Pconf(con-
text_term/conf_term) and Pnon_conf(context_term/conf_term) denote the probability of a context term to appear near a ‘‘key
term’’ when it appears in confidential and non-confidential documents, respectively. As previously, iteration is a simple
counter of the iterations in which we include more clusters but reduce their influence on the score of each context term.
scorecontext termþ ¼
1

iteration
ðPconf ðcontext term=conf termÞ � Pnon conf ðcontext term=conf termÞÞ ð2Þ
Here, unlike in Eq. (1), we subtract rather than divide the non-confidential probability. The reason behind this is that division
can cause large fluctuations in the values of the context terms. Because of the small number of documents involved – only
the documents in which the confidential terms appear are taken into account – even a single document can drastically
change the probabilities.
wer value decreased the performance of our model, while a higher value did not improve it.
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Algorithm 1. The learning phase algorithm
Generate_Clusters_Confidential_Terms_Graphs
Input:

C – set of confidential documents
N – set of non-confidential documents
TRmin – a minimal cluster similarity threshold

Output:
CR – a set of clusters, each with a centroid and a confidential terms graph

1: T C [ N(combine both datasets)
2: CR Perform Unsupervised Clustering on T
3: For each cluster cr 2 CR
4: Calculate similarity to all other clusters
5: Detect_Confidential_Key_Terms
6: Detect_Confidential_Context_Terms
8: End For
9: return CR
Detect_Confidential_Key_Terms
Input:

CR – a set of all the clusters
C – the cluster currently being analyzed

Output:
CT[Ci] – the set of confidential terms for the cluster

1: Create language model for cluster Ci, and calculate confidentiality score for each term
2: TR set initial cluster similarity threshold
3: While TR > TRmin

4: Find all cluster whose cosine similarity to Ci is above TR
5: Create language model from all relevant clusters’ documents
6: CT Use new language model to add and update confidential terms’ scores
7: Reduce the value of TR
8: End While
9: return CT
Detect_Confidential_Context_Terms
Input:

CR – a set of all the clusters
Ci – the cluster currently being analyzed
TRmin – a minimal cluster similarity threshold

Output:
CXT – sets of context terms for each confidential term
1: For each confidential term ct in Ci

2: Detect all occurrences of ct – both in confidential and non-confidential documents
3: CXT For each context term in scope, calculate it’s probability of appearing with

the term in a confidential document vs. a non-confidential document
4: TR set initial cluster similarity threshold
5: While TR > TRmin

6: Find all clusters whose similarity is above TR and detect all occurrences of term in clusters
8: CXT Update each context term’s probability of appearing next to the term in confidential context
9: Reduce TR
10: End While
11: End For
12: return CXT

By using subtraction, we ensure the diminishing effect of the iterations on the score of the term, since the value of each iter-
ation can vary between [-1,1].
For each confidential term, all context terms whose ‘‘score’’ is positive – those that are more likely to appear as the context of
that confidential term in confidential documents than in the rest of the dataset – are considered as its context.

(3) Creating a graph representation of the confidential content of a cluster
At the end of the process described in the previous section, confidential terms and the context in which they appear



Fig. 2. An example of a confidential terms graph of a cluster (red nodes – confidential ‘‘key terms’’, blue nodes – context terms). (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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are defined for each cluster. This information can easily be represented as a graph consisting of two types of nodes:
confidential and context nodes. Confidential nodes can only be connected through their context nodes. That is, if
two confidential terms have at least one common context term then they are connected in the graph. An example
of such a graph is displayed in Fig. 2.
The graphs created in this procedure may be used by domain experts as a visual tool for understanding, verifying, and
modifying (if necessary) the representation of the confidential content by the model. This will not only increase con-
fidence in the proposed method but will also make it possible to detect mistakes and weaknesses in the model. More-
over, the graph representation enables the use of various graph and network analysis algorithms (as we show in
Section 6, where we discuss future work). An example of such a graph is presented in Fig. 2.

3.2. The detection phase

In the detection phase (see Fig. 3), we attempt to deal with three types of challenges: (1) detection of whole confidential
documents; (2) containment [7] – detecting small portions of confidential text embedded in a larger, non-confidential text;
and (3) containment of modified context – the detection of small portions of modified confidential text embedded in a larger,
non-confidential text (by ‘‘modified’’ we mean that some of the words have been replaced by synonyms; we elaborate fur-
ther on this subject in Section 4).

The algorithm of the detection phase is presented in Algorithm 2. It consists of the following steps:

(1) Assign the inspected document to relevant clusters.
(2) For each of the assigned clusters, identify all the confidential and context terms that appear both in the document and

in the cluster’s confidential terms graph.
(3) For each of the assigned clusters, calculate the document’s confidentiality score, based on the detected terms.
(4) Determine whether the document is confidential.

We now review each step in detail:

(1) Assign the inspected document to relevant clusters
The purpose of this step is to determine which of the confidential terms graphs (meaning, the clusters from which they
were generated) will be used to determine whether the inspected document is confidential.
To deal with the scenarios described at the beginning of this section, we propose the following assignment algorithm:

(a) Assign the document to the X clusters whose centroids are most similar to the document

Theinspected document is transformed into a vector (after stemming [45] and stop-words removal) and its sim-
ilarity to each of the cluster centroids is calculated. This is done using the cosine distance measure [61]. All the
clusters whose similarity is above a predefined threshold are selected.

(b) For each of the selected clusters, look for ‘‘irregular’’ terms for possible assignment to more clusters
The goal of the previous step was to discover the clusters to which the document most likely belongs. This method
is expected to work well for the detection of whole confidential documents but it is insufficient for detecting con-
fidential sections embedded in non-confidential documents. Since most of the document is non-confidential, clus-
tering – being a statistical process – will result in assigning the document to clusters containing non-confidential
content (based on the majority of the document’s text).
To deal with this problem, we look for ‘‘irregular’’ terms in the text i.e., terms that are very unlikely to appear in the docu-
ment considering the clusters to which it was assigned. In order to identify these terms, we first create a language model for
both the tested document and the clusters it was assigned to. Then, for each term in the tested document, we divide its prob-
ability of appearing in the document by its probability of appearing in the cluster. The formula used for this calculation is:
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Fig. 3. The detection phase.
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8d 2 D; dscore ¼
Pðd=DÞ
Pðd=CiÞ

ð3Þ
where D is the tested document; d is a term in D; and Ci is one of the selected clusters. The higher the score of a term, the less
likely it is to belong to the cluster.
The threshold that should be set for a term to be considered ‘‘irregular’’ is quite high, as to avoid ‘‘false alarms’’ and the slow-
ing down of the model (due to the need to further analyze the document). The threshold we used in our experiments was
209; that is, a term has to be twenty times as likely to appear in the tested document than in the cluster it was assigned to in
order to be considered ‘‘irregular’’.
Once the ‘‘irregular’’ terms are found they are matched against the confidential terms graph of every cluster (provided the clus-
ters contain confidential documents). In case of a match between a term and the confidential terms graph of a cluster, the cor-
responding cluster is added to the list of ‘‘candidate’’ clusters for which the ‘‘confidentiality score’’ of the document is calculated.
value was empirically set.
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(2) For each of the assigned clusters, identify all the confidential and context terms that appear both in the docu-
ment and in the cluster’s confidential terms graph
In order to determine the confidentiality of a document, we perform for each of the graphs the following two steps: (a)
scan the text in search of ‘‘confidential terms’’ and their context; and (b) determine which of the detected terms will be
included in calculating the document’s confidentiality.

(a) Scan the text in search of all confidential terms and their context:

The text of the document undergoes stemming and stop-words removal and is then matched against the confiden-
tial terms represented in the cluster’s confidential terms graph. In order not to be hindered by a change in the
order of the words (malicious or accidental), we look for the presence of a confidential term using a ‘‘sliding win-
dow’’ of twenty words.
Another issue is that of the confidential terms that are contained in other confidential terms (a typical example
would be ‘‘world trade’’ and ‘‘world trade organization’’). We select the term with the highest ‘‘score’’ in the clus-
ter’s graph (see Section 3.2), as it is the strongest indication of a confidential content.
Once a confidential term is detected, its vicinity is scanned in search of the context terms assigned to it in the
graph. The scan is conducted using the same ‘‘sliding window’’ method described above. In the case of multiple
occurrences of a term in one document, we record the term, including its context terms, from all its occurrences.

(b) Determine the detected terms to be included in calculating the document’s confidentiality:
At this point, we have detected the confidential terms in the document and the contexts in which they appear. The
following process aims at selecting the detected terms that should be considered when determining the docu-
ment’s confidentiality. Consider the following two confidential terms, each with two detected context terms.
One has a ‘‘score’’ of three, which means it is 3 times more likely to appear in a confidential document than in
a non-confidential one. The other has a score of 50. The presence of the first term is – obviously – a weaker indi-
cation of the document’s confidentiality. In order to avoid the inclusion of many ‘‘weak’’ terms with low confiden-
tiality scores (which could be ‘‘false alarms’’), we use the following criteria. The inclusion of a confidential term
depends both on its own score and on the number and score of its context terms. The higher the score of the con-
fidential term itself, the less we rely on its context terms in determining whether to include it. The following table
presents the criteria we used in our experiments (the values were set empirically):
(3) Calculate the document’s ‘‘confidentiality score’’:
The confidentiality score of the document for each cluster is calculated by summing up the scores of all the confiden-
tial terms that met the above criteria.
In addition to summing them up, the scores of the terms were modified in the following way: if two confidential terms
appear near each other and share at least one context term, then their scores are summed up and multiplied by 1.5.
The rationale for this action is that the appearance of several terms in (most probably) the same context is a strong
indication that the document is indeed confidential (a similar approach was used in [17], which applied the idea of
related key terms to text summarization).
We experimented with different thresholds for the distance between two terms and found that the model performs
best with the distance set to at most 50 words. This is the distance we used for the experiments described in Section.

(4) Determine whether the document is confidential
At this point we have a confidentiality score for the document, more than one if the document was assigned to several
clusters with confidential terms graphs. If the document’s confidentiality score for a cluster is higher than the thresh-
old defined for that cluster then the document is considered confidential and is blocked.
Every cluster may have a different threshold confidentiality score above which a document is considered confidential.
In a real-world scenario, domain experts will probably make this decision. In our experiments, we used one threshold
for all confidential clusters. It is quite possible that a different threshold can be automatically set for every confidential
cluster (based on the confidentiality scores of its training set documents), but we leave this subject for future work.
Algorithm 2. The detections phase algorithm

Calculate_Document_Confidentiality_Score
Input:

D – the document whose confidentiality we wish to determine
CL – a set of clusters, with their centroids and confidential terms graphs

Output:
conf_score – represents the analyzed document’s level of confidentiality

1: conf_score 0
2: C get set of most similar clusters to document
2: Irr Get_Clusters_That_Match_Irregular_Terms
3: T C [ Irr
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4: For each cluster t 2 T
5: Find all matches to cluster confidential terms in the document
6: For each confidential term match, find all relevant context terms
7: Calculate_Document_Confidentiality_Score
8: End for
9: return
Get_Clusters_That_Match_Irregular_Terms
Input:

D – the analyzed document
CL – a set of cluster
C – the clusters D is currently assigned to
TRmin – the threshold above which a term is considered ‘‘irregular’’

Output:
Irr – a set of additional clusters the document needs to be matched against

1: Irr initialize the set of clusters to return
2: For each c 2 C
3: LMdoc create a language model from document D
4: LMc create a language model from cluster cl

5: irr_terms find every term t in D where PDðtÞ
PcðtÞ P TRmin

6: For each cl 2 CL
7: If there is any term 2 irr_terms also appears in the confidential terms of cl
8: Irr Irr [ cl
9: End for
10: End for
11: retrun Irr
Calculate_Document_Confidentiality_Score
Input:

d – the document whose score we wish to compute
C – the cluster whose confidential terms graph will be used to calculate the score of D

Output:
Score – the score of the document

1: score 0
2: For each confidential term ct found both in C and d
3: If ct has a sufficient number of context terms (with sufficiently high values) then score += ctscore

5: End id
6: End for
7: If several confidential terms are close and share context, multiply their joint score by a factor
8: return score

3.3. Complexity of the test phase

As explained above, CoBAn consists of two phases – learning and test. The learning phase is executed offline, so the eval-
uation of its performance is not very relevant when attempting to understand its applicability. The test phase, on the other
hand, is applied in real-time, so assessing its complexity is crucial for the feasibility of the model. The complexity of the test
phase depends on the complexity of the three following tasks: (a) assigning the tested document to some of the clusters (by
computing the similarity of the document vector to the cluster centroids); (b) the search for ‘‘irregular’’ terms; and (c) cal-
culating its confidentiality score once it has been assigned.

Before analyzing the complexity of each action, we would like to elaborate on our assumptions, as they greatly affect the
complexity of the proposed solution:

(1) We assume that the centroids, language models, and confidential terms graphs of all the clusters have already been cal-
culated (as was done during the learning phase).

(2) The confidential terms graphs were implemented using hashtables – an initial hashtable was used to store the ‘‘key’’
confidential terms, with each entry pointing to another hashtable that contained the relevant context terms. The cost
of searching a hashtable with a low collusions rate is O 1þ n

k

� �
, with n being the number of terms in the table and k

being the number of slots. Since the confidential terms graphs remain constant throughout the evaluation (no new
items are added), the cost of searching it remains constant. Therefore, from this point on we refer to the cost of looking
up a value on a hashtable as O(1) for the sake of convenience.
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Since the centroids of the clusters are calculated during the learning phase, the operations that need to be considered are:

(1) The generation of the vectors for the tested documents and the calculation of their cosine similarities to each of
the centroids
The parameters that need to be taken into account are: (a) T – the number of terms in a document and (b) C – the
number of centroids (or clusters). In order to generate a tf vector from the document, it needs to be ‘‘read’’ once –
an action with a linear complexity of O(T). In addition, we need to calculate the similarity of the document vector
to each of the cluster centroids. This calculation requires comparing each value in the document vector to its corre-
sponding value in the centroid. Therefore, the complexity of this step is O(T � C). Thus, the overall complexity of this
step is O(T + (T � C)), which can be reduced to O(T � C).

(2) Identifying the ‘‘irregular’’ terms and their comparison to the cluster confidential terms graphs
The parameters that need to be taken into account are: (a) T – the number of terms in the document and (b) C – the
number of clusters.
To generate a language model for the examined document, we need to go over all its terms; an act, which has a com-
plexity of O(T). As the language models of the clusters were calculated during the learning phase, they are not part of
the calculation. In the ‘‘worst case scenario’’, where all terms in the document are found to be ‘‘irregular’’, every term
in the document will need to be matched to the confidential terms graphs of all the clusters. Since we assume that the
cost of looking up a term in a hashtable is constant (see assumption 2), this action has a complexity of O(T � C). There-
fore, the overall complexity of this step is O(T + (T � C)), which can be reduced to O(T � C).

(3) Calculating the confidentiality score for each of the clusters to which the document was assigned
The complexity of finding the confidentiality score depends on two parameters: (a) T – the number of terms in an
inspected document and (b) C – the number of clusters. In this step, we check for each relevant cluster, which terms
in the document also exist in that cluster’s confidential terms graph.
As we explained above, the cost of checking whether a term t 2 T is a confidential term has a complexity of O(1). If a
term is found in the hashtable, then the text in its vicinity is searched for relevant context. This too requires looking up
every term in the dictionary, but it is important to remember that the scope of the search is constant. For example, if
we define the scope of the search to be 20 words, then we have 21 hashtable lookups overall (the key term and the
context). Since this is merely a constant, the complexity of performing this action is equal to that of a single hashtable
lookup – O(1).
The actions described above need to be applied for every term t 2 T and every cluster, so the complexity of this step is
also O(T � C).
The complexity of each of the three steps described above is O(T � C) and therefore, the overall complexity of the test
phase is O(3T � 3C) = O(T � C). It is easy to see that the complexity is linear to the number of terms in the inspected doc-
ument and to the number of clusters. Therefore, we conclude that CoBAn is capable of being applied in real time.

4. Evaluation

In this section, we evaluate CoBAn’s performance on three datasets: Reuters news articles, the Pan-PC-11 Plagiarism data-
set, and the Enron emails dataset. We first use Reuters’ news articles in order to evaluate three scenarios: (a) the detection of
whole confidential documents; (b) the detection of confidential excerpts (exact copies) embedded in non-related, non-con-
fidential documents; and (c) the detection of rephrased confidential excerpts embedded in non-related, non-confidential doc-
uments. The third scenario is the one that is of most interest to us, as the two others are addressed via existing solutions,
namely, classifier based methods for whole documents classification and fingerprinting based methods for the detection
of unchanged confidential excerpts.

Initially, we simulated the third scenario on the Reuters dataset using only simple obfuscation, generated by applying
Microsoft Word’s thesaurus function (as detailed below in Section 4.3). We then used two additional datasets to evaluate
scenarios in which a more sophisticated rephrasing of the text was applied to make the detection more difficult. The two data-
sets are the Pan-PC-11 plagiarism dataset (in which the text is rephrased specifically to avoid detection) and the Enron email
dataset, which is used for data leakage prevention in emails. The challenge in this dataset is the short length and amount of
’’noise’’ in many emails.

We begin this section with a short review of the measures used to evaluate the performance of the various leakage detec-
tion methods followed by a description of our baseline methods. We then explain the preprocessing steps applied on the
datasets, the experiments, and their results.
4.1. Evaluation measures

We use two criteria to evaluate the performance of the various methods: true positive rate (TPR) and false positive rate
(FPR). The true positive rate is the percentage of confidential documents correctly classified during the evaluation phase.
The false positive rate is the percentage of non-confidential documents mistakenly classified as confidential (‘‘false alarms’’).



Table 1
The required number and score of context terms for each score of
the confidential terms.

Confidential
term score

Required num of
context terms

Min score of
context terms

1 < X < 3 11 85
3 6 X < 7 9 75
7 6 X < 10 7 60
10 6 X < 15 6 50
15 6 X < 30 5 40
30 6 X < 45 3 30
45 6 X 2 0
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Naturally, our goal is to maximize the TPR while minimizing the FPR. To illustrate the tradeoff between the TPR and the
FTR for a range of thresholds, we plot receiver operating characteristics (ROC) curves [6] that enable us to view the TPR and
FPR tradeoffs on a single chart and to compare the performances of different methods.

ROC curves are usually compared by calculating their area under the curve (AUC) [6]. The comparison is conducted using
statistical tests that attempt to determine whether the performance of one model (the AUC) is significantly different from
another. In our experiments, we used paired T-tests in order to verify the significance of our results.

4.2. The baseline methods

We compared the performance of our model with the following two detection methods (baseline methods): (1) the well-
known SVM classifier [12,13]. We used a polynomial kernel, which has been shown by [29] to perform well for text catego-
rization tasks. We believe that the results of the comparison to the SVM could be generalized to most classifiers, and (2) an
implementation of a fingerprint detection algorithm. The fingerprint algorithm was chosen due to its leading leakage detec-
tion methods in commercial products (for example, WebSense10). Since evaluation of commercial products is impossible (due
to legal issues, the fact that usually more than one method is employed, and because every product is a ‘‘black box’’), a basic
fingerprint version was implemented for our evaluation. A sliding window size of 40 characters was used to generate the hash
values. The size parameter was set by empirical calibration.

Furthermore, in the preliminary experiments on the Reuters dataset we compared the performance of the proposed
method with and without the utilization of the context terms to demonstrate their effect on the results.

4.3. Reuters news articles

4.3.1. Creating the dataset
Since no public dataset of confidential and non-confidential documents was available, we had to generate one. The data-

set was compiled from news articles collected from the Reuters news feed for two months. The documents of the dataset
relate to 17 different news categories, e.g., art, culture, economics, and sports. Each category consists of several sub catego-
ries, and altogether there are 1300 categories and sub-categories. The documents were tagged in accordance with the IPTC
News code taxonomy that Reuters uses for classifying news feeds.11 A news item (document) was usually tagged with more
than one tag.

The dataset contained 6102 documents, of which 1697 related to the ‘‘economics’’ category (i.e., at least one tag of the
document is ‘‘economics’’) and the remainder of the documents were randomly selected from the other categories. We chose
to define the sub-category ‘‘international (foreign) trade’’ as confidential. Out of the economic related documents, 310 were
tagged with the ‘‘international (foreign) trade’’ tag, while the remainder of the ‘‘economics’’ document was distributed
evenly among the other sub categories of economics. This setting was designed to simulate a scenario where documents
of the same general subject (economics), can be either confidential or not.

4.3.2. Experiments
Three sets of experiments, which evaluate the three scenarios described above, were conducted on the dataset:

(1) For the detection of whole confidential documents – the basic scenario. We expected all methods to perform well, as
this is a basic classification problem.

(2) Detection of small confidential sections embedded in non-confidential text – in this experiment, we simulated a sit-
uation where a person accidentally or intentionally inserts some confidential information in a document of an entirely
dissimilar subject. This simulates the real-world scenario where confidential content is inserted using a ‘‘copy-paste’’
function.
10 http://www.websense.com.
11 http://www.iptc.org.

http://www.websense.com
http://www.iptc.org
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We hypothesized that classifier-based methods (such as SVM), would fail to identify these embedded sections due to
the global statistics they apply on documents; the ‘‘bag of words’’ representation used by these methods does not
enable focusing on specific sections. Therefore, classification is dominated by the non-confidential text, which consists
of the majority of the document.
Fingerprint-based methods, on the other hand, are expected to perform best in this scenario since they were designed
to detect sections of text, which are identical to those seen in the training phase.

(3) Detection of small rephrased/modified confidential sections embedded in non-confidential texts where the meaning of
the confidential content is preserved. This experiment simulates scenarios of a person writing the confidential content
‘‘in one’s own words’’, possibly to avoid detection.
Classifier based methods are expected to fail in this scenario as well due to the same reasons that caused their fail-
ure in the previous scenario. We also expect the fingerprint-based method to perform worse than in the previous
scenario, since the rephrased text reduces the number of exact matches with the training set. We believe that CoBAn
is capable of handling this scenario because of its focus on key terms and their contexts, rather than a specific
sequence of texts.

4.3.3. Data preprocessing
Embedding the confidential section in a non-confidential text
To simulate the scenarios in which a confidential section is embedded in a non-confidential document, we manually ex-

tracted confidential sections from the 310 documents defined as confidential and embedded them into non-confidential doc-
uments according to the process described below. It is important to note that for this scenario the confidential content was
only extracted but not modified in any way.

The steps of embedding the confidential section in a non-confidential document are as follows:
For each confidential document.

(1) Pick a random starting point (word) in a confidential section of the paper.
(2) Select a sequence of 50 words from the position of the chosen word (if the end of the section was reached, continue to

the beginning of the confidential section).
(3) Pick a random, non-confidential document whose length is at least 10 times larger than the confidential section (to

simulate a scenario in which the confidential section is hidden in a much larger, non-confidential document).
(4) Embed the confidential section at a random point in the non-confidential document.

The result of these steps is a set of new confidential documents, each containing at least 90% non-confidential content.
Rephrasing the confidential section
To generate a rephrased confidential text for the embedded modified confidential text scenario on the Reuters dataset, we

simply replaced several words of the extracted confidential content with their synonyms. This way, the text is modified, yet
retains its coherence and original meaning.

This solution was implemented using the Microsoft Word’s thesaurus. For each word in the confidential section, we de-
fined a 33% probability that a synonym would be sought for it. If a single synonym existed, it replaced the word. If several
existed, one was randomly chosen. If none existed, no modification was made (so in effect, the ratio of replaced words was
lower than 33%).

The advantage of this implementation was that the chances of modifying ‘‘unique’’ terms (initials or field specific
terms), were very small, thus retaining the original meaning of the text. In Fig. 4, we present an example from one of
our experiments. The first section is the original text and the second is the modified text. The modifications in the second
section appear in bold. Although some of the modifications do not constitute ‘‘proper English’’, the idea of the text is
clearly preserved. It should be noted that the results could not be considered as a sophisticated attempt to obfuscate
the confidential text.
4.3.4. Reuters dataset experiments results
The experiments were conducted using a 3-fold cross-validation: two-thirds of the dataset was used as a training (learn-

ing) set and the remaining third was used as the test set.
Detecting whole confidential documents
The results are presented in Fig. 5. It is clear that all four methods perform well. There are no significant differences be-

tween the performances of the methods.
Detecting small confidential sections embedded in non-confidential text
The results for this scenario are presented in Fig. 6. As expected, the SVM model is inferior to the other two models due to

the statistical nature of the algorithm. It can be seen that the proposed method, which utilizes the context of terms, outper-
forms the version that does not. The fingerprints algorithm fares best and is significantly superior to the proposed model
(p = 0.001). This result is expected since the fingerprint algorithm is targeted towards this scenario. However, the fingerprint
maximal detection rate is 90%, since some of the leaked pieces are too small and fragmented to be detected. In this respect, the
other methods are superior.



Fig. 4. An example of an original confidential section and its modified version after the use of synonyms.
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Detecting small confidential sections embedded in non-confidential text when some of the words are replaced with
synonyms

The results for this scenario are presented in Fig. 7. As observed from the graphs, the performance of the SVM algorithm
remains low. Considering the fact that the SVM algorithm analyzes the document as a whole, this was as expected. The per-
formance of the fingerprint algorithm has deteriorated considerably; its maximum detection rate has dropped to about 65%
(although it maintains a low false-positive rate). CoBAn, when compared to fingerprinting, has a slightly higher false-posi-
tives rate but its performance is not upper-bounded like the fingerprinting algorithm.

It should be noted again that in this scenario we tested a rather simple obfuscation attempt in which long excerpts of text
were unchanged. Moreover, the modified text had none of the characteristics that could make detection more difficult:

(a) An intent to avoid detection (as in plagiarism, for example).
(b) ‘‘Noisy text’’ – the use of abbreviations, emoticons, and misspelling of words (as is the case for emails).

For these reasons, we chose to conduct two additional sets of experiments designed to test these scenarios. The first data-
set contained plagiarized documents (in other words, the authors’ goal was to avoid detection), while the second contains
email messages, short and ’’noisy’’ texts. The results of these experiments are described in the following sections.

4.4. Plagiarism dataset

In the previous section, we demonstrated that even a naive rephrasing of confidential text substantially reduces the per-
formance of the fingerprinting algorithm (from a maximal detection rate of 90% to 65%). We wanted to analyze this issue
further and therefore, conducted additional experiments on a dataset from the field of plagiarism. This field is very suitable
for the evaluation of CoBAn’s ability to detect rephrased texts, as plagiarizers very often go to great lengths to change and
rephrase the copied text in order to avoid detection.

In our experiments, we used the PAN-PC-11 dataset.12 This dataset contains 22,186 documents, each having a section (or
sections), which have been plagiarized. The plagiarism in the dataset takes place in three forms: by machine, by humans, and
through inter-language translation as well as three levels of obfuscation: low, medium, and high. For our experiments, we used
the text, which was plagiarized by humans through Amazon’s mechanical Turk13 with a high level of obfuscation.

Most of the documents that form the training set in this dataset were very long (sometimes hundreds of pages), and did
not adhere to the organizational information leakage scenario that usually occurs with shorter text documents. Such short
texts are very commonly leaked when sending emails with confidential content in the message body or with short docu-
ments attached, but certainly not with documents of this length. Therefore, we had to adjust the length of documents to
fit our scenario. In addition, each text did not necessarily consist of a single issue (some texts were entire books or manuals),
but included references to many subjects and issues, which again, is atypical to our scenario.

Our goal was to generate a training set, which had the two following characteristics: (1) short and focused documents; (2)
a small percentage of their content was modified (plagiarized), in the test set. A second goal was to generate documents for
the test set that adhere to the scenario of non-confidential documents that include hidden and embedded confidential
sections.

The following preprocessing steps were performed to generate short, focused documents in the training set and a test set
that includes confidential modified ‘‘hidden’’ sections in non-confidential documents (the process is graphically illustrated in
Fig. 8):
12 http://www.webis.de/research/corpora/corpus-pan-pc-10.
13 https://www.mturk.com/mturk/welcome.

http://www.webis.de/research/corpora/corpus-pan-pc-10
http://https://www.mturk.com/mturk/welcome


Fig. 5. Performance of the methods when detecting whole confidential documents.

Fig. 6. Performance of the methods when detecting confidential sections in non-confidential documents.
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Training set generation:

(1) For each document in the training set, we extracted the text that was plagiarized in the test set along with some sur-
rounding text. The length of the surrounding text was defined as 5 times that of the original text (step 1 in Fig. 8).
By applying this step, we were able to generate a sufficiently short document of which a small section was used for the
‘‘leak attempt’’ during the evaluation phase.

(2) All the items that were generated were clustered, and for each cluster, the confidential and context terms were gen-
erated in the manner described in Section 3 of this paper (Step 2 in Fig. 8).

The result of these two steps is a set of clusters that form the training set and represent the various subjects of the
documents.

Test set generation:
We wanted to ‘‘conceal’’ each plagiarized section in a larger randomly chosen text. The following describes the process for

choosing the random text and the embedding of the plagiarized section (steps 3–5 in Fig. 8):



Fig. 7. Performance of the methods when detecting modified confidential sections in non-confidential documents.
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(1) Extract the plagiarized section from the test set document (step 3 in Fig. 8).
(2) Select a random section of appropriate length (5 times the length of the plagiarized section) from one of the test set

documents. (Step 4 in Fig. 8).
To assure that the plagiarized text is sufficiently different from the randomly extracted text, the following heuristic
was applied:

(a) If the chosen cluster is one of the 10 furthest from the cluster to which the original text (the one that the plagia-

rized section was copied from), is assigned.
(b) Then place the plagiarized section in a random position in the chosen text (Step 5 in Fig. 8).
(c) Otherwise go back to a.
We conducted three sets of experiments with the plagiarism dataset with confidential sections of different lengths: less than
300 characters, 300–750 characters, and 751–1500. For each section length, three experiments were conducted – one for
each of the three largest clusters produced during the clustering of the learning set. The same clusters were used for each
of the three algorithms. The results are presented in Fig. 9.
As we can see, CoBan outperforms fingerprint and SVM in all experiments. As expected, both CoBAn and fingerprinting
improve with the increase of the plagiarized section length. We believe SVM’s poor performance can once again be explained
by the fact that the majority of the text refers to an unrelated subject. The poor performance of the fingerprinting algorithm
is explained by the heavy obfuscation of the plagiarized text, namely, the rephrasing and reordering of the text left very little
identical text to that of the learning set (see Fig. 10).
This set of experiments demonstrates that CoBAn’s focus on key terms and their context renders it far less ‘‘vulnerable’’ to
text obfuscation and concealment. Key terms are less likely to be modified because their removal is more likely to lead to the
loss of the text’s original meaning.
4.5. Email leakage detection

The proposed method was also integrated into an email leakage detection solution, described in [71]. This paper describes
a method designed to tackle the challenge of email leakage detection by clustering email messages via their content and then
assigning senders and recipients to the clusters. The method then analyzes the types of content a user is allowed to access
according to the cluster assignments of their emails and detects leakage when a user attempts to send an email to an unau-
thorized recipient.

The proposed method has two important advantages, which are not fully addressed in similar existing solutions that ana-
lyze the communication between senders and recipients: (a) users can share information on a confidential subject even if
they have not interacted before at all (assuming they are both authorized); and (b) even if users communicate frequently,
an attempt to send an email containing information that the recipient is not authorized to access will be blocked.

One of the key elements required for the method described in [71] to perform well is the ability to compute similarity
between an email message and the various clusters. This task is challenging due to three problematic characteristics of
the average email; short length, spelling mistakes, and abbreviations. CoBan is expected to perform well for this task, since



Fig. 8. The preprocessing of the training and test set documents of the plagiarism dataset.
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it is able to focus on key terms and their context, i.e., ignores most of the noise in the text. In [71] we compare the perfor-
mance of the proposed model when it employs CoBAn and the cosine similarity for this task.

We extended the experiments conducted in [71] to include an application of the fingerprint method for email-cluster
similarity computation in addition to CoBAn and the cosine measure. The same clusters were generated and used by all
methods to ensure a fair evaluation. The results are presented in Fig. 9 and show that CoBAn outperforms all other methods
(p = 0.01). The fingerprinting algorithm fares worst, likely due to the ‘‘noisy’’ nature of the analyzed text.

Unfortunately, it was not possible to use the SVM method on this dataset since the SVM is a binary classifier, and although
there are many works that demonstrate how it can be used for multiclass problems [4,19], we were not able to find an effec-
tive way to measure the relative certainty of the classification. The solution presented in [71] requires an estimation of the
relative ‘‘strength’’ of the assignment of a message to several clusters at a time, and the SVM classifier is simply not suitable
for this task.

These results are very encouraging as they show that the proposed method performs well in two very different domains,
reaffirming the robustness of the model and its consistent contribution.
4.6. Running time comparisons

In this section we present a summary of the running time comparisons of both the training and test phases for each of the
methods and each of the experiments described in the previous sections. For the first two datasets (Reuters and Plagiarism),



Fig. 10. Email leakage detection system.

Fig. 9. The performance of the various evaluated methods on the plagiarism dataset with different lengths of plagiarized text. The TP axis denotes the
detection rate of real plagiarism cases, while FP denotes ‘‘false alarms’’.

Table 2
Comparison of the average training running times for the different classification methods on the experiment datasets (the results are in an hh:mm format).

Number of instances CoBAn SVM Cosine measure Fingerprinting

Reuters 3051 00:25 00:07 00:10
Plagiarism 2115 (average) 00:52 0:35 00:28
Enron 50,112 05:00 03:00 01:05

Table 3
Comparison of the average evaluation running times for the different classification methods on the experiment datasets (the results are in an hh:mm format).

Number of instances CoBAn SVM Cosine measure Fingerprinting

Reuters 2051 00:18 00:04 00:07
Plagiarism 2115 (average) 00:54 0:34 00:22
Enron 12,528 04:15 03:25 01:56
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we present the running times of CoBAn, SVM, and Fingerprinting. For the third dataset, Enron emails, we present the results
for the cosine similarity instead. All experiments were run on an Intel i7 quad core laptop with 8 GB of memory.

The results clearly show that CoBAn requires longer running times both for the learning and the detection phases.
Although some of the difference between CoBAn and SVM could be attributed to the fact that the CoBAn was implemented
as a research prototype, while we used a professional commercial product for the SVM (RapidMiner [51]), it is clear that the
additional operations the proposed model requires do result in longer running times. Nonetheless, the differences are not in
order of magnitude, as can be observed from the complexity analysis in Section 3.3 and we believe they could be substan-
tially reduced with some optimization to our research prototype. The running time analysis proved the feasibility of the
method.
5. Discussion

The proposed model has the following advantages:

(1) The ability to detect confidential information ‘‘hidden’’ in large non-confidential documents. The proposed
model has the ability to detect small sections of confidential content, even if they differ from the training set examples.
This is due to the model’s ability to focus on content and context – the appearance of certain terms in a certain
context. Consequently, it is much less vulnerable to rephrasing or alterations of the text. This sets the proposed model
apart from classifiers such as SVM, (which fail in these scenarios), and fingerprinting algorithms, (which have high
levels of success in detecting the confidential text, but only when it is very similar to an example from the training
set).

(2) Explainable model. The graphs that are generated are visually very comprehensible and can be easily understood by
domain experts. For each cluster containing confidential content, the expert is able to see the confidential terms that
form the base of the detection rate and their relevant context (as shown in Fig. 2).Furthermore, the expert is able to
easily adjust the values of nodes in the graph and even add or delete nodes. We believe this might help domain
experts to better define their security policies, since they are able to understand and define their policies at the cluster
level.

(3) Easily configurable model. Domain experts can easily add, delete or modify nodes in the graphs. This flexibility will
enable domain experts to refine the representation of the confidential information in each cluster and consequently
enhance the performance of the model.

We believe the proposed model has the following theoretical contributions:

(1) A novel approach regarding the context of key terms for classification purposes. The vector space model does not
consider context at all, while existing graph-based methods do so indiscriminately. Fingerprinting algorithms only
look for predefined sequences of characters. In this paper, we demonstrate how the context of key terms improves clas-
sification. We believe that the use of context has the potential to enhance many existing models that involve classi-
fication. The work of Hess and Holt is one such example [34].

(2) A new approach for the graph representation of text. Although graph-based textual representation is not new and
was used before for classification, there are differences in its usage as presented in this paper and in earlier works
([23–28]). The proposed graph model consists of two node types, each with a different role. Moreover, instead of using
isomorphism as a measure of similarity, we propose a completely different scheme based on matching key nodes in
the graph.

Some may argue that the false positive rates achieved by the proposed model are too high to be used in a real system. In
this work, we address new scenarios that have not been addressed before, particularly the rephrasing of small sections of
confidential text that in many cases refer to intentional confidential information leakage. We consider our results as preli-
minary and encouraging and believe that they can be improved with additional research. In addition, we think that the pro-
posed method should be used in conjunction with existing information leakage solutions (for example, fingerprinting), as is
done in all commercial products to leverage the advantages of each method.
6. Conclusion and future work

In this paper, we present a new method for information leakage detection and prevention. The model is superior in the
following aspects:

a. It detects small sections of confidential information embedded in non-confidential documents. As proven by the
experiments in Section 4, existing methods provide only a partial solution to this problem and are unable to success-
fully deal with the problem of rephrased texts.

b. It generates a well-understood model that can be reviewed and even modified by its users.
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We plan to examine the following directions:

(1) The use of external data sources to enhance the representation of confidential content. We believe that one of the
main advantages of our method is its expandability. We believe that the graph representation used by CoBAn can be
enriched with information from sources, such as ontologies, metadata, and the World Wide Web. The data found in
these sources of information can be used to discover additional confidential terms and to enrich the context of existing
ones.

(2) The use of network analysis methods. Currently, the confidential terms graph of a cluster is treated as a single unit.
Possibly the use of graph clustering and other network analysis algorithms could enable better analysis of documents.

(3) The use of natural language processing (NLP) and entity extraction. In the current model, the role of the term in the
sentence and its type (person, place, etc.), are not taken into account. It is possible that by considering this information
we will be able to modify the values of nodes in the graph or change the ranking scheme entirely.
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