Pervasive and Mobile Computing 35 (2017) 83-107

= -l;ervnsive

Contents lists available at ScienceDirect and mobile
Pervasive and Mobile Computing
journal homepage: www.elsevier.com/locate/pmc —_— ‘
Anomaly detection for smartphone data streams @)Crossm
Yisroel Mirsky *, Asaf Shabtai, Bracha Shapira, Yuval Elovici, Lior Rokach
Ben-Gurion University of the Negev, Beer Sheva, Department of Information Systems Engineering, Israel
ARTICLE INFO ABSTRACT
Article history: Smartphones centralize a great deal of users’ private information and are thus a primary
Received 2 December 2015 target for cyber-attack. The main goal of the attacker is to try to access and exfiltrate
Received in revised form 9 June 2016 the private information stored in the smartphone without detection. In situations where
Accepted 21 July 2016

explicit information is lacking, these attackers can still be detected in an automated way
by analyzing data streams (continuously sampled information such as an application’s
CPU consumption, accelerometer readings, etc.). When clustered, anomaly detection
techniques may be applied to the data stream in order to detect attacks in progress. In
this paper we utilize an algorithm called pcStream that is well suited for detecting clusters

Available online 10 August 2016

Keywords:
Smartphone security
Data streams

Anomaly detection in real world data streams and propose extensions to the pcStream algorithm designed to
Contexts detect point, contextual, and collective anomalies. We provide a comprehensive evaluation
Continuous authentication that addresses mobile security issues on a unique dataset collected from 30 volunteers

over eight months. Our evaluations show that the pcStream extensions can be used
to effectively detect data leakage (point anomalies) and malicious activities (contextual
anomalies) associated with malicious applications. Moreover, the algorithm can be used to
detect when a device is being used by an unauthorized user (collective anomaly) within
approximately 30 s with 1 false positive every two days.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In 2016, over two billion people will have a smartphone as a part of their daily lives [1]. Smartphones provide a means of
communication, as well as a central location to store and organize information, a quality which makes the popular devices
enticing targets for attackers interested in stealing private information [2]. One way to protect a smartphone is to perform
anomaly detection [3]. In this approach, the normal behavior of an internal or external actor is modeled so that malicious
activities can be detected as anomalies, behaviors which do not fit the norm. Subsequently the detected malicious activity
can be blocked, thereby protecting the user. For example, take the malicious behavior of sending SMSs to premium numbers
(monetary theft). In this case, explicit information such as the message’s textual content or the destination number could
be used to directly determine whether the SMS is anomalous. However, in some cases explicit information is unavailable or
insufficient, making it a challenge to detect the SMS as malicious. For instance, if the SMS contains legitimate text (stolen
from the user’s outbox), or if there is no complete list of premium numbers to blacklist.

In cases where explicit information is lacking, many times contextual information, often in the form of a data streams, is
available. Contextual information is the additional information that assists in clarifying a particular event or behavior [4]. In
this paper, we refer to data streams as unbounded sequences of measurements sampled continuously from a particular
source. Modern smartphones are equipped with a wide range of sources which can be sampled in order to generate a

* Corresponding author.
E-mail addresses: yisroel@post.bgu.ac.il (Y. Mirsky), shabtaia@bgu.ac.il (A. Shabtai), bshapira@bgu.ac.il (B. Shapira), elovici@bgu.ac.il (Y. Elovici),
liorrk@post.bgu.ac.il (L. Rokach).

http://dx.doi.org/10.1016/j.pmc;j.2016.07.006
1574-1192/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.pmcj.2016.07.006
http://www.elsevier.com/locate/pmc
http://www.elsevier.com/locate/pmc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.pmcj.2016.07.006&domain=pdf
mailto:yisroel@post.bgu.ac.il
mailto:shabtaia@bgu.ac.il
mailto:bshapira@bgu.ac.il
mailto:elovici@bgu.ac.il
mailto:liorrk@post.bgu.ac.il
http://dx.doi.org/10.1016/j.pmcj.2016.07.006

84 Y. Mirsky et al. / Pervasive and Mobile Computing 35 (2017) 83-107

z z . z z
®e,
8‘.‘- S
%e oo "c‘..’:{n
%y ” .i‘. ° 9 “0..=

4" °

" *ee ° 3:. :

Walking X Jumping X Running X k-means partitioning X

Fig. 1. An illustration of the overlap of different distributions found in data, received along two of the axes from a smartphone’s accelerometer sensor.
Here the ground truth is activity recognition.

data stream rich in contextual information. For instance, Android smartphones allow all applications to receive information
about the phone’s other applications (including statistics related to the CPU, memory usage, and system priorities) through
the Linux virtual/proc/folder [5]. Furthermore, information on device motion and device status is available as well. When
sampled, these data streams can be used to capture the actor’s contexts in order to detect possible anomalies. Returning to
our example, let us assume that the device’s motion sensors are sampled when SMSs are sent. In this scenario, by utilizing the
contextual information from the sensor’s data stream, it becomes easier to differentiate between a physical human (external
actor) sending an SMS and some automated malicious code (internal actor) which is sending the SMS.

Here are additional examples of situations in which explicit information for the detection of anomalies is lacking but
contextual data streams are available:

e Outbound encrypted transmissions: typically a malware (such as a bot) sends data back to its command and control
server (C&C) over an encrypted channel. Therefore, semantic analysis or other explicit information about the data
in motion is not obtainable. However, the context of the encrypted transmission, along with other details about
transmissions captures information useful in determining a transmission’s legitimacy [6].

e Activities of applications in the Android OS platform: Applications running in Android are sandboxed in separate
Dalvik virtual machines (DVM) [7]. At a basic level, this prevents applications from accessing other applications’ data and
resources without explicit user permissions [8]. In order to gain full access, a device must be rooted, giving all applications
access to privileged commands within Android’s subsystems, a security risk in itself. Since devices are shipped unrooted
by default, antivirus applications available through the Android marketplace are highly limited in the dynamic analysis
(online scanning) they can perform in order to detect anomalies. However, without root privileges applications can obtain
contextual information by sampling other applications’ statistics (e.g., CPU utilization, memory usage, etc.)

o High level inference from low level trust-zones: Understanding what applications are doing from a low level trust
zone (e.g., hypervisor) is difficult, because kernel (as well as DVM) information is not directly accessible. For instance, it
is not clear what application is sending data or which process is currently in the foreground legitimately using the CPU.
However, the motion data and screen on/off data are available from the hypervisor. Using this data, it may be possible to
detect illegitimate transmissions as they occur.

In order to utilize the contextual information in a data stream, one needs to mine the stream for the hidden contexts. The
hidden contexts found in a real world data stream can exhibit behaviors in the form of correlated distributions (clusters) [9].
These clusters of observations are referred to in literature as the concepts or contexts captured by the data [9-12]. By modeling
these contexts, it is possible to detect anomalies in an unsupervised manner [13,14]. However, the detection of anomalies in
data streams is a challenging process. This is because data streams are unbounded in length and involve recurring concepts
as well as concept drifts [15]. These properties make it difficult to distinguish between a previously seen concept which is
now changing and a new concept (an anomaly) which has not been seen before. Current stream clustering algorithms can
detect and track concept drifts [16,17]. However, (1) they were not specifically designed to detect various types of anomalies
found in data streams, and (2) they are not able to distinguish between clusters which overlap in geometric space. The reason
they cannot differentiate between overlapping clusters is because these algorithms seek to form geometric partitions of the
feature space, and therefore do not respect the ground truth. To illustrate this issue, Fig. 1 plots the temporal concepts found
while performing activity recognition using a smartphone’s accelerometer. Here any partition of the feature space into three
clusters will not respect the ground truth (that the clusters formed from each activity overlap in geometric space).

In this paper we propose a solution for the detection of various types of anomalies in data streams which have overlapping
clusters. In a previous work we proposed pcStream: a stream clustering algorithm used to dynamically detect and manage
temporal contexts [18]. The name “pcStream” is based on the principal components of the distributions in the data stream
which are used to dynamically detect and compare the underlying contexts. One of the advantages of pcStream is that it can
detect and model overlapping concepts. Detection and management is accomplished by taking into account the temporal
relation of the stream’s observations (i.e., temporal contexts). This is the main reason for pcStream’s ability to outperform
state-of-the-art stream clustering algorithms in detecting contexts in real world data streams (the reader is invited to view
our original paper for the analysis [18]). Moreover, pcStream tracks concept drifts, keeping the captured contexts relevant
and up to date.

Y. Mirsky et al. / Pervasive and Mobile Computing 35 (2017) 83-107 85

In this work, we propose three extensions to the pcStream algorithm. Each extension designed to detect a different type
of anomaly found in data streams generated by smartphones. The general approach is to train pcStream on a data stream
which captures the normal contexts (including those which overlap). We can then use the trained model to detect point,
contextual, or collective anomalies using the respective extension. The concept for deploying these extensions is to have a
security agent running on the device. By sampling the relevant numeric features (e.g., an application’s CPU usage), the agent
observes the actor for unexpected behaviors which it can either block or inform the user about—thereby providing implicit
smartphone security.

Therefore the contributions of this paper are as follows:

(1) Introduction of a single algorithm, pcStream, for detecting point, contextual, and collective anomalies found in temporal
data streams, in particular, data streams whose concepts overlap each other in geometric space (i.e., feature space). We
make the source code for this algorithm available online, with versions written in R, Matlab, Python, and PySpark (for
Hadoop clusters).!

(2) Evaluation of pcStream in the realm of smartphone security. We explore examples of how pcStream can be used as a
security solution for addressing current smartphone security threats, specifically, the detection of data leakage, the
detection of active malware in dynamic analysis, and the provision of continuous user authentication, all achieved
by analyzing data streams.

To evaluate pcStream as an anomaly detection tool, we collected a dataset consisting of eight months of sensor data
from 31 volunteers all of whom used Samsung Galaxy S5 smartphones. In order to detect short-term anomalies (such as
a malicious transmission or a device theft), we sampled the devices’ sensors at a high temporal resolution. Other existing
datasets do not have this level of resolution for a long period of time. This is most likely because many sensors have significant
power consumption. To overcome this challenge, we provided the volunteers with battery cases that nearly triple the battery
life of the device (ensuring a total battery life of 9-10 h on a full charge).

The remainder of this paper is structured as follows. Section 2, reviews the pcStream algorithm. Section 3 presents
the different types of anomalies addressed in this paper, and proposes the anomaly detection extensions to the pcStream
algorithm. Section 4 presents the dataset used, evaluation setup, and evaluation results. Section 6 reviews related works.
Section 5 provides a discussion on related issues. Finally, Section 7 provides a conclusion, and proposes future work.

2. Review of the pcStream algorithm

In this section, we briefly review the basic pcStream algorithm as presented in [18].

2.1. Notations and definitions

Definition 1. Let a context space be defined as the geometrical space R", where n is the number of attributes which define
the stream. For instance, one dimension may be the y-axis readings of a smartphone’s accelerometer, while another may
be the beats per second (bps) of the smartphone’s user. This definition is similar to Context Space Theory (CST), formally
proposed in [19].

Definition 2. Let a stream S be defined as an unbounded sequence of data objects having the form of points in R", and let
Xi = [X1.i» X2.i, - . . , Xn,i] be the ith point in the sequence. S can also be viewed as a matrix having n columns and an unbounded
number of rows, where row i represents the values sampled at time tick i. We use the notation t to denote the current time
tick and the notation x; to refer to the most recent point received from S. Let f, s be the arrival rate of the row vectors in S
measured in Hz.

Definition 3. Let c be a context (i.e., concept) defined as a cluster of sequential points having a correlated distribution in R",
in which S exists within for at least t,;, time ticks at a time. The distribution of c is generally stationary, but it may change
gradually over time as it is subjected to concept drift. For instance, with the accelerometer data of a user’s smartphone, the
context which captures the action of jumping may change as the user gets older or sicker. We use the notation c; to refer to
the current context of S.

Definition 4. We define a contextual stream to be a stream that captures the temporal contexts of a real world entity. More
formally, S is a contextual stream if S travels among a finite number of distinct contexts, staying at each for at least t,;, time
ticks per visit. The property of revisiting certain distributions is known as a reoccurring drift or reoccurring concepts [15].

Let C be the finite collection of known contexts found in S, such that ¢; € Cis the ith discovered context. Let |C| denote
the number of known contexts.

It is important to note that C does not necessarily form a distinct partition of R". As mentioned earlier, the distributions of
contexts may overlap each other. Therefore it is possible that two identical points x, and x;, belong to two distinctly different
contexts ¢; and ¢;.

1 https://github.com/ymirsky/pcStream.

https://github.com/ymirsky/pcStream

86 Y. Mirsky et al. / Pervasive and Mobile Computing 35 (2017) 83-107

Definition 5. We define a context category as all contexts from a contextual stream that have the same t;;,, rate of concept
drift and distinction between their distributions.

2.2. The context model

Since we define contexts as correlated distributions in R", we model the contexts using principal component analysis
(PCA) [20]. PCA captures the relationship of the correlation between the dimensions of a collection of observations stored
in the m x n matrix X, where m is the number of observations. The result of performing PCA on X is two n x n matrices;
the diagonal matrix V (the Eigenvalues) and the orthonormal matrix P (the Eigenvectors, a.k.a. principal components). The
Eigenvectors p1, p2, . . ., pn form a basis in R" centered on X and oriented according to the correlation of X. The Eigenvalues
012, 022, R (rnz are the variances of the data in the direction of their respective Eigenvectors. The Eigenvalues of V are sorted
from highest to lowest variance and the respective Eigenvectors in P are ordered accordingly. In other words, from the mean
of the collection X, p; is the direction of highest variance in the data (with af). We define the contribution of component p;

2
as the percent of total variance it describes for the collection X, such that contx (p;) = 72,?" —-
T

PCA has been widely used to reduce the dimensionality of a dataset while preser\;ingj the information it holds [20].
This is accomplished by projecting observations on to the top principal components (PCs). Typically, most of a collection’s
variance is captured by just a few PCs. By retaining only these PCs, we effectively summarize the distribution and focus our
future calculations on the dimensions of interest. Let p be the target percent of variance to be retained. We define k € N
to be the fewest, most influential PCs in which their cumulative sum of contributions surpasses p. Stated otherwise as
argmink{Zf‘:1 conty (p;) > p}. We denote the k associated with context ¢; as k;.

We model the ith discovered context as the tuple ¢; = (M;, u;i, A;), where M; is a m x n matrix consisting of the last
m observations assigned to c;, u; is the mean of the observations in M;, and A; = [p101, p203, ..., Pk, akq] isan x kg
transformation matrix.

A; is essentially a truncated version of P with its Eigenvectors scaled to their standard deviations (SD). A; can be calculated
by first performing PCA on M;, to get P; and V;, and then calculating A; = Q; A; where A; is a diagonal matrix of the top ki,
largest SDs (obtained from V;), and Q; is the column-wise truncation of P; so that it only includes the first k., columns. The
significance of the transformation matrix A; will be detailed later in the paper.

Matrix M; acts as a windowed memory for ¢; by discarding the mth oldest observation when a new one is added.
Windowing over a stream is an implicit method for dealing with concept drift [17,21].

2.3. Similarity scores

When a new observation x; arrives, we must determine to what degree it belongs to each known context ¢; € C. As
mentioned earlier, the clusters that form contexts overlap in the feature space, and the point x, can belong to multiple
contexts at once. Therefore, we must compute the similarity score of the point in question with respect to each known
context.

The point’s statistical similarity to a distribution is calculated as the Mahalanobis distance using only the top k PCs of that
distribution. Equivocally, they produce this score by first zero-meaning the point to that distribution, then transforming it
onto the distribution’s top k PCs, and finally by computing the resulting point’s magnitude. More formally, the similarity of
point x to the distribution of ¢; is d¢; (x) = [|(x — Al

Intuitively, the contours of performing Mahalanobis distance can be seen as ellipsoid shapes extending from the
distribution according to the variance in each direction. From the perspective of the top k; and kcj normalized PCs of each
respective context, their similarity scores differ (even though the Euclidean distances between x and both p; and p; are
equivalent). Furthermore, it is possible that the k;, > kcj depends on p and the correlation of the distribution.

Let ¢ € [0, oo) be defined as the similarity threshold. We say that a point x is not similar to context ¢; if d,(x) > ¢. Let
de(x) = [de, ¥), dc, (%), ..., dqq (x)] be defined as the score vector (membership degrees) of x to each of the models in C.
We say that x does not fit any known context if all elements in dc(x) are greater than ¢. Moreover, we say that x is most
similar to context c; if the smallest element in dc¢ () is d, (x).

2.4. Detection of new contexts

A critical function of the pcStream algorithm is to detect when a previously unseen context has appeared. From
Definition 3, contexts are assumed to have rather stationary distributions. Therefore, a new context is detected when the
data distribution of S no longer fits the contexts in C for a consistent t,;, time ticks. At this point, we say that these tyi,
observations constitute a new context which are then modeled for future use.

To track this behavior, we introduce a new concept called a “drift buffer”. Let the drift buffer be called D and have a
length of ty;,. Should D ever be filled continuously without any intermittent assignments to other contexts (i.e., should
D = {X¢—t,—1s - - - » X }), then we have detected a new context (see Definition 3). Therefore, we create a new context model
with the content of D (emptying D), and set this context as current context c;. However, in the case of a partial drift (i.e., D

Y. Mirsky et al. / Pervasive and Mobile Computing 35 (2017) 83-107 87

did not get filled, yet x; fits some context in C), we assume that S experiences a wider boundary of ¢;; therefore we empty D
into ¢;.

2.5. The pcStream algorithm

The basic approach of the core pcStream algorithm is to follow the stream’s data distribution. Membership scores are
available anytime by calculating the statistical similarities between a point and each known context. As long as the arriving
points stay within the distribution of a known context, we assign them to that context. The moment the stream’s distribution
does not fit any known context, we define a new one. Each of the concepts has a window of memory to allow for concept
drifts. Should the allocated memory space be filled, then one of two methods for merging context models is performed.
Point anomalies are detected as short-term drifts away from all known contexts. Finally, different context categories are
detected by adjusting the algorithm’s parameters accordingly. The parameters for pcStream are: the sensitivity threshold ¢,
the context drift size ty,;,, the model memory size m, and the percent of variance to retain in projections p. The pseudo-code
for pcStream can be found in Algorithm 1.

In lines 1-3, pcStream is initialized by creating the initial collection C with context c;, and then by setting the current
context (c;) accordingly. The function init (S, tyin, m, p) runs the function CreateModel(X, m, p) on the first ty,;, points of
S. The function CreateModel(X, m, p) returns a new context model ¢ by using the collection of observations X and target
total variance retention percentage p. Remember that the memory of a context model M is a window (FIFO buffer) with a
maximum length of m (forgetting the oldest observations). Optionally, an initial set of models for C can be made from a set of
observations pre-classified as known contexts of S (e.g. a collection of points that captures running and another a collection
of points that captures walking). From this point on, pcStream enters its running state (lines 4-5).

In lines 4.1-4.3, point x. arrives and x.'s similarity score is calculated for all known contexts in C. Stored in i is the index
to the model in C to whom x, is most similar. Reminder, the index of C is chronological by order of discovery.

In line 4.4, we determine whether x, fits any of the contexts in C. If it does, then we proceed to lines 4.4.1-4.4.3 where
we update the model of best fit (c;) with instance x,, and update c; accordingly. At this point, if there are any instances in D,
then they are emptied into ¢; as well (line 4.4.1). This is because an interruption while continuously filling D with outliers
means that the outliers seen until now are not part of a new (unseen) context, but rather a new boundary for the current
context which the stream is experiencing. The function UpdateModel(c;, X) re-computes the tuple ¢; from C after adding the
observation(s) X to the FIFO memory M;.

If the check on line 4.4 indicates that x; does not fit any context in C, then we add x, to the drift buffer D, and subsequently
check if D is full. If D has reached capacity (tnmiy) then an unseen context has been discovered. In this case, D is then emptied
and formed into a new context model (c), which is added to C and set as c;. The function AddModel(c, C) adds c to C as
Ccj+1- If the additional model is too large for the memory space allocated to pcStream, the function merge(c;, ¢;) is used to
free one space for c (in C) by merging the average oldest context model ¢; with its nearest context model ¢; based on the
Euclidean distance between centroids. There are two methods for performing this merge: context freshness (modeling a
context from the m most recent observations between M; and M;) and context preservation (modeling a context from the
interleave between the top m/2 observations of M; and M;) [18].

Online Algorithm 1: pcStream {S} 4.4. if scores(i) < ¢
Input Parameters {@, tpyin, m, p} 4.4.1. UpdateModel(ci, Dump(D))
Anytime Outputs: {c;, d¢ (%)} 4.4.2. UpdateModel(c;, x..)
1. C < init(S, tymin,m, p) 443. ¢ < ¢
2. ey 4.5. else
3. D<@ 4.5.1. Insert(x.,D)
4 loop) 4.52. if length(D) == tyin
4.1. x. < next(S) ~ 452.1. ¢ « CreateModel(Dump(D), m, p)
4.2. scores « d¢(x.) 45.2.2. AddModel(c, C)
4.3. i « IndxMin(scores) 4.5.2.3. crec
5. endloop

2.6. The detection of different context categories

Each selection of the parameters ¢, tnmin, and m changes the type of contexts pcStream focuses on in S. In other words,
these parameters cause pcStream to seek out all contexts belonging to a single context category, where ¢ is the degree of
distinction between contexts, and m is the rate of concept drift (see Definition 5).

Consequently, a small ¢ will cause pcStream to detect indistinct contexts (i.e., small nuances), while a large ¢ will cause
pcStream to detect contexts which are more unique. Similarly, a small t,;, will cause pcStream to detect short term-contexts
as opposed to more long-term ones, and a small m, will cause pcStream to focus on sudden concept drifts as opposed to more
gradual drifts.

Intuitively, multiple context categories are in a data stream at any given time. For example, at a given moment, a
smartphone’s accelerometer can capture the context and determine whether a user is “awake or asleep”, “running or
walking”, and “running to catch the bus, or for sports”. Therefore, if one is interested in different context categories at the
same time, multiple instances of pcStream should be run in parallel with the respective settings.

88 Y. Mirsky et al. / Pervasive and Mobile Computing 35 (2017) 83-107

(a) Point. (b) Contextual. (c) Collective.

Fig. 2. An illustration of how pcStream views the different types of anomalies. Darker shades of red indicate a higher degree of abnormality. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Point Anomaly: Application Tx Traffic
250

200 < >

150

100

TRAFFIC SENT [KB/SEC]

50 ‘

o Whhlbeot oo h B debfold, | WALl b aa)

O W HLOUANMNNOVTSTOTOWNM dOARNNOMAOAOAST OO WANNINMOD
HEH ANANON T TN O ONNOWONONDDNDOO A A NMMST I NN O O
A A A A A A A A A A A A

TIME ELAPSED [MIN]

Fig. 3. Anillustration of a point anomaly found in a data stream.
3. pcStream anomaly detection extensions

In general, there are three types of anomalies: point anomalies, contextual anomalies, and collective anomalies [13]. In
this section, we present three extensions to pcStream which enable it to detect the three anomaly types. In Section 4, we
evaluate these added capabilities as implicit smartphone security solutions. Fig. 2 is an illustration referenced throughout
this section that visualizes how pcStream views each type of anomaly.

3.1. Point anomaly detection

Point anomalies (otherwise known as outliers) are individual observations which are considered anomalous with respect
to the data (i.e., the target behavior). As an example, let us assume we are attempting to detect unexpected outbound
transmissions from an application, such as the game, Angry Birds, on Android. After observing the application’s outbound
traffic rates over a long period of time, we see that the application never has a transmission at a rate of 15 kB per second.
Therefore any observation that is significantly above this norm, is considered anomalous.

Fig. 3 illustrates this example. Note that although in this example x € R, point anomalies also apply to data streams
where x € R".

In pcStream, point anomalies are observations which do not fit any known contexts and are not considered part of a
new context. In other words, a point anomaly is viewed as those observations which are outliers with respect to the known
distributions. This idea reflects the Soft Independent Modelling by Class Analogy method (SIMCA) [22] on which pcStream’s
clustering algorithm is based. In SIMCA, an outlier is an observation whose Mahalanobis distance is too far from all known
classes.

When using a pcStream collection C to detect anomalies (i.e., we are not updating any of the models) then every single
observation that is above the sensitivity threshold ¢ is a point anomaly. However, if we are actively updating C, then all
points which are above the ¢ are not immediately designated as point anomalies. The reason is because we consider a
consistent sequence of t,;, observations above the threshold as an unseen context that should be modeled. However, the
moment we know that these observations do not belong to a new context (i.e., their consistency was broken—line 4.4.1 of
Algorithm 1), then we know that they all must be point anomalies. Fig. 2(a) illustrates partial drifts where darker shades
represent larger dc(x) values. The observations outside the dotted lines are the observations we are testing with respect to
contexts cy_s.

Y. Mirsky et al. / Pervasive and Mobile Computing 35 (2017) 83-107 89

Contextual Anomaly: Application Tx Traffic

50
45 On Off On Off On Off On
40
35
30

25
: Q
15
10

TRAFFIC SENT [KB/SEC]

O OM NN ANOVOWMAOATOANMN TN OFTOMNS O
AH AN NN O TN O ONNNOWOWOO OO

100
104
109
113
117
122
126
130
135

TIME ELAPSED [MIN]

Fig. 4. Anillustration of a contextual anomaly found in a data stream.

Naturally, a partial drift can occur when the stream is experiencing a concept drift (a shift in the distribution). Therefore,
during the initial training of the algorithm, observations found in partial drifts should not be discarded—but rather included
as in the original algorithm.

Using these concepts and a trained pcStream model collection C, we can measure the degree to which observation x is a
point anomaly using the function

Anom1(x) = min(dc(x)) (1)

where dc(x) is the vector of the Mahalanobis distances from each of the |C| models in C with respect to x. In other words,
Anom1 returns a score indicating the degree x belongs to the collection of all known contexts. Note that Anom1 returns
increasingly larger values the more x is considered abnormal with respect to the normal behavior captured by C.

3.2, Contextual anomaly detection

Contextual anomalies are individual observations which are considered anomalous under certain contexts but not under
others [23]. Typically, observations analyzed within this category have two types of attributes: contextual and behavioral
attributes. Contextual attributes provide added information that help put the behavioral attributes into perspective.
Behavioral attributes are the non-contextual characteristics of the instance under analysis. As an example, we shall re-
examine the task of detecting unexpected outbound transmissions from the Angry Birds application. Here the outbound
data rate is the behavioral attribute. Assume the application has a transmission which is normal with respect to previous
transmissions, however, if it occurred while the screen was off, it would be considered anomalous. This is because
applications running on Android enter a “Pause” mode once the screen turns off as part of the Android application’s life
cycle [24]. Since the Angry Birds application in this example does not run as a service, the screen status feature acts as a
contextual attribute for detecting anomalies in the behavior attribute.

Fig. 4 illustrates this example where the data stream consists of two features: the out-bound data rate and the screen
status.

In pcStream, we view contextual anomalies as observations which are assigned to rare context models (i.e., models in C
that have had relatively few visits). The intuition behind this is that a pcStream model captures a temporal correlation among
the features in the data stream. Therefore, a model that is rarely visited by the stream is by definition a rare situation. In
order to detect contextual anomalies, we measure the rarity of the model assigned to x. in line 4.4.2 of Algorithm 1. Note
that observations that do not have an associated context model (point anomalies) are also part of the collection of contextual
anomalies. This is because they do not fit any known distribution and are therefore contextual outliers. Fig. 2(b) illustrates
what contextual anomalies look like using pcStream. The observations outside the dotted lines are the observations we are
testing with respect to contexts c;_s.

In order to keep track of the number of visits each model receives, we extend pcStream in the following way. Let the
context model be updated to ¢; = (M;, wi, A;, v;) where v; is the number of observations that has been assigned to model c;.

Vi

Let r be the rarities (visitation probabilities) of all models, such thatr; = T where Y v; equals the number of observations
1

presented by the stream thus far. Using this extension, we can measure the degree to which observation x is a contextual
anomaly using the function

0 if min(dc(x)) >
f(X) — . . else (C()) ¢
IndxMin(dc(x))

(2)

where dc(x) is the vector of the Mahalanobis distances from each of the |C| models in C with respect to x, and where
IndxMin(dc(x)) is the index to the model with the smallest score (i.e., the ID of the closest model). The first condition in
Anom2 means that if x does not fit any context, then x must belong to an unseen context-and therefore is very rare. The

90 Y. Mirsky et al. / Pervasive and Mobile Computing 35 (2017) 83-107

Collective Anomaly: App Memory Consumption

90
,_.80 o0 o
570oo
o 60 Foteeo®
% o'..: :
350 .-'. : :
%40 .o'. ° [} :
S 30 o : H .
w 20 ® . : :
E10 .o.. '.. .o .
Ob.oooooo' ®eee’ ®eceesd
O OVWLTNONVOILSTNOARNINMNADONLNADOIFTNOO®OS A
OHd M NIMODONTORNOINAMINOWONSTINNOAMIT O 0O
Co0do0ocOCddaddddaANNANNmMm Mot S <0
TIME ELAPSED [SEC]

Fig. 5. An illustration of a collective anomaly found in a data stream.

second condition is the rarity of the model to which x belongs. Note that in contrast to function (1), the values returned by
function (2) become smaller the more x is considered anomalous.

3.3. Collective anomaly detection

Collective anomalies are a set of related observations which together are anomalous with respect to the dataset, but
are not necessarily anomalous individually. These types of anomalies can be found in sequential or time-series type
datasets [13]. As an example, consider a data stream created by sampling an application’s memory consumption. A single
observation from this data stream could belong to an arbitrary activity of the application, and thus examining its value alone
is not enough to determine its abnormality. Rather we need to consider the surrounding observations as well. In Fig. 5 we
present a simplistic illustration of this example, where the data stream captures the loading of some application. Here, the
temporary drop in memory consumption is an abnormal sequence of observations, yet each of the observations themselves
is not abnormal on their own (with respect to the entire stream).

In pcStream, a collective anomaly is a rare sequence of transitions between contexts. In order to measure the probability
of these transitions, we construct a first order Markov Chain (MC) while training pcStream, where a context is considered a
state in the MC. Fig. 2(c) illustrates this concept, where the shade of the transition edges indicates the transition’s probability.
In the figure transitions to context c; are rare and therefore anomalous.

Since we do not know the number of contexts S will exhibit, we model the MC using an extensible Markov Model [25] in
the following way. Let tr; = (c;_1, ¢;) be the transition (edge) between a pair of states (contexts) at time tick t (reminder, c;
is the index corresponding to the model assigned to ;). Let Uc = [u;] be the transition count matrix where u;; is the number
of all transitions which have occurred from model i toj in C. Let Pc = [L;—?] Markov transition probability matrix such that
p(try) = Pc[cq—1, ¢]. Note that Pc can be constructed at any time, and that both Uc and P¢ are |C| x |C| matrices.

To detect collective anomalies with pcStream, we maintain the matrix Uc with incremental updates and calculate
transition probabilities as they occur: whenever the observation x; is assigned to a model, we increment the value stored
in Uc[c;_1, ¢:]. When the drift buffer is emptied into the current model c; (line 4.5.2.1 in Algorithm 1), we first increment
Uc[c¢—1, ¢;] once and then increment Uc[c;, ¢;] with |D|—1. Finally, we output the transition probability for every observation
as Uc is updated, using the function

Anom3(tr;) = Pclci—q, ct]. (3)

Note that Anom3 produces a sequence of first-order transition probabilities p = {. .. p;_1, p;}. This can easily be extended
to higher orders.

Based on our evaluations (detailed later on), we found that Anom3 can generate many false positives due to low
probability transitions between the known contexts. However, we also found that these low probability transitions occurred
more frequently in the presence of anomalous segments in the data stream. Therefore, we propose performing smoothing
to the sequence p by applying the moving average

1 w—1
Anom3,, (tr;) = — ZAnomB(trt,k). (4)
w k=0

4. Evaluation

In this section, we evaluate pcStream as an implicit security solution for the smartphone using the extensions described
in Section 3. Specifically, we test whether it is possible to detect data leakage (point anomalies), active malware (contextual
anomalies), and unauthorized users via continuous authentication (collective anomalies).

Y. Mirsky et al. / Pervasive and Mobile Computing 35 (2017) 83-107 91

As a comparative baseline in the evaluation of pcStream, we evaluate two other stream clustering algorithms:
DBStream [26] and D-Stream [27]. These algorithms have a built-in method for detecting point anomalies, but not contextual
or collective anomalies. Therefore, we apply to them the same method proposed for pcStream in Eqgs. (2) and (4):

For contextual anomalies, we (1) track the number of visits each cluster receives, (2) divide the counts by the total number
of observations produced by the stream, which gives each cluster’s rarity, and (3) when a new observation arrives, the
degree to which the observation is a contextual anomaly is the rarity of the cluster to which it belongs to. As done with the
pcStream version, if the point is an outlier, we return the highest rarity score (zero). For collective anomalies, we (1) model
a Markov chain based on the observed transitions between the clusters, and then (2) produce anomaly scores by computing
the average probability over a sliding window.

4.1. The dataset

For the purpose of evaluating context-based security solutions for smartphones, we launched a data collection
experiment called “SherLock”. The SherLock data collection experiment is an on going (at time of writing) experiment aimed
at capturing the long-term behavior of internal and external smartphone actors. What makes this dataset unique is that we
are sampling a wide range of software and hardware sensors at a fast sampling rate (“fast” is relative to published datasets
discussed later in Section 6). To collect this data, we provided volunteers with new Samsung Galaxy S4 and S5 smartphones.
The volunteers were told to use the provided devices as their personal smartphones. The SherLock dataset used in this
paper covers eight months of continuous data collection from 31 users (collectively representing approximately 20 years of
sensor data). The volunteers participating in the experiment range in age from 12 to 60 years old, and each volunteer has
a different level of knowledge, skill, and comfort regarding smartphone use. Since the experiment covers many months, it
can be assumed that the users have naturally become adjusted to using their devices, thereby incorporating their personal
behaviors and habits into the device’s internal and external contexts.

In Table 1 we present the features taken from the SherLock experiment for this paper’s evaluations. The reason we
selected these features is because they capture both the application’s and external user’s behaviors in terms of latent
contexts. Moreover, other applications can sample these features without any special privileges (verified in Android 6.0),
and therefore these features respect the concern of our paper—that data streams are readily available for use in implicitly
detecting anomalies where explicit information is not available.

The SherLock collection experiment involved many more sensors than those listed in Table 1. We found that the collection
of these sensors depletes the battery of an S5 smartphone in about five hours of regular use. Therefore, in order to collect
data at a high temporal resolution while providing a practical battery life, all volunteers were given a battery case for their
smartphone which provided the volunteers with an additional 4800 MAh of power to the smartphone’s internal 2800 MAh
battery (totaling 7600 MAh). We found the power consumption of the sensors to be approximately 5%-7% an hour (measured
on a Samsung Galaxy S5 smartphone with all features turned off). Therefore, generating a data stream from the features in
Table 1 is a viable solution for the modern smartphone.

4.2. Point anomaly detection

In order to the evaluate pcStream as a point anomaly detection algorithm, we consider the following attack scenario:
An attacker wishes to steal private or sensitive files from unsuspecting victims. To do so, the attacker performs repackaging
and injects malicious code into a target application. The target application is a common benign application (such as a weather
widget). The attacker places the infected application into an unmonitored market (such as an Android black market [28-30]).
The victim then downloads the infected application and installs it on his/her device. At some point in time, the malicious
code steals a file from the device and transmits it off-site to the attacker.

Our goal is to detect the moment that the malware begins to transmit the file. To achieve this goal, we can train pcStream
on a data stream which captures the normal behavior of the target application. Assuming the data stream captures the
application’s behavior across different users, it should be possible to detect an abnormal behavior (such as an unexpected
transmission) when the same application exhibits this behavior by a different user.

4.2.1. Evaluation setup—data leakage detection

In our evaluation, we were not able to run actual malware on our volunteers’ devices for ethical reasons. Therefore, for
these evaluations we performed the following: Let A be an instance of some benign application and let A, be A infected
(repackaged) with the malware m. Let S4 and S; = be data streams that implicitly capture the behaviors of the respective
applications, where an observation x of the streams has five numerical features: CPU usage, bytes sent, bytes received,
packets sent, and packets received (since the last sample). We define v, as the average additional implicit behavior of A,
with respect to A. vy, is to be calculated by taking the difference between the average values of both streams’ features, or
formally vy, = S5, — Sa.

We repeated this process for five different pairs of benign and malicious applications (i.e., (A1, m1), ... (As, ms)). We also
extracted the average behaviors from five benign applications (using the same features) in order to provide a wide variety
of injected behaviors. To simulate a point anomaly from the malware m;, in the data stream of a target benign application A’,

92

Y. Mirsky et al. / Pervasive and Mobile Computing 35 (2017) 83-107

Table 1
Sensor Features Sample rate
Name Description
Screen ON/OFF Alogged event for whenever the device’s screen turns on or off. Per event
stime Time in clock ticks which this process has been scheduled in kernel mode.
utime Time in clock ticks which this process has been scheduled in user mode.
cstime Time in clock ticks which this process’s waited-for children have been scheduled in
kernel mode.
cutime Time in clock ticks which this process’s waited-for children have been scheduled in
user mode.
CPU usage An objective measure of CPU usage calculated as the average number of CPU
clock-ticks used per second. This measure is computed as %W
where A refers to the difference between the current and last samples’ values.
Application statistics Bytes, Number of sent Bytes over the network since last sample. 0.20 Hz
Packets Number of sent Packets over the network since last sample.
Bytes,, Number of received Bytes over the network since last sample.
Packets,y Number of received Packets over the network since last sample.
num_threads Number of threads associated with this process.
stime Time in clock ticks which this process has been scheduled in kernel mode.
utime Time in clock ticks which this process has been scheduled in user mode.
cstime Time in clock ticks which this process’s waited-for children have been scheduled in
kernel mode.
cutime Time in clock ticks which this process’s waited-for children have been scheduled in

dalvikPrivateDirty
dalvikPss
dalvikSharedDirty
otherPrivateDirty
otherPss

user mode.

The private dirty pages used by dalvik heap.
The proportional set size for dalvik heap.

The shared dirty pages used by dalvik heap.
The private dirty pages used by everything else.
The proportional set size for everything else.

otherSharedDirty The shared dirty pages used by everything else.
a=(X,y,2) The mean of the values sampled along each of the 3 accelerometer axis for a
duration of 4 s.
Accelerometer _ . = = =
llall The magnitude of the 3 means, computed as /X2 + y2 + z2 0.067 Hz
FFT1(x) The strongest frequency from the axis “x” taken from 4 s of samples (computed via
Fast Fourier Transform).
||FFT1(a)|| The magnitude of the largest frequencies from all axis, computed as
VFFT1 (02 + FFT1(y)? + FFT1(2)2
Gyroscope g=(7Y,2) 'ihse mean of the values sampled along each of the 3 gyroscope axis for a duration of
gl The magnitude of the 3 means, computed as /x2 + y2 + z2

v, was added to random observations in the stream Sy. A summary of all behaviors extracted with their malware signatures
can be found in Table 2.

The target applications and the extracted features used in the evaluations are listed in Tables 3 and 4 respectively. In Fig. 6
we present a visual reference regarding where the behaviors lie with respect to the distributions of the target applications
from Table 3. It is expected that behaviors with a higher or lower CPU/transmission rate than the target application’s average
rates will be easier to detect. However, Fig. 6 shows that the injections fall out across the distributions and not only at the
extremes.

We will now explain how the evaluation was performed. For each of 144 different pcStream parameters, we trained a
pcStream model over a data stream created from a concatenation of 24 users’ usage of a target application. We then evaluated
each of these pcStream models on each of the remaining seven users’ data streams. Each test set was a test user’s data injected
with one of the malicious behaviors from Table 2. The same datasets were used to evaluate DBStream and D-Stream. Table 5
lists the parameters taken to evaluate the different algorithms.

All data was z-scored using the respective training set, prior to training and testing. For our evaluations we used the area
under the receiver operating characteristic (ROC) to measure the algorithm’s performance. The ROC curve gives the true
positive rate (TPR = *TuePositve y anq false positive rate (FPR = %) for every possible decision threshold in a binary
classifier’s outcome over the supplied dataset. The area under the curve (AUC) is a summary statistic the ROC giving an
indication of the classifier's performance. An AUC value of 0.5 indicates a classifier of pure random chance (a 50-50 guess),
whereas an AUC of 1.0 indicates a perfect classifier.

4.2.2. Evaluation results—data leakage detection

Table 6 presents a summary of the results in the form of average best AUC across all users. This table provides the expected
best performance pcStream can provide at detecting our point anomalies. The best average AUC was found for each target

Y. Mirsky et al. / Pervasive and Mobile Computing 35 (2017) 83-107 93
Table 2
The injected behaviors.
Information on the application The net behaviors that describe the
application/Malware
App name Ver. Description Signature VirusTotal.com CPUusage Transmit Receive
rating
Jiffies/s Bytes/s Packets/s Bytes/s Packets/s
AVG antivirus 4.4.2 Virus scanner ~ SMSsend 1/56 78.15 232 8 21358 14
Live locker 2.6 Screen lock Trojan 25/56 11.12 6 1 0 0
Malware Bug war 1.1 Game Trojan 15/56 23.78 3 1 0 0
Santa ride 1.0.1 Game Trojan 16/57 1.64 30 2 394 1
Temple 1.0 Game Spyware 25/56 9.38 14 1 4 1
Polaris viewer 6.5.4 Doc. Reader Clean 0/56 9.99 536 1 295 1
Video player 2.0.0 Media player Clean 0/56 9.77 12372 47 285982 67
Benign Memo 2.0.83 Notes Clean 0/56 2.87 976 2 807 2
Dropbox 3.04.2 Cloudstorage Clean 0/56 1.76 74914 13 1924 9
Google Maps 9.14.0 Navigation Clean 0/56 6.87 2824 3 2853 4
Table 3
The datasets extracted from the target applications.
Target # Rows in Collective timespan #Rowsin # Usersin # Test # Injected # Test-sets per
application dataset of dataset train train users behaviors target App.
Google Maps 256,505 14.8 days 198,454 30
Video player 257,051 14.9 days 198,991 31
mvPlayer 199,728 11.6 days 89,818 26
Memo 256,348 14.9 days 198,803 30
Dropbox 164,840 9.5 days 120,890 31 7 10 70
AccuWeather 257,051 14.8 days 198,687 31
Widget
Digital Clock 143,361 14.9 days 143,361 27
Widget
Polaris Doc 130,903 14.8 days 112,021 19
Viewer5
WhatsApp 265,606 15 days 207,492 30
Table 4
Data stream features extracted—per target application.
Source Units # Features
CPU usage (Jiffies/s) Jiffies/s 1
Bytes,,, Bytes,, bytes 2
Packets,y, Packets,y packets 2
dalvikPrivateDirty, dalvikPss, dalvikSharedDirty, otherPrivateDirty, otherPss, otherSharedDirty kilobytes 6
Table 5
The pcStream, DBStream, and D-Stream parameters selected for the evaluations.
pcStream DBStream
Parameter Value Parameter Value
@ 0.7-4.2, 0n Micro cluster radius 1-12 on 0.1 intervals
R Sets evaluated: 111
Lmin 3, 4, 5, 6
m 500
) 0.98 D-Stream
Max model limit Parameter Value
(context preservation) 2L Grid size 0.1-10 on 0.05 intervals
Sets evaluated: 144 Sets evaluated: 199

application by performing a grid-search across the ¢ and t,;, parameters of pcStream. For each combination of parameters
(i.e., point in the grid), we computed average AUC across the target application’s test sets. The point in the grid that provided
the highest average AUC was considered to be the best.

94 Y. Mirsky et al. / Pervasive and Mobile Computing 35 (2017) 83-107

Actual CPU Usage w.r.t. Injected CPU Usage (Avent Transmission) App

47 g, Dropbox

3 - g GoogleMaps
_a\ i .
2 5 i] Memo
S)

VideoPlayer
1- »
— . T 2 WeatherWidget
- — —— g S — -
0 | n 1 1 mi 1 1 | WhatSApp
1 100

CPU clock ticks used / second (log. scale)

antivirus

Actual Transmission Rates w.r.t. the Injected Transmission Rates

3 gl o g 5! 1 Dropbox
Elmlml_‘gl wqu)l I © >I X1
Sy gt = ;ugu S| S 8 GoogleMaps
10! Elg! S1015 © %l Ql
2 - Sio! ole! ‘E'>§') o']
- mi>i g ml8 18 ol al Memo
5 0 IAQ! 1 =0 1
3 A 1@ X ' PolarisDocViewer
° [I = 1 1
[1 1= 1 1
1 1 1 Ino_ 1 1
1 1 1 1 1
1 1 1 1 1
1

MB/sec (log. scale)

Actual Receive Rates w.r.t. the Injected Receive Rates

—_

VideoPlayer

WeatherWidget

s 3 00 0 i Dropbox
iS 2] —
S :;% :"’ :Q>J~ GoogleMaps
2 S 2 L]
2 = igo s o
5 IS = S Memo
> I© |L8) = 13
2 % Oo © i)
3 ﬁ b i PolarisDocViewer
1
! 1
{ 1
! 1
! 1
J

)

o

App
VideoPlayer
= #) WeatherWidget
0 - Z -l 4l . =y I
.00001 .01 10 WhatsApp
App
‘dk\

WhatsApp
MB/sec (log. scale)

Fig. 6. The three distributions of the target applications’ resource utilization. Vertical dashed lines show the values of the injected behaviors (v,).

To give an idea of the difficulty in determining these parameters (i.e., parameter selection robustness), in Figs. 7 and 8
we plot the Anom1’s performance across a grid of the ¢ and t,;, parameters. In these figures, brighter colors indicate better
performance (i.e., a higher AUC). Fig. 7 shows the robustness in the perspective of the same test user and injected application
across the different target applications. Fig. 8 shows the averaged AUC of all users and injected behaviors for each of the target
applications. This plot shows that even when the malicious behavior is unknown, selecting a parameter around ¢ = 4.1 and
tmin = 5 provides a good AUC on average (regardless of the user). This generalization is only applicable when the data stream
is extracted from the target application in the same way as was done in this paper.

From these figures we can see that Anom1 successfully detects the point anomalies with high accuracy and (a low number
of false positives). Each parameter selection (coordinate in the plot) captures a context category populated with different
clusters found in the test user’s data stream. We note that each of the test users and target applications have their own
unique contexts. pcStream was able to detect these contexts and use them to successfully differentiate between an injected
behavior (outlier) and the regular behavior. Fig. 9 shows the performance of pcStream in comparison with DBStream and
DStream. We note that pcStream consistently has a better AUC than the other algorithms, regardless of the target application
or injected behavior.

Lastly, Fig. 10 shows the training times (in minutes) for each of the parameters from Table 5 on the training set from the
target application WhatsApp. The training was performed on a single logical core on an Intel Xeon E5-2660 v3 processor (a
core in a c4.8xlarge virtual machine running in the Amazon EC2 compute cloud). Note that higher ¢ parameters result in a
shorter training time. This is because a higher ¢ makes it more difficult for an observation to be placed into the drift buffer
D. Therefore general contexts are detected, resulting in fewer models to manage at every update. Since the pcStream model

Y. Mirsky et al. / Pervasive and Mobile Computing 35 (2017) 83-107 95

Table 6
Average best AUCs across all users.

Injected behavior

Antivirus Bug Live Santa Temple Dropbox Google Memo Polaris
war locker ride Maps DocViewer
Dropbox 1.0000 0.9996 0.9986 0.9950 0.9985 0.9995 0.9999 0.9971 0.9985
Google Maps 1.0000 0.9997 0.9996 0.9970 0.9996 0.9999 0.9999 0.9996 0.9997
Polaris viewer 1.0000 0.9908 0.9820 0.9808 0.9914 0.9910 0.9779 0.9842
Memo 1.0000 1.0000 1.0000 0.9998 1.0000 1.0000 1.0000 1.0000 1.0000
Target .
application Video player 1.0000 0.9989 0.9959 - 09945 09895 0.9880 0.9783 0.9854
Weather 1.0000 1.0000 0.9996 0.9989 0.9995 1.0000 1.0000 0.9958 0.9974
widget
Clock widget 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
WhatsApp 09999 09985 09899 [J0S648 09881 09994 09840 (6945307 09708
mvPlayer 1.0000 0.9997 0.9999 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Dropbox 1.0000 0.9996 0.9986 0.9950 0.9985 0.9995 0.9999 0.9971 0.9985
AUC T . . .
o est User:#6 Injected Behavior:BugWar
- Dropbox GoogleMaps Polaris Memo VideoPlayer Weather Clock WhatsApp mvPlayer
L
o B2 S= = = > = = < <
= w (s} 0 = o s} y) U's] = [2]
L
P P -~ -~ P P - - ™ s o
- - o
= - o
= B o™ 1S _m M- 3 o @ o o &
) w v _I- o wn U's] wn L=} 0 g
~ TR S e < ~ a N - o o =
~ - I é.
S =
8 8 S - |2 - 8 8 8- g g L
- E
o] © w) © _ o]] o _ - @ © (2]
© - - e | = - - - - -
= Lo
o o o _ " = o_ = o o o _ o o
- TTT TTTT W_I'_T'? TTTT
o 3 5 3 5 3 § 3 5 3 § 3 § 3 §

Drift Buffer Size t,

Fig.7. Aplot of Anom1’s pcStream parameter selection robustness across different target applications (with the same injected behavior and test user). (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

- e Averaged Result:All Test Users, All Injected Behaviors

- Dropbox GoogleMapdolarisViewe Memo VideoPlayeVeatherWidg ClockWidget WhatsApp mvPlayer
o M o _ o o _ o _ o o _ o o |

@ - - -+ - - - - - -

o |
%) o _ (5] o _) (") o o o &
™ ™ ™ el ™ ™ ™ ™ ™ o

S

e =) o o o _ o (=) o _ o o | =

o] (] © ™ (5] (5] (5] (5] ™ = g
0 o 0 0 _ 0 0 0 _] w [SSSp! =
o~ o~ o~ o~ o~ o~ o~ o~ o~

- o 2

=] o o o o o o o o o ©
i o 7 I ~ -r | I & I 7 "W | E
0 o | 0 0 0 v w _ @ @] @

o - - - - - - - - -

o
o o o o o (-] o _l o o |

w

= 3 S 3 S5 3 5 3 § 3 S

Drift Buffer Size t,

Fig. 8. Heat plots visualizing pcStream’s performance over different parameter settings. The colors represent the obtained AUC score averaged across all
test users and all injected behaviors. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

96 Y. Mirsky et al. / Pervasive and Mobile Computing 35 (2017) 83-107

Average Across Target Apps Average Across Injected Behavior
1 1
0.95 0.95
0.9 0.9
0.85 0.85
o 08 0.8
2 0.75 0.75
0.7 0.7
0.65 0.65
0.6 0.6
0.55 0.55
0.5 » = = o o x 1) o) 0.5 T @ @ [} o 5 B =3
W pcStream 2 g _g 2 _g_ s g E & _§_ § 5 § z £ 5 &
: 3 8¢c 582 ¢ 3 s 22 §° 3
EDBSteam £ & o t + 4o 2 0 B g = s
= [o o k] =
| (2] o o S
O D-Stream 0] (O]

Fig. 9. A comparison of stream’s point anomaly detection performance with respect to the target applications (left) and injected behaviors (right).

Algorithm Train Time Target Application:WhatsApp

.

14 15 16 17 18 19

Drift Buffer Size tmin

1.0 15 2.0 25 3.0 35 4.0
Similarity Threshold ¢

Fig. 10. The pcStream elapsed train times for different parameters over the WhatsApp dataset.

in this case is a global (not specific to any one user), the algorithm can be trained off-site (not on the smartphone itself). It
took 15.3 min to train a model for WhatsApp using the best parameter—approximately 4.4 ms per observation.

4.3. Contextual anomaly detection

For the evaluation of pcStream as a contextual anomaly detection algorithm, we generalize the attack scenario from
Section 4.2.1. The scenario was that the user has downloaded and installed an infected application from an unmonitored
Android marketplace. In this section, we consider that the attacker’s goal is to execute arbitrary code multiple times
throughout the day. For instance, the attacker wishes to spy on the user’s location or collect relevant information on the
device for targeted adware purposes [2]. To maintain a constant presence, the attacker has the malware (inside the target
application) perform its malicious acts even while the user is not interacting with the device.

Observing behavioral attributes does not always provide enough information to detect anomalies. In these cases,
contextual attribute(s) are required to detect abnormalities in the behavioral attributes. In the current attack scenario, we
use the CPU-usage and num_threads of the target application as the behavioral attributes in order to detect anomalies caused
by malicious code. The reason we chose this set as the behavioral features is because (1) the features are correlated thereby
capturing the application’s behavior, and (2) while the malicious behavior is active these features can exhibit the same
expected behavior as seen during normal usage. As the contextual attribute we consider the device’s motion in order to
distinguish between legitimate and illegitimate behaviors exhibited by the behavioral attributes.

As amore concrete example, assume that the target application is a navigation application which is infected with spyware
that tracks the user’s location (even while the application is not in the foreground). Here, without explicit information it is
difficult to determine whether the application’s observed behaviors are warranted. However, if we know that the clean
version of target application only exhibits these behaviors while the device is in the user’s hands, then all other scenarios
indicate a contextual anomaly.

Therefore, our goal is to detect malicious behaviors as they occur outside their expected contexts.

4.3.1. Evaluation setup—malware detection

We will now go into detail regarding how the evaluation was performed. Similar to our assumptions described in
Section 4.2.1, we assume that we have access to the data streams from multiple users running the same target application.
We also assume we are able to group these users according to their device model (so as to insure that the accelerometer
readings have a similar bias). Using these assumptions, for each target application we created one training set consisting

Y. Mirsky et al. / Pervasive and Mobile Computing 35 (2017) 83-107 97

Table 7
Target train and test data stream sizes.
Target application # Rows in train Collective timespan of train (h) # Rows in test Collective timespan of test (h) # Injections
Dropbox 74,032 103 33,984 47 39
Google Maps 203,901 283 33,982 47 205
Memo 211,638 294 30,688 43 113
Video player 237,815 330 33,977 47 13
Weather widget 237,817 330 34,001 47 17
Whatsapp 237,988 330 34,001 47 3242
Table 8
The pcStream, DBStream, and D-Stream parameters selected for the evaluations.
pcStream DBStream
Parameter Value Parameter Value
4 1-5.1,0n Micro cluster radius 0.2-30 on 0.1 intervals
R Sets evaluated: 299
Emin 3. 4, 5, 6
m 500
P 0.98 D-Stream
Max model limit Parameter Value
(context preservation) vy Grid size 0.1-10 on 0.01 intervals
Sets evaluated: 168 Sets evaluated: 991

Table 9
Data stream features extracted per application.
Source Units # Feat. Type
CPU usage Jiffies/s 1 Behavioral
Num_threads - 1 Behavioral
lall m/s? 1 Contextual
pcStream Target

Paramaters Applications

Google Maps
Video Player
((P. tmin)Z Memo
Dropbox
: Weather Widget
(@, tminh1es * WhatsApp

(@, tminht

Fig. 11. A tree summarizing the experiments performed in this section.

of seven users’ data streams joined together sequentially. Each target application was then accompanied by a test set (the
remaining users’ data stream).

To create the contextual anomalies, we randomly selected observations from the test user’s data stream and replaced
the values of ||a|| with those from another context. However, changing the value of ||a|| based on observations of ||a|| would
be biased. Therefore to change the context implicitly, we randomly selected half of the observations which were sampled
while the screen was off. We then changed their ||a|| values to the values of ||a|| found in random observations when the
screen was on.

In summary, the simulated anomalies (injections) are instances where the CPU Usage and num_threads appear normal,
but the motion of the device indicates otherwise.

The target applications, along with details relating to their number of injections, are presented in Table 7. The features used
to make the data streams are listed in Table 9. The pcStream parameter used across all of the experiments is presented in
Table 8. For the reader’s convenience, a visual summary of the evaluation can be found in Fig. 11. We chose the applications
listed in Table 7 as the target applications, because they were the most common among all users who had the same device
(in this case a Galaxy S5).

4.3.2. Evaluation results—malware detection

The performance of function (2) across the different pcStream parameters is presented in Fig. 12. It is interesting to see
how the messaging application WhatsApp performed poorly in comparison to the other applications. This is because the
training sets are made up of the data stream of multiple users. The contexts (i.e., device motion) under which each of these
users uses WhatsApp are highly personal to each user’s behaviors and habits. In contrast, the contexts in which each of the

98 Y. Mirsky et al. / Pervasive and Mobile Computing 35 (2017) 83-107

AUC AUC for Diffrent Paramater Selections
Dropbox GoogleMaps Memo VideoPlayer Weather Widget WhatsApp

[Te)

]
=

Yol Yo}

4

3
Similarity Threshold ¢

3 4 5 6 3 4 5 6 3 4 5 6 3 45 6

Drift Buffer Size tmin

Fig. 12. The performance of Anom2 in detecting the contextual anomalies over different pcStream parameters.

B pcStream

Best AUCs
@ DBStream

| O D-Stream

x o o5 5 Q
s £ 2 S 2 2

[} T ® = <
Q = = © %)
o = > o] w
(=) = §

Target Application

Fig. 13. A performance comparison: highest achieved AUC.

Table 10

The parameters which achieved the best performance.
Target application Best AUC Best parameters

% Emin

Dropbox 0.85 23 4
Google Maps 0.95 4.1 5
Memo 0.95 1.8 3
Video player 0.93 4.4 5
Weather widget 0.88 25 5
Whatsapp 0.74 4.4 5

users uses the other applications is similar across all of the users. Therefore, it is important to make this distinction when
applying function (2) to datasets which combine multiple behaviors.

The best parameters and accompanying AUC values for each target application are presented in Table 10. In Fig. 13, we
compare pcStream’s contextual anomaly detection performance to other algorithms.

In Fig. 14, we present the algorithm’s training time for each of the parameters (measured in minutes), along with the
number of contexts found. The target application presented is Google Maps. It took 4.8 min (using a c4.8xlarge instance in
the Amazon EC2 cloud) to train a model for Google Maps using the best parameter (a rate of approximately 1.4 ms per
observation). Similar to the method proposed in Section 4.2.1, the current method involves a global pcStream model (one
that is not specific to any one user). Therefore the algorithm can be trained off-site.

Fig. 14 also demonstrates the relationship between the pcStream parameters and the contexts discovered. Specifically,
larger ¢ values find more distinct contexts, and a larger t;, finds contexts that are more long-term. Therefore it is expected

Y. Mirsky et al. / Pervasive and Mobile Computing 35 (2017) 83-107 99

Algorithm Train Time Target Application:Google Maps Number of Contexts Found Target Application:Google Maps

e — N] : ;]

5 10 15 20 E 100 200 300 400 500 LE

© R o 2

[79) 7]

a o]

- 3 < 3

o £ . £
1 2 3 4 5 1 2 3 4 5

Similarity Threshold ¢ Similarity Threshold ¢

Fig. 14. The train time (left) and number of discovered contexts (right) for each parameter while training on the target application Google Maps.

that smaller values will discover more contexts in the data stream, since there are naturally more nuances than global
behaviors.

It is clear that the training time increases with the number of discovered contexts. This is because we calculate the
distance between every new observation and all existing contexts in line 4.2 in Algorithm 1. In the case where the overhead
is too high, the number of models can be limited by merging older ones (see Section 2.5).

4.4. Collective anomaly detection

To evaluate pcStream’s ability to detect collective anomalies, we investigate detecting the anomalies caused by the
malicious activity of an external actor (a human), as opposed to the previous sections where we considered internal actors
(applications and code). We propose the following attack scenario. The attacker is an external actor who does not regularly
use the target smartphone. The attacker wants to either steal or access an application on the device. To do so, the attacker
waits until the device is left unattended on a table and then picks it up and begins using it. In this scenario we assume that
the attacker is familiar with the model of the phone and interface.

It has been shown that every user has a unique way of handling a smartphone, and that the device’s motion can be used as
a biometric [31]. Further studies have shown how these biometric signals can be used to provide continuous authentication
(i.e., we assume the current user is the authentic user until shown otherwise and then subsequently lock the device).
However, state-of-the-art methods rely on the attacker to perform specific activities. For instance, by analyzing the way
the user walks (gait analysis) [32,33], touches the screen [34-36], or roams between different locations [37,38], etc. This is
problematic, because an attack could be perpetrated without such activities. For instance, access to an application evades
gait and location analysis, and device theft evades touch recognition. Moreover, for methods like location and gait-based
authentication require the device to travel—incurring significant delays in detection time. With shorter delays, access to an
application can be blocked before any damage is done, and the user can be notified of a theft sooner so that the thief can be
stopped before leaving the scene.

Our goal is to provide users with a generic solution for continuous authentication that does not rely on the user to perform
any particular activity in order to verify his/her authenticity. To accomplish this goal we assume that the motion caused by
a user on his/her smartphone is unique to that user. Therefore, we assume that the sequence of contexts observed from
the device’s motion is also unique to that individual’s behavior, body form, and habits. Furthermore, since the contexts are
correlated distributions, the motions associated with walking or answering a call will not match a different user’s respective
distributions. We use function (4) to provide continuous authentication for a target user.

4.4.1. Evaluation setup—continuous authentication

In order for the evaluation to be fair, all of the phones must be of the same hardware/model. Our dataset contains a mix of
Galaxy S4 and S5 phone series, each with different models such as those with either quad or octa-core CPUs. Therefore, for
this evaluation, we only used the data of eight volunteers, all having the exact same model of S5. Each of the eight users was
selected to be the target user (i.e., the victim) where the seven remaining users formed the test sets (i.e., simulated thieves).

The training sets consisted of 180,000 observations (31 days of data) from the target user. Each test set was formed
by concatenating the next 20,000+ observations from the target user, with 30,000 records from the respective test user
(approximately nine days of data altogether). The transition point between the target user and test user was selected so that
the target user’s device was motionless (e.g. on a table) for at least eight observations and so the test user’s device was just
about to be in motion. These test sets effectively simulate the situation in which target user’s device is taken by a foreign
user from a stationary location and used by this test user. To better simulate this scenario, observations indicating stationary
motion in the test user’s data were removed.

After training on each target user with each of the parameters in Table 11, we attempted to detect the test user with
Anom3,, using window sizes of 1 through 14. For the reader’s convenience, Fig. 15 shows the evaluation trials performed,
and Fig. 16 illustrates how the training and test sets were generated (i.e., the pairings between columns 3 and 4 in Fig. 15).
Table 12 lists the features extracted to form the data streams.

100 Y. Mirsky et al. / Pervasive and Mobile Computing 35 (2017) 83-107

Table 11
The pcStream, DBStream, and D-Stream parameters selected for the evaluations.
pcStream DBStream
Parameter Value Parameter Value
(% 0.6-1.5 on Micro cluster radius 1-12 on 0.01 intervals
0.05jinenvdls Sets evaluated: 1101
(i 3-12
m 5000
p) 0.98 D-Stream
Max model limit Parameter Value
(context preservation) ALY Grid size 0.1-15 on 0.01 intervals

Sets evaluated: 190 Sets evaluated: 1491

Table 12
Data stream features extracted per target user.
Source Units # Features
lal m/s? 1
IFFT (@) | Hz 1
gl rad/s 1
Table 13
Summary of results.
Target user FPR FPs over test set FPs per day Detection delay (min)
Mean Mean Std. Mean Mean Std.
User 1 7.86E—05 1571 2.225 0.453 1.929 1.179
User 2 4.29E—-05 0.857 1.069 0.247 2.071 2.207
User 3 2.29E-04 4571 9.624 1.317 1.893 1.361
User 4 4.29E—-05 0.857 1574 0.247 1.429 0.965
User 5 0 0 0 0 0.500 0
User 6 4.36E—04 8.714 11.161 2.510 6.893 8.410
User 7 2.81E—-03 56.143 101.570 16.169 3.393 2.313
User 8 0 0 0 0 0.500 0
pcStream Averaging Target Test
Paramaters Windows (w) User User
(@, tmin)1 1 Userl User2
User2 User3
(@, tmin)2 2 User3 :
Userd User7
User5
User6
(@, timin)190 14 User?7 :
User8 .

Fig. 15. A tree summarizing the experiments performed in this section.

4.4.2. Evaluation results—continuous authentication

Similar to Anom1 and Anom2, a cut-off threshold must16 be selected such that all values above the threshold indicate an
anomaly. In the previous evaluations we used AUC which essentially considers all relevant thresholds. However, in addition
to the false positive and true positive rates, there is another dimension that must be considered in continuous authentication:
detection delay. For instance, it may be possible to get a very high AUC, but doing so requires a very long averaging window-
causing a substantial delay. Such a delay may be more than enough for an attacker to take the targeted information off the
phone or get away with the stolen device.

Therefore, in order to automate the process of selecting the best parameters, we used the metric

Metric(FP, DD) = FP + DD (5)

where FP is the number of false positives recorded over the dataset (nine days), and DD is the detection delay in minutes.
Note, since the ratio of FPs to detection delay is a matter of user preference, further consideration should be given regarding
another more appropriate metric than (5). For now, we leave this as a matter for future work.

Using (5) we were able to find the best combination of pcStream parameters for training the algorithm, and setting the
window size of Anom3,,. Table 13 presents a summary of the best results (using this metric) for each of the test users. It is
clear from these results that Anom3,, is capable of providing continuous authentication for smartphone users with relatively

Y. Mirsky et al. / Pervasive and Mobile Computing 35 (2017) 83-107 101

~
@ Accelerometer trace KZ =) Training sets Test sets

I W NNV | S T
UW“A”FW‘ \

Device is stationa

i, " VIS L BY S PX

User 2

Transition point

AN

T B 5... RVTNPUUPS! SR P

Fig. 16. Anillustration of how the training and test sets were made. (1) The division of each user’s accelerometer trace, and (2) the creation of the datasets
where (rows) are the datasets for each target user, and (columns) are the training and test sets respectively.

Table 14
Performance comparison: average over test users.
FP per day Detection delay (min)
Mean Mean Std.
pcStream 2.618 2.326 2.054
DBStream 44.176 43.357 75.488
D-Stream 28.605 38.674 35.526

few false positives and a rather short detection delay. We found that the reason for the short delay is because the transition
between the target user and test user causes a very low Anom3,, score. In addition, since the data stream in this evaluation
produces observations at 0.2 Hz, a 1 min delay means that the attacker was detected after 4 observations. Therefore, it is
conceivable that a faster sample rate will decrease the detection delay further. Table 14 shows that pcStream performs better
than the other algorithms in collective anomaly detection. This is likely because pcStream is designed to detect situations
(contexts) implicitly from data streams.

There are two reasons why Anom3,, is successful at providing continuous authentication based solely on the motion of the
device. Firstly, the same context experienced by different users generates different distributions (e.g. the way a user walks).
Secondly, the sequence of contexts a user produces is unique to that user’s behavior, subject to concept drifts (e.g. taking
the phone out of a pocket to answer a call).

In Fig. 17 we present the distributions of the results for each user. In column 1 of Fig. 17 are the distributions of the results
across each user as the target user, and column 2 are of each user as the test user (here the number of FPs is across the entire
test set—nine days of data). An interesting phenomena we can see from Fig. 17 is that Users 6 and 7 score relatively poorly
as target users but are quite easy to detect as test users. This is because these users visit rare contexts from time to time and
their popular (frequently visited) contexts are concentrated similarly to those of other users, thus they are hard to protect
and detect.

Another interesting case can be seen with Users 5 and 8. These users have consistently FPs when selected as the test user,
but generate many FPs when they are selected as a test user. The reason for this is because these users have contexts which
are common to all other users. However, the other users have many other personal contexts which do not exist by users 5
and 8 respectively. Therefore, it is easy to detect when the stream of User 5 or 8 changes to another user’s stream, however,
it is challenging to detect when some user’s stream changes into the stream of User 5 or 8. In summary, these two users are
easy to protect from device theft, but are hard to defend against as thieves.

In general, the results in Fig. 17 show that we can detect an attacker who attempts to steal the target user’s device
reasonably well, even if the attacker’s behavior is similar to that of the target user’s. However, if the target user exhibits
common contexts which are very similar to the attacker’s (as well as others), the target user will suffer a higher FPR.

Fig. 18 plots the anomaly scores calculated by Anom3,, where the target user is User 5 and the test user is User 6. The
figure shows that User 5 has distinctly different behavior than User 6, and therefore we can detect the moment of the theft
quite easily. To visualize the differences between two users’ contextual behaviors, we present the data streams and Markov
models of Users 1 and 8 (each with their own pcStream model trained with the same parameters). Fig. 19 plots 180,000
observations (31 days) from Users 1 and 8’s data streams, where the observation’s color indicates the assigned context
(with respect to each user’s model collection C), and darker colors indicate contexts detected earlier on. Fig. 20 plots the

102 Y. Mirsky et al. / Pervasive and Mobile Computing 35 (2017) 83-107

As Target Users As Test Users
60 - l 60 -
e 40- 40 -
w .
20 - 20 -
o= e 2 i ! 0- — : . . ‘ 2 ! ‘
User1 User2 User3 User4 User5 User6 User7 User8 User1 User2 User3 User4 User5 User6 User7 User8
_ 10.0- 10.0 - X
E 75- 75 -
& T |
8 5.0- 5.0 -
F e =SSEE o = =
S w s e o P
’ User1 User2 User3 User4 User5 UserG User7 User8 ’ User1 User2 UserS User4 User5 User6 User7 User8
Fig. 17. The distribution of the results across the users as the target user (column 1) and as the test user (column 2).
Anom3w Scores Leading up to Theft
0.5 - o oan © 0® oo — 00" o o °
0.4 -
% 03-
[s2)
S
§ 0.2-
0.1-
0.0 -

4000 5000 6000 7000
Elapsed Time in Test Set [minutes]

Fig. 18. The Anom3,, scores leading up to the theft (marked in red). Target user: 5, test user: 6. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Markov models of the users using the graph visualization tool Gephi [39]. There, each vertex is a pcStream context (state
in the Markov model), and an edge indicates a recorded transition. The size of a vertex indicates the context’s in-degree
(popularity), the color of a vertex indicates the context’s community using the algorithm from [40], and the color of an edge
indicates the transition’s probability (darker is more probable).

We note that should an attacker use the device while it is on a table top, it will be unlikely that the proposed approach
will successfully detect the attacker. To overcome this weakness, either (1) the user should be unauthenticated if there is no
device motion for a period of time, or (2) the overall CPU utilization can be incorporated into the stream so that the context
of internal actors will be captured as well.

5. Discussion

Parameter selection. Like many machine learning algorithms, pcStream has multiple parameters, namely tn,i, and ¢.
Finding the optimum parameters can be challenging, especially since stream datasets can be very long and therefore involve
a lengthy training time. In this paper we performed a non-exhaustive gridsearch over these parameters, where each point
in the grid is a set of parameters. For larger problems, one may consider using a hyper-parameter selection technique which
performs a minimal number of trials. For example, we can begin the search with the default hyper-parameter setting and
then select the next point with best-first search and cross-validation evaluation procedure [41]. Another option is to use the
design of experiments (DOE) approach, where the parameters are optimized by following a systematic method of learning
their relationship to the response feedback [42]. More recently, Bayesian optimization has shown to be effective for finding
the optimal hyper-parameter settings. The idea is to construct a probabilistic model and exploits this model for the next
setting to evaluate [43].

Parameter tuning is not possible when there is a no feedback, i.e., the lack of a labeled dataset. This commonly occurs
in the task of anomaly detection where there is an abundance of normal data, but explicitly labeled anomalies are scarce.
For these situations we offer the following guidelines to selecting a decent set of parameters for pcStream. First, one should
observe and analyze the stream to determine the interesting types of contexts it exhibits. For t;,, this parameter determines
the term-length of the contexts. Therefore, if the shortest duration of an interesting context is 500 observations, then ty;,
should be about the same value. For ¢, this parameter controls the distinctiveness of the detected contexts. Therefore, if

Y. Mirsky et al. / Pervasive and Mobile Computing 35 (2017) 83-107 103

User 1 User8

0.1 4 0.1

Mgl
Mgl

0.0s 0.0s

500 500

300 300
95 200 95

94 94
IFFT) 100 llal IFFTE] e Hal

Fig. 19. Users 1 (left) and 8's (right) data streams from one month of collection. Colors indicate the assigned context. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 20. The Markov chains of Users 1 and 8.

the interesting contexts are more unique behaviors and less like small nuances, then a ¢ < 1 should be selected. Finally, m
considers the duration of the concept drifts of the contexts. If the interesting contexts hardily change, then a large m should
be chosen. Otherwise, an m that reflects the length of the drift should be selected.

Algorithm complexity. As mention in [18], pcStream has a complexity of 0(mn?) for processing an observation, where
m is the model memory size, and n is the stream’s dimensionality. The upper bound depends on m, n and the limit on the
number of models. To consider what is practical, one should consider the velocity of the target stream. For the continuous
authentication evaluation, it took 5 ms to process each observation. Since the stream only produced one observation per
15 s, the complexity of the algorithm is not an issue. However, as a general guideline, we suggest selecting no more than
the 3-10 features that have the lowest self (inter) correlation as the data stream. As future work, we intend on investigating
incremental PCA (IPCA) as a means of improving the complexity of pcStream.

Protecting the algorithm. It is important to note two security concerns related to the work presented in this paper. First,
in this work some of the training sets are based on a collection of other user’s data. Since machine learning algorithms are
susceptible to poisoning attacks [44], one who implements this method should consider that an attacker may be present
among the training users. To mitigate this issue, we suggest that leave one out cross validation be performed across the users
in the training set, and that the users who performed poorly be removed. The second concern is that the algorithm is context-
based. This means that the algorithm is susceptible to malicious actors who are context-aware, because the algorithm can be

104 Y. Mirsky et al. / Pervasive and Mobile Computing 35 (2017) 83-107

evaded if the malicious activities are performed within the expected contexts. One possible solution is to protect the system
with a subsystem that measures the contextual awareness of the relevant actors. This can be accomplished by tracking the
actors’ (e.g. applications) access to contextual information (such as sensors). Another possible solution is that the subsystem
can create “fake contexts” in order to trigger the context-aware attacks outside the normal context. This subsystem could
either warn the user or change the sensitivity of the algorithm in an attempt to lower the false positive rate. These concepts
have not been verified, and are therefore a subject of future work.

6. Related works
6.1. Related literature

As mentioned, in this study we aim to detect anomalies when explicit information on the application, device, or user
behavior is unavailable. In such cases, we opt to analyze sensor data to extract the latent contexts which can be used to
detect anomalies.

With the evolvement of smartphones, the importance of implementing context-aware security for such devices has
been acknowledged. One example includes the CrePE system [45] which introduced a context-based policy enforcement
on applications. CrePE provides a fine-grained access control to applications accessing different resources on the device
based on the observed context. The context-based policy is defined by the owner of the device, as opposed to the proposed
approach in our paper which is data-driven.

Another example is CASA [46] which proposed a dynamic authentication approach. Upon activating the screen, CASA
presents the user with an appropriate authentication method (depending on its trust of the user). The trust is determined
by examining the context of the user and by using, for simplicity, Nave Bayes as the underlying model. This model
assumes a level of conditional independence between each contextual factor. In their evaluation, the authors specifically
use the probability of the user’s current location as the context. Compared to CASA, the anomaly detection extensions
in our paper assume a level of conditional independence between factors. In addition, the pcStream anomaly detection
extensions continually provide an analysis of the situation, since each observation in the data stream is classified as normal
or anomalous. However, CASA provides such analysis only at the occurrence of specific events, and therefore provides less
coverage.

The SenSec system [47] provides continuous authentication for smartphone users based on sensory data collected from
the accelerometer, gyro-scope, and magnetometer sensors. SenSec aggregates the sensor information by segmenting the
stream into equal sized parts, extracting features from each part, and uses the k-means algorithm to detect concepts.
Anomalies are detected by observing the probability of transitions from one cluster to another. Our proposed solution differs
from SenSec in the following ways. First, pcStream inspects observations on an individual basis and does not aggregate
the information by segmenting the stream into parts. The segmentation process is prone to the loss of information and
indications of anomalies. Second, SenSec applies the k-means algorithm to detect the concepts, however, k-means seeks to
find a partition of the data in the feature space which is problematic if it is assumed that concepts may overlap (see Fig. 1).
Furthermore, k-means is not a streaming algorithm and therefore must store all observations. Not only is this a memory
issue, but the increasing size of the collection results in increasing complexity when adding new observations. In contrast,
pcStream is specifically designed to handle unbounded data streams as well as handle concept drifts.

Context-based anomaly detection was also explored in previous studies. In [48] a knowledge-based intrusion detection
system for Android was presented. Using an expert’s knowledge, sensor data is interpreted within the current context in
order to detect meaningful patterns that indicate a potential anomaly or threat. This however, requires a human expert to
model the threats and contexts. The TCADS framework was also proposed as a general concept of context-based anomaly
detection [49]. The framework uses sensor data from the device or external sources (e.g., from an enterprise’s IT system
such as a network-based intrusion detection system) in order to detect anomalies. However, in this paper only a conceptual
description of the framework is presented and no specific algorithm or evaluation is offered. The importance of context-
based anomaly detection was also demonstrated by Dixon et al. [38] who analyzed the power consumption within a context.
There, contexts are defined as time and location. In this study, our approach is more generic as we derive concepts from a
wide range of data streams.

Lastly, in [50] we explored the reductions from different classes of multiplicative path finding problems to suitable classes
of additive path finding problems. In order to demonstrate these reductions, we proposed a few variations of collective
anomaly detection metrics. These metrics search a Markov model for optimum paths (in terms of probability) and use these
paths to understand the probability of the current situation. In [50] we used pcStream to create the Markov model in the
evaluation. In order to compute the anomaly score for a single observation, one must solve the optimal path problem, which
takes O(|C|k) time, where k is the path length considered (typically about 50 transitions). The time complexity of Anom,, is
0(1) since it takes the mean of a window of probabilities. As a comparison, Anom,, computes an anomaly score in about 55 s,
and the metrics in [50] compute scores in about ten seconds with 1000 contexts. Even when sampling at the maximum rate
of one sample per ten seconds, the detection delays become unacceptable and the smartphone’s processor would always be
operating at full capacity (never entering power saving mode). This would deplete the battery in a matter of a few hours.
Therefore, the metrics proposed in [50] are not practical for mobile security.

Y. Mirsky et al. / Pervasive and Mobile Computing 35 (2017) 83-107 105

Table 15
Approximate measures of the datasets’ temporal resolution.
SherLock a?]:;gir
dataset dataset
Application Every 5s
Probe statistics (0.2 Hz) Every 5 min
frequency Motion Every 15 (0.003 Hz)
sensors (0.067 Hz)
Probe
Motion duration 4s 1s
coverage Relative o o
coverage 26.666% 0.003%

6.2. Related datasets

The SherLock collection experiment dataset is not the first long-term smartphone sensor dataset collected. In 2005, the
MIT Human Dynamics Labs published a reality mining dataset consisting of 100 Nokia 6600 smartphones [51]. The objective
of the experiment was to provide social and contextual information on the external actor. The data was collected once every
six minutes and did not contain any motion data or application statistics (such as memory or CPU utilization).

In 2013, the University of Cambridge published Device Analyzer; a collection agent for Android phones opens to the
public as a free download from the Android marketplace [52]. Device Analyzer collects an extensive amount of information
from the host device and uploads it to a central server for research purposes. There are several reasons why we did not use
the Device Analyzer dataset for testing pcStream as a smartphone security solution:

(1) Specific features: Device Analyzer’s application statistics do not provide the LINUX process state (Sleep, Zombie etc.),
number of active threads, and other minor details which are useful for observing an application or service’s behavior.
Moreover, it has been shown that features based on a signal’s frequencies (e.g. using a Fourier transform) improve the
task of activity recognition [53] and are therefore useful in the task continuous authentication. This data along with
other statistical information (such as the covariance between axes) is not provided in the device Analyzer dataset.

(2) Temporal resolution: Device Analyzer’s application statistics are probed approximately once every five minutes. This
time interval is too long to catch malicious behavior which can happen in a matter of seconds or less. Furthermore,
information can be totally lost since a user can open and close an application within that window of time.

Moreover, Device Analyzer's motion sensors are also probed approximately once every 5 min, but for a duration (window)
of 1 s (arelative 0.003% coverage). In the application of continuous authentication, an attacker can do a significant amount
of damage (in terms of data theft) within this time window, and therefore this dataset is not suitable for our evaluations.
Table 15 provides a summarized comparison between the temporal resolutions of the SherLock dataset (used for this paper)
and the Device Analyzer dataset.

7. Conclusion

In mobile security, there are situations where it is not possible to explicitly determine the legitimacy of various actors
(internal and external). However, in many of these situations, implicit information in the form of data streams can be
collected and used for detecting anomalies. Therefore, in this paper we proposed an extension to the pcStream algorithm,
enabling it to detecting point, contextual, and collective anomalies in contextual data streams. To evaluate the algorithm’s
capability in providing smartphone security, we evaluated these extensions by detecting data leakage, malwares, and device
thefts using an eight month dataset collected from 31 volunteers. Although we only evaluated one example security threat
for each type of anomaly, the pcStream extensions are general, and can be applied to any case where a contextual data
stream captures the behavior of an actor under question.

In the evaluations, the sources sampled in order to generate the data streams are accessible by any application without
special privileges (verified on Android 6.0). This demonstrates that mobile security threats can be detected implicitly from
data streams, without explicit information. Moreover, this fact makes the examples evaluated in this paper deployable by
third parties via application markets. The results showed that pcStream can implicitly detect the three types of anomalies
generated by attacks on the smartphones. In the future, we plan on investigating the effects of long-term concept drifts
on the quality of the results. We also plan on improving the efficiency of the pcStream algorithm by incorporating IPCA.
Lastly, we plan on investigating the use of Kernel PCA which can capture non-linear relations with a cost of an additional
computational burden.

Acknowledgment

This research had been funded by the Israeli Ministry of Science, Space and Technology.

106 Y. Mirsky et al. / Pervasive and Mobile Computing 35 (2017) 83-107

References

[1] eMarketer, 2 billion consumers worldwide to get smart(phones) by 2016,2015. http://www.emarketer.com/Article/2-Billion-Consumers-Worldwide-
Smartphones-by-2016/1011694 (accessed: 26.10.15).
[2] A.P.Felt, M. Finifter, E. Chin, S. Hanna, D. Wagner, A survey of mobile malware in the wild, in: Proceedings of the 1st ACM Workshop on Security and
Privacy in Smartphones and Mobile Devices, SPSM’'11, ACM, New York, NY, USA, 2011, pp. 3-14. URL http://doi.acm.org/10.1145/2046614.2046618.
[3] P.Faruki, A. Bharmal, V. Laxmi, V. Ganmoor, M.S. Gaur, M. Conti, M. Rajarajan, Android security: a survey of issues, malware penetration, and defenses,
IEEE Commun. Surv. Tutor. 17 (2) (2015) 998-1022.
[4] A.Zimmermann, A. Lorenz, R. Oppermann, An operational definition of context, in: Modeling and Using Context, Springer, 2007, pp. 558-571.
[5] X.Zhou, S. Demetriou, D. He, M. Naveed, X. Pan, X. Wang, C.A. Gunter, K. Nahrstedt, Identity, location, disease and more: Inferring your secrets from
android public resources, in: Proceedings of the 2013 ACM SIGSAC Conference on Computer & Communications Security, ACM, 2013, pp. 1017-1028.
[6] A.Shabtai, L. Tenenboim-Chekina, D. Mimran, L. Rokach, B. Shapira, Y. Elovici, Mobile malware detection through analysis of deviations in application
network behavior, Comput. Secur. 43 (2014) 1-18.
[7] Android developers glossary, https://developer.android.com/guide/appendix/glossary.html (accessed: 26.10.15).
[8] A.Shabtai, Y. Fledel, Y. Elovici, Securing android-powered mobile devices using selinux, IEEE Secur. Privacy (3) (2009) 36-44.
[9] M.B. Harries, C. Sammut, K. Horn, Extracting hidden context, Mach. Learn. 32 (2) (1998) 101-126.
[10] G. Widmer, M. Kubat, Learning in the presence of concept drift and hidden contexts, Mach. Learn. 23 (1) (1996) 69-101. URL http://dx.doi.org/10.
1007/BF00116900.
[11] G. Widmer, Tracking context changes through meta-learning, Mach. Learn. 27 (3) (1997) 259-286. URL http://dx.doi.org/10.1023/A:1007365809034.
[12] J.a.B. Gomes, E. Menasalvas, P.A.C. Sousa, Calds: Context-aware learning from data streams, in: Proceedings of the First International Workshop on
Novel Data Stream Pattern Mining Techniques, StreamKDD’10, ACM, New York, NY, USA, 2010, pp. 16-24. URL http://doi.acm.org/10.1145/1833280.
1833283.
[13] V. Chandola, A. Banerjee, V. Kumar, Anomaly detection: A survey, ACM Comput. Surv. (CSUR) 41 (3) (2009) 15.
[14] Z. He, X. Xu, J.Z. Huang, S. Deng, Mining class outliers: concepts, algorithms and applications in crm, Expert Syst. Appl. 27 (4) (2004) 681-697.
[15] A. Tsymbal, The problem of concept drift: definitions and related work, Computer Science Department, Trinity College Dublin 106.
[16] C.C. Aggarwal, A survey of stream clustering algorithms, 2013.
[17] J.A. Silva, E.R. Faria, R.C. Barros, E.R. Hruschka, A.C.P.LF.d. Carvalho, J.a. Gama, Data stream clustering: A survey, ACM Comput. Surv. 46 (1) (2013)
13:1-13:31. URL http://doi.acm.org/10.1145/2522968.2522981.
[18] Y. Mirsky, B. Shapira, L. Rokach, Y. Elovici, pcstream: A stream clustering algorithm for dynamically detecting and managing temporal contexts,
in: Advances in Knowledge Discovery and Data Mining, Springer, 2015, pp. 119-133.
[19] A.Padovitz, S.W. Loke, A. Zaslavsky, Towards a theory of context spaces, in: Pervasive Computing and Communications Workshops, 2004. Proceedings
of the Second IEEE Annual Conference on, 2004, pp. 38-42. http://dx.doi.org/10.1109/PERCOMW.2004.1276902.
[20] J. Shlens, A tutorial on principal component analysis, arXiv Preprint arXiv:1404.1100.
[21] B. Babcock, M. Datar, R. Motwani, L. O’Callaghan, Maintaining variance and k-medians over data stream windows, in: Proceedings of the Twenty-
second ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, PODS’03, ACM, New York, NY, USA, 2003, pp. 234-243.
URL http://doi.acm.org/10.1145/773153.773176.
[22] S.Wold, M. Sjostrom, Simca: a method for analyzing chemical data in terms of similarity and analogy, 1977.
[23] X.Song, M. Wu, C. Jermaine, S. Ranka, Conditional anomaly detection, IEEE Trans. Knowl. Data Eng. 19 (5) (2007) 631-645.
[24] Pausing and resuming an activity, http://developer.android.com/training/basics/activity-lifecycle/pausing.html (accessed: 26.10.15).
[25] M.Dunham, Y. Meng,]. Huang, Extensible Markov model, in: Data Mining, 2004. ICDM’04. Fourth IEEE International Conference on, 2004, pp. 371-374.
http://dx.doi.org/10.1109/ICDM.2004.10067.
[26] M. Hahsler, M. Bolafios, Clustering data streams based on shared density between micro-clusters, IEEE Trans. Knowl. Data Eng. 28 (6) (2016)
1449-1461.
[27] L. Tu, Y. Chen, Stream data clustering based on grid density and attraction, ACM Trans. Knowl. Discov. Data (TKDD) 3 (3) (2009) 12.
[28] Android blackmart alpha, http://www.blackmart.us/ (accessed: 26.10.15).
[29] Apk black market, http://www.apkblackmarket.com/ (accessed: 26.10.15).
[30] Apk download, http://android.downloadatoz.com/ (accessed: 26.10.15).
[31] M.O. Derawi, Smartphones and biometrics: Gait and activity recognition.
[32] C.C. Ho, C. Eswaran, K.-W. Ng,].-Y. Leow, An unobtrusive android person verification using accelerometer based gait, in: Proceedings of the 10th
International Conference on Advances in Mobile Computing & Multimedia, ACM, 2012, pp. 271-274.
[33] J. Mantyjarvi, M. Lindholm, E. Vildjiounaite, S.-M. Makela, H. Ailisto, Identifying users of portable devices from gait pattern with accelerometers,
in: Acoustics, Speech, and Signal Processing, 2005. Proceedings. (ICASSP’05). IEEE International Conference on, Vol. 2, IEEE, 2005, pp. ii/973-ii/976.
[34] M. Frank, R. Biedert, E.-D. Ma, 1. Martinovic, D. Song, Touchalytics: On the applicability of touchscreen input as a behavioral biometric for continuous
authentication, IEEE Trans. Inf. Forensics Secur. 8 (1) (2013) 136-148.
[35] H. Gascon, S. Uellenbeck, C. Wolf, K. Rieck, Continuous authentication on mobile devices by analysis of typing motion behavior, in: Sicherheit, 2014,
pp. 1-12.
[36] C.Bo, L. Zhang, X.-Y. Li, Q. Huang, Y. Wang, Silentsense: silent user identification via touch and movement behavioral biometrics, in: Proceedings of
the 19th Annual International Conference on Mobile Computing & Networking, ACM, 2013, pp. 187-190.
[37] F.Zhang, A. Kondoro, S. Muftic, Location-based authentication and authorization using smart phones, in: 2012 IEEE 11th International Conference on
Trust, Security and Privacy in Computing and Communications (TrustCom), IEEE, 2012, pp. 1285-1292.
[38] B. Dixon, S. Mishra, J. Pepin, Time and location power based malicious code detection techniques for smartphones, in: 2014 IEEE 13th International
Symposium on Network Computing and Applications, (NCA), IEEE, 2014, pp. 261-268.
[39] M. Bastian, S. Heymann, M. Jacomy, Gephi: An open source software for exploring and manipulating networks, 2009. http://www.aaai.org/ocs/index.
php/ICWSM/09/paper/view/154.
[40] V.D. Blondel, J.-L. Guillaume, R. Lambiotte, E. Lefebvre, Fast unfolding of communities in large networks, J. Stat. Mech. Theory Exp. 2008 (10) (2008)

P10008.

[41] R.Kohavi, G.H. John, Automatic parameter selection by minimizing estimated error, in: ICML, 1995, pp. 304-312.

[42] E. Ridge, D. Kudenko, Tuning an algorithm using design of experiments, in: Experimental Methods for the Analysis of Optimization Algorithms,
Springer, 2010, pp. 265-286.

[43] J. Snoek, H. Larochelle, R.P. Adams, Practical Bayesian optimization of machine learning algorithms, in: Advances in Neural Information Processing
Systems, 2012, pp. 2951-2959.

[44] L. Huang, A.D. Joseph, B. Nelson, B.I. Rubinstein, J. Tygar, Adversarial machine learning, in: Proceedings of the 4th ACM Workshop on Security and
Artificial Intelligence, ACM, 2011, pp. 43-58.

[45] M. Conti, B. Crispo, E. Fernandes, Y. Zhauniarovich, Crépe: A system for enforcing fine-grained context-related policies on android, IEEE Trans. Inf.
Forensics Secur. 7 (5) (2012) 1426-1438.

[46] E.Hayashi, S. Das, S. Amini, J. Hong, I. Oakley, Casa: context-aware scalable authentication, in: Proceedings of the Ninth Symposium on Usable Privacy
and Security, ACM, 2013, p. 3.

[47] J. Zhu, P. Wu, X. Wang, . Zhang, Sensec: Mobile security through passive sensing, in: 2013 International Conference on Computing, Networking and
Communications, (ICNC), IEEE, 2013, pp. 1128-1133.

http://www.emarketer.com/Article/2-Billion-Consumers-Worldwide-Smartphones-by-2016/1011694
http://www.emarketer.com/Article/2-Billion-Consumers-Worldwide-Smartphones-by-2016/1011694
http://www.emarketer.com/Article/2-Billion-Consumers-Worldwide-Smartphones-by-2016/1011694
http://doi.acm.org/10.1145/2046614.2046618
http://refhub.elsevier.com/S1574-1192(16)30106-7/sbref3
http://refhub.elsevier.com/S1574-1192(16)30106-7/sbref4
http://refhub.elsevier.com/S1574-1192(16)30106-7/sbref5
http://refhub.elsevier.com/S1574-1192(16)30106-7/sbref6
https://developer.android.com/guide/appendix/glossary.html
http://refhub.elsevier.com/S1574-1192(16)30106-7/sbref8
http://refhub.elsevier.com/S1574-1192(16)30106-7/sbref9
http://dx.doi.org/10.1007/BF00116900
http://dx.doi.org/10.1007/BF00116900
http://dx.doi.org/10.1007/BF00116900
http://dx.doi.org/10.1007/BF00116900
http://dx.doi.org/10.1007/BF00116900
http://dx.doi.org/10.1007/BF00116900
http://dx.doi.org/10.1007/BF00116900
http://dx.doi.org/10.1023/A:1007365809034
http://doi.acm.org/10.1145/1833280.1833283
http://doi.acm.org/10.1145/1833280.1833283
http://doi.acm.org/10.1145/1833280.1833283
http://doi.acm.org/10.1145/1833280.1833283
http://doi.acm.org/10.1145/1833280.1833283
http://doi.acm.org/10.1145/1833280.1833283
http://doi.acm.org/10.1145/1833280.1833283
http://doi.acm.org/10.1145/1833280.1833283
http://refhub.elsevier.com/S1574-1192(16)30106-7/sbref13
http://refhub.elsevier.com/S1574-1192(16)30106-7/sbref14
http://doi.acm.org/10.1145/2522968.2522981
http://refhub.elsevier.com/S1574-1192(16)30106-7/sbref18
http://dx.doi.org/10.1109/PERCOMW.2004.1276902
http://arxiv.org/1404.1100
http://doi.acm.org/10.1145/773153.773176
http://refhub.elsevier.com/S1574-1192(16)30106-7/sbref23
http://developer.android.com/training/basics/activity-lifecycle/pausing.html
http://dx.doi.org/10.1109/ICDM.2004.10067
http://refhub.elsevier.com/S1574-1192(16)30106-7/sbref26
http://refhub.elsevier.com/S1574-1192(16)30106-7/sbref27
http://www.blackmart.us/
http://www.apkblackmarket.com/
http://android.downloadatoz.com/
http://refhub.elsevier.com/S1574-1192(16)30106-7/sbref32
http://refhub.elsevier.com/S1574-1192(16)30106-7/sbref33
http://refhub.elsevier.com/S1574-1192(16)30106-7/sbref34
http://refhub.elsevier.com/S1574-1192(16)30106-7/sbref36
http://refhub.elsevier.com/S1574-1192(16)30106-7/sbref37
http://refhub.elsevier.com/S1574-1192(16)30106-7/sbref38
http://www.aaai.org/ocs/index.php/ICWSM/09/paper/view/154
http://www.aaai.org/ocs/index.php/ICWSM/09/paper/view/154
http://www.aaai.org/ocs/index.php/ICWSM/09/paper/view/154
http://www.aaai.org/ocs/index.php/ICWSM/09/paper/view/154
http://www.aaai.org/ocs/index.php/ICWSM/09/paper/view/154
http://www.aaai.org/ocs/index.php/ICWSM/09/paper/view/154
http://www.aaai.org/ocs/index.php/ICWSM/09/paper/view/154
http://www.aaai.org/ocs/index.php/ICWSM/09/paper/view/154
http://www.aaai.org/ocs/index.php/ICWSM/09/paper/view/154
http://www.aaai.org/ocs/index.php/ICWSM/09/paper/view/154
http://www.aaai.org/ocs/index.php/ICWSM/09/paper/view/154
http://www.aaai.org/ocs/index.php/ICWSM/09/paper/view/154
http://refhub.elsevier.com/S1574-1192(16)30106-7/sbref40
http://refhub.elsevier.com/S1574-1192(16)30106-7/sbref42
http://refhub.elsevier.com/S1574-1192(16)30106-7/sbref43
http://refhub.elsevier.com/S1574-1192(16)30106-7/sbref44
http://refhub.elsevier.com/S1574-1192(16)30106-7/sbref45
http://refhub.elsevier.com/S1574-1192(16)30106-7/sbref46
http://refhub.elsevier.com/S1574-1192(16)30106-7/sbref47

Y. Mirsky et al. / Pervasive and Mobile Computing 35 (2017) 83-107 107

[48] A. Shabtai, U. Kanonov, Y. Elovici, Intrusion detection for mobile devices using the knowledge-based, temporal abstraction method, J. Syst. Softw. 83
(8)(2010) 1524-1537.

[49] 1. Bente, B. Hellmann, J. Vieweg,]. Von Helden, G. Dreo, Tcads: Trustworthy, context-related anomaly detection for smartphones, in: 2012 15th
International Conference on Network-Based Information Systems, (NBiS), IEEE, 2012, pp. 247-254.

[50] Y. Mirsky, A. Cohen, R. Stern, A. Felner, L. Rokack, Y. Elovici, B. Shapira, Search problems in the domain of multiplication: Case study on anomaly
detection using markov chains, in: Eighth Annual Symposium on Combinatorial Search, 2015.

[51] N.Eagle, A. Pentland, Reality mining: sensing complex social systems, Pers. Ubiquitous Comput. 10 (4) (2006) 255-268.

[52] D.T. Wagner, A. Rice, A.R. Beresford, Device analyzer: Large-scale mobile data collection, SIGMETRICS Perform. Eval. Rev. 41 (4) (2014) 53-56.
URL http://doi.acm.org/10.1145/2627534.2627553.

[53] T. Huynh, B. Schiele, Analyzing features for activity recognition, in: Proceedings of the 2005 Joint Conference on Smart Objects and Ambient
Intelligence: Innovative Context-aware Services: Usages and Technologies, ACM, 2005, pp. 159-163.

http://refhub.elsevier.com/S1574-1192(16)30106-7/sbref48
http://refhub.elsevier.com/S1574-1192(16)30106-7/sbref49
http://refhub.elsevier.com/S1574-1192(16)30106-7/sbref51
http://doi.acm.org/10.1145/2627534.2627553
http://refhub.elsevier.com/S1574-1192(16)30106-7/sbref53

	Anomaly detection for smartphone data streams
	Introduction
	Review of the pcStream algorithm
	Notations and definitions
	The context model
	Similarity scores
	Detection of new contexts
	The pcStream algorithm
	The detection of different context categories

	pcStream anomaly detection extensions
	Point anomaly detection
	Contextual anomaly detection
	Collective anomaly detection

	Evaluation
	The dataset
	Point anomaly detection
	Evaluation setup---data leakage detection
	Evaluation results---data leakage detection

	Contextual anomaly detection
	Evaluation setup---malware detection
	Evaluation results---malware detection

	Collective anomaly detection
	Evaluation setup---continuous authentication
	Evaluation results---continuous authentication

	Discussion
	Related works
	Related literature
	Related datasets

	Conclusion
	Acknowledgment
	References

