
© Springer International Publishing Switzerland 2015
T. Cao et al. (Eds.): PAKDD 2015, Part II, LNAI 9078, pp. 119–133, 2015.
DOI: 10.1007/978-3-319-18032-8_10

pcStream: A Stream Clustering Algorithm for
Dynamically Detecting and Managing Temporal Contexts

Yisroel Mirsky(), Bracha Shapira, Lior Rokach, and Yuval Elovici

Department of Information Systems Engineering, Ben Gurion University, Be’er Sheva, Israel
{yisroel,liorrk}@post.bgu.ac.il, {bshapira,yuval}@bgu.ac.il

Abstract. The clustering of unbounded data-streams is a difficult problem since
the observed instances cannot be stored for future clustering decisions. Moreo-
ver, the probability distribution of streams tends to change over time, making it
challenging to differentiate between a concept-drift and an anomaly. Although
many excellent data-stream clustering algorithms have been proposed in the
past, they are not suitable for capturing the temporal contexts of an entity.

In this paper, we propose pcStream; a novel data-stream clustering algorithm
for dynamically detecting and managing sequential temporal contexts. pcStream
takes into account the properties of sensor-fused data-streams in order to accu-
rately infer the present concept, and dynamically detect new contexts as they
occur. Moreover, the algorithm is capable of detecting point anomalies and can
operate with high velocity data-streams. Lastly, we show in our evaluation that
pcStream outperforms state-of-the-art stream clustering algorithms in detecting
real world contexts from sensor-fused datasets. We also show how pcStream
can be used as an analysis tool for contextual sensor streams.

Keywords: Stream clustering · Concept detection · Concept drift · Context-
awareness

1 Introduction

Context, in the scope of machine learning, can be described as any information that helps
explain an entity’s behavior [9]. Context-awareness is the idea of constantly tracking an
entity’s context over time for some application [18]. For example, an application of con-
text-awareness is the task of data-leakage prevention for smartphones. In this instance,
the tracked context is the locomotion of the user (e.g. walking or running) and the beha-
vior of interest is the outgoing emails. By tracking the context, a machine learning algo-
rithm can infer that it is unlikely for an email to be sent while the user is running.

Modern technology can generate vast amounts of sensor data continuously. Even a
singular entity, such as a smartphone, can generate a potentially endless amount
of data from its sensors. A sensor-stream can be viewed as a sequence of attribute
vectors in geometric space [24]. From these sensor-streams it is possible to obtain a
context-awareness of the entity [5, 20]. One method is to define an ontology, or a rule
set, for each known context—as was done in [22]. However, defining contexts for a
sensor-stream is impractical because the definition of contexts may change over time
and previously unseen contexts may appear later on. For instance, the definition of a

120 Y. Mirsky et al.

person’s home may change
as he/she is walking will ch

A concept is an underlyi
ble for a period of time [11
many cases, an entity's con
Therefore, these "hidden co
stream itself [13, 14, 26]. S
clustering can be performed

Clustering a stream is ch
tially boundless. Although m
suitable for clustering cont
be detected. This is becaus
clustering decision is not co
of classes), 2) The clusters'

To exemplify the importa
ing on a smartphone's acce
objective is to capture and d
strated in Fig. 1 is a possible
the captured points form thre
manner.

Fig. 1. An illustration of possi
repeatedly jumps (middle) and
tributions which overlap in geo

Since other stream clust
we propose a different appr
a stream exhibits a certain
assigned (i.e. clustered) to
partitioned ad hoc accordi
contexts and accounting for

In this paper we present
detecting and managing tem
principal components of the
ically detect and compare c

The paper’s theoretical c
streams considering both te
process, 2) a novel method
correlated distributions).

The algorithm’s practic
analyzing hidden contexts i

e when he/she moves, and the sensory definition of a u
hange as he/she gets older.
ing distribution observed from a data-stream which is
1]. Concepts may reoccur, or evolve over time [17, 28]
ntext is linked to underlying concepts found in its stre
ontexts" of the entity can be implicitly extracted from

Since the hidden contexts have distinct distributions, stre
d to detect them in an unsupervised manner.
hallenging since memory is limited and the stream is pot
many data-stream clustering algorithms exist, they are
extual sensor-streams because overlapping clusters can
se: 1) The temporal relation of the arriving points in
onsidered (the data-flow is clustered as a sporadic mixt
correlated distributions are generally not considered.

ance of these aspects, consider the case of performing clus
elerometer for the application of activity recognition. T
distinguish the underlying contexts found in the stream. I
e sequence of points captured from an arbitrary sensor. H
ee distinct overlapping distributions (contexts) in a sequen

ible sensor values captured as a smartphone user walks (left) t
d then runs (right). Here the clusters form distinct correlated
ometric space.

tering algorithms cannot cope with these types of strea
roach to this type of clustering problem. Concretely, w

n context, all instances during that time period should
o that context. In other words, the data-stream should
ing to the inherent contexts, while detecting reoccurr
r concept drift.
t pcStream; a stream clustering algorithm for dynamic
mporal contexts. The name "pcStream" is attributed to
e distributions in the data-stream which are used to dyna
ontexts (discussed later in further detail).
contributions are: 1) a novel method for partitioning d
emporal and spatial domains during the clustering decis
d for summarizing (modeling) clusters found in streams

al contribution is: an effective method for detecting
n a stream, while accounting for context drift.

user

sta-
]. In
am.
the

eam

ten-
not

nnot
the

ture

ster-
The
Illu-

Here,
ntial

then
dis-

ams,
when
d be
d be
ring

ally
the

am-

data
sion
(as

and

 pcStream: A Stream Clustering Algorithm for Dynamically Detecting 121

The remainder of the paper is organized as follows: In Section 2, we review related
work. In Section 3, the notations and problem definition are presented. In Section 4,
the core pcStream algorithm and its components are presented. In Section 5, the
pcStream algorithm is evaluated as an unsupervised context detection algorithm in
comparison to state-of-the-art stream clustering algorithms, and in Section 6 we
present our conclusion.

2 Related Work

As opposed to regular clustering algorithms, data-stream clustering algorithms must
summarize the data seen in order to preserve memory. CluStream [1] accomplishes
this by summarizing the observations into micro-clusters using a tuple of three com-
ponents (called CF) which describes the micro-cluster's centroid, radius and diameter,
which can be updated incrementally. DenStream [8] is a density-based stream cluster-
ing algorithm. It uses the CF form to determine whether a group of micro-clusters are
a legitimate cluster or a collection of outliers. D-Stream [10] also performs density-
based stream clustering, but across a grid.

In contrast to the aforementioned algorithms, pcStream summarizes its clusters with
the mean and principal components (vectors of highest variance) of the cluster's last ob-
servations (discussed in Section 4). Moreover, none of these algorithms consider the
temporal relation between arriving points while making clustering decisions. This makes
it difficult to discern between two overlapping concepts and a concept drift. Lastly, they
do not cluster a stream as if it were an entity transitioning between concepts. Tracking the
stream from this perspective assists in the detection of outliers and new contexts.

In order to assign points to clusters, pcStream uses the Soft Independent Modelling
by Class Analogy method (SIMCA) [27] to calculate similarity scores. SIMCA, popu-
lar in the domain of chemometrics, is a statistical method for the supervised classifi-
cation of instances. The classification is “soft” in that it offers fuzzy classifications.
Concretely, new instances may be classified as members of one or more classes, or
even an outlier, based on their Mahalanobis distance from each of the class's distribu-
tions. Only the subspace which describes most of the distribution's variance is re-
tained for this calculation. SIMCA performs well on classes which have distinctly
different correlated distributions in multidimensional space [19].

As far as we know, SIMCA has not been used on unbounded streams, nor has it
been used as an unsupervised clustering method. Moreover, we have not seen any
work where SIMCA has been used to dynamically detect new classes (in our case
contexts). Lastly, in contrast to SIMCA, we leave the statistical threshold open to help
detect contexts of different categories (discussed later in Section 4).

3 Notation and Problem Definition

In this section we define the notation and basic concepts used in this paper. We also pro-
vide a formal problem definition. A full summary of this paper’s notations can be found
in Table 1.

Definition 1. Let a context space be defined as the geometrical space Թ, where ݊ is the
number of attributes which define the stream. For instance, one dimension may be the ݕ-axis

122 Y. Mirsky et al.

readings of a smartphone's accelerometer, while another may be the beats per second (bps)
of the smartphone's user. This definition is similar to Context Space Theory (CST), formally
proposed in [21].

Definition 2. Let a stream ܵ be defined as an unbounded sequence of data objects having the
form of points in Թ, and let ݔറ ؠ ,ଵ,ݔൣ ,ଶ,ݔ … , ,൧ be the ݅-th point in the sequence. ܵ canݔ
also be viewed as a matrix having ݊ columns and an unbounded number of rows, where row ݅ represents the values sampled at time tick ݅. We use the notation ݐ to denote the current
time tick and the notation ݔറ௧ to refer to the most recent point received from ܵ. Let ݂,ௌ be the
arrival rate of the row vectors in ܵ measured in Hz.

Definition 3. We define a high velocity stream as a stream which has an arrival rate that is
faster than the stream clustering algorithm’s processing rate of new arrivals (݂). More for-
mally, when ݂,ௌ ݂ then ܵ is called a high velocity stream.

Definition 4. Let ܿ be a context (i.e. concept) defined as a cluster of sequential points having
a correlated distribution in Թ, in which ܵ exists within for at least ݐ time ticks at a time.
The distribution of ܿ is generally stationary, but may change gradually over time as it is sub-
jected to concept drift [11]. For instance, with the accelerometer data of a user’s smartphone,
the context which captures the action of jumping may change as the user gets older or sicker.
We use the notation ܿ௧ to refer to the current context of ܵ.

Definition 5. We define a contextual stream to be a stream that captures the temporal con-
texts of a real-world entity. More formally, ܵ is a contextual stream if ܵ travels among a
finite number of distinct contexts, staying at each for at least ݀ time ticks per visit. The prop-
erty of revisiting certain distributions is known as a reoccurring drift or reoccurring concepts
[17, 28].

Let be the finite collection of known contexts in which ܵ has been found, such that ܿ א .denote the number of known contexts || is the ݅-th discovered context. Let
It is important to note that does not necessarily form a distinct partition of Թ. As men-

tioned earlier, contexts are fuzzy by nature and it is possible that two identical points ݔറ and ݔറ belong to two distinctly different contexts ܿ and ܿ.
For the duration of this paper we will only consider contextual streams.

Definition 6. We define a context category as all contexts from a contextual stream that have
the same ݐ, rate of concept drift, and distinction between their distributions.

Problem Definition. Given the contextual stream ܵ, a target context category and a limited
memory space, dynamically detect the finite number of contexts exhibited by ܵ, determine
the current context (ܿ௧) to some degree of certainty, and provide a fuzzy membership score
for ݔറ௧ at any time.

4 Principal Component Stream Clustering

4.1 The Context Model

Since we define contexts as correlated distributions in Թ, we model the contexts
using principal component analysis (PCA) [16]. PCA captures the relationship of the
correlation between the dimensions of a collection of observations stored in the ݉ ൈ ݊

 pcStream: A S

matrix ܺ, where ݉ is the nu
are two ݊ ൈ ݊ matrices; the
matrix ܲ (the Eigen-vecറଵ, ,റଶ … , റ form a basis in
of ܺ (see Fig. 2). The Eige
direction of their respectiv
highest to lowest variance a
ly. In other words, from th
variance in the data (with ߪଵ

We define the contributi
scribes for the collection ܺ.

PCA has been widely us
ing the information it hold
onto the top principal comp
captured by just a few PCs
the distribution and focus o

Let ߩ be the target percen
est, most influential PCs in
Stated otherwise, arg min
context ܿ as ݇.

We model the ݅-th disco݉ ൈ ݊ for the last ݉ observܯ, and ܣ ൌ ቈറభఙభ , റమఙమ , … , റೖఙೖܣ is essentially a truncate
dard deviations (SD). ܣ can
and then by calculating ܣ ൌ
(obtained from ܸ), and ܳ is
first ݇ columns. The signifi
the paper.

Fig. 2. A visualization of the
deviations (ߪଵ, ଶ) and centereߪ

Stream Clustering Algorithm for Dynamically Detecting

umber of observations. The result of performing PCA o
e diagonal matrix ܸ (the Eigen-values) and the orthonor
ctors, a.k.a. principal components). The Eigen-vec
n Թ

 centered on ܺ and oriented according to the correlat
en-values ߪଵଶ, ,ଶଶߪ … , ଶ are the variances of the data inߪ
ve Eigen-vectors. The Eigen-values of ܸ are sorted fr
and the respective Eigen-vectors in ܲ are ordered accordi
he mean of the collection ܺ, റଵ is the direction of highଵଶ).
ion of component റ as the percent of total variance it
. More formally, ܿݐ݊ሺറሻ ൌ ఙమ∑ ఙೕమೕసభ

sed to reduce the dimensionality of a dataset while prese
ds [23]. This is accomplished by projecting observati
ponents (PCs). Typically, most of a collection’s varianc
s. By retaining only these PCs, we effectively summar
ur future calculations on the dimensions of interest.
nt of variance to be retained. We define ݇ א Գ to be the f
n which their cumulative sum of contributions surpasses൛∑ റሻୀଵሺݐ݊ܿ ൟ. We denote the ݇ associated wߩ

overd context as the tuple ܿ ؠ ,ܯۃ ,ߤ ܯ where ,ۄܣ
vations assigned to ܿ, ߤ is the mean of the observationೖೖ is a ݊ ൈ ݇ transformation matrix.

ed version of ܲ with its Eigen-vectors normalized to their s
be calculated by first performing PCA on ܯ, to get ܲ andൌ ܳ߉ where ߉ is a diagonal matrix of the top ݇ largest S
s the column-wise truncation of ܲ so that it only includes
icance of the transformation matrix ܣ will be detailed late

principal components (റଵ, റଶ) scaled to their respective stand
ed on the distribution’s mean (ߤ)

123

on ܺ
rmal
tors
tion
the

rom
ing-
hest

de-

 (1)

erv-
ions
ce is
rize

few-
s ߩ.
with

is a
ns in

stan-
d ܸ,
SDs
s the
er in

dard

124 Y. Mirsky et al.

Matrix ܯ acts as a windowed memory for ܿ by discarding the ݉th oldest observa-
tion when a new one is added. Windowing over a stream is an implicit method for
dealing with concept drift [3, 24].

4.2 Merging Models

There are cases where the parameters of pcStream will create too many models for the
memory space of the host system. Concretely, in the worst case scenario (݇ ൌ ݊) the
maximum memory required for context model ܿ is ߠሺ݊ଶሻ for matrix ܣ and ߠሺ݉݊ሻ
for matrix ܯ. In total, the memory space of pcStream would be ߠ൫||ሺ݊ଶ ݉݊ሻ൯.

To enforce a memory limit, we propose that if a new context is discovered though the
memory limit has been reached, then two models will be merged into one to make space
for the new model. To select which models to merge, we will follow the method used in
CluStream where the cluster with the oldest average timestamp (among its observations)
is merged with its closest neighbor [1]. Let the merge operation be defined as

,൫ܿ݁݃ݎ݁݉ ܿ൯ ൌ ܿ (2)

where ܿ is a context model generated from merging the models ܿ and ܿ. In essence, ܿ is created by generating ܯ from ܯ and ܯ, and then calculating ߤ and ܣ from ܯ. Since we store the last ݉ observations of each model's history, (2) should take
into account the temporal history of the observations.

There are at least two ways of accomplishing this. One way is to evenly interleave the
first ݉ observations of ܯ and ܯ into ܯ. This will ensure that at least half of each con-
text's information will be preserved. Another way is to merge the memories in order of
timestamp. Doing so will place emphasis on retaining the most recent knowledge. The
complexity of performing either method is ܱሺ݉ሻ. The selection of which method to use is
dependent on the application of pcStream. For example, anomaly detection versus situa-
tional awareness.

4.3 Similarity Scores

When a new observation ݔറ௧ arrives, we must determine to what degree it belongs to
each known context ܿ א -As mentioned earlier, contexts are fuzzy in their member .
ship, and the point ݔറ௧ can belong to multiple contexts at once. Therefore, we must
compute the similarity score of the point in question to each known context.

We calculate the similarity score the same way the SIMCA method does. There-
fore the point’s statistical similarity to a distribution is calculated as the Mahalanobis
distance using only the top ݇ PCs of that distribution. Equivocally, they produce this
score by first zero-meaning the point to that distribution, then transforming it onto the
distribution’s top ݇ PCs, and then by computing the resulting point’s magnitude [19].
More formally, the similarity of point ݔറ to the distribution of ܿ is

 ݀ሺݔറሻ ൌ ԡሺݔറ െ ԡ (3)ܣሻߤ

 pcStream: A S

Fig. 3. An illustration of how
point (ݔറ) calculated in the pers

Intuitively, the contour
ellipsoid shapes extending
direction. To strengthen the
contexts (ܿ and ܿ) are com
top ݇ and ݇ೕ normalize

differ (even though the Euc
lent). Furthermore, it is pos

of the distribution.
Let ߮ א ሾ0, ∞ሻ be define

similar to context ܿ if ݀ሺ
fined as the score vector (fu
that ݔറ does not fit any kno
ver, we say that ݔറ is most݀ሺݔറሻ.

4.4 Detection of New C

A critical part of the pcStre
text has appeared. From De
distributions. Therefore, a n
longer fits the contexts in
that these ݐ observation
use.

To track this behavior, w
drift buffer be called ܦ an
interruption (i.e. should ܦ
create a new context model
partial drift (i.e. ܦ did not g
experiencing a wider bound

Stream Clustering Algorithm for Dynamically Detecting

w the ellipsoids of the Mahalanobis distance affect the score
spective of the contexts ܿ and ܿ. Here ݀ሺݔറሻ ൏ ݀ೕሺݔറሻ.

rs of performing Mahalanobis distance can be seen
from the distribution, according to the variance in e

e concept further, Fig. 3 illustrates an example where t
mpared in similarity to point ݔറ. From the perspective of
d PCs of each respective context, their similarity sco

clidean distances between ݔറ and both ߤ and ߤ are equi
ssible that the ݇ ݇ೕ depending on ߩ and the correlat

ed as the similarity threshold. We say that a point ݔറ is ሺݔറሻ ߮. Let ݀ሺݔറሻ ൌ ቂ݀భሺݔറሻ, ݀మሺݔറሻ, … , ݀||ሺݔറሻቃ be

uzzy membership) of ݔറ to each of the models in . We
wn context if all elements in ݀ሺݔറሻ are greater ߮. Mor
t similar to context ܿ if the smallest element in ݀ሺݔറ

Contexts

eam algorithm is to detect when a previously unseen c
efinition 4, contexts are assumed to have rather station
new context is detected when the data distribution of ܵ for a consistent ݐ time ticks. At this point, we
s constitute a new context, and are then modeled for fut

we introduce a new concept called a "drift buffer." Let
nd have a length of ݐ. Should ܦ ever be filled withൌ ൛ݔറ௧ି௧ିଵ, … , is emptied ܦ റ௧ൟ) then the content ofݔ
l, and is set as current context ܿ௧. However, in the case o
get filled, yet ݔറ௧ fits some context in) we assume that ܵ
dary of ܿ௧, therefore we empty ܦ into ܿ௧.

125

of a

n as
each
two

f the
ores

iva-
tion

not

de-

say
reo-ሻ is

con-
nary ܵ no
say
ture

the
hout
d to
of a ܵ is

126 Y. Mirsky et al.

Table 1. Summary of theory and algorithm notations

Theory Notations Algorithm Notations
Nota. Description Nota. Description ݊ The number of attributes in the stream റ, ߪ The ݅-th principal component of collection ܺ and

its corresponding variance Թ
Context Space: The geometric space in which the
stream exists, defined by the number of sensors

റሻሺݐ݊ܿ The percentage of total variance component റ
describes in collection ܺ ܵ

Stream: an ∞ ൈ ݊ matrix representing an un-
bounded sequence of row vectors

 ߩ
The target percent of total variance to preserve
from each distribution in ݐ The row index to an arbitrary time tick in ܵ ݇ The number of the fewest top principal compo-
nents of ܿ needed to obtain at least ߩ of the
variance in the distribution of ܿ ݔറ௧

The samples receives by ܵ at time tick ݐ,
represented as the ݐ-th row in ܴ: ൣݔଵ,௧, ,ଶ,௧ݔ … , റሻݔ,௧൧ ݀ሺݔ

The distance in standard deviations from point ݔറ to
the distribution of ܿ measured using the top ݇
principal components of that distribution ݔറ The current (last received) vector from ܵ ݉
Model Memory Parameter: the maximum number
of observations a model ܿ may store ݂,ௌ The arrival rate of data objects to ܵ, measured in ݖܪ

݉ Model Memory: aܯ ൈ ݊ matrix of the last ݉
observations assigned to context ܿ ݂

The respective algorithm's processing rate, meas-
ured in ݖܪ

- The Mean of a Context: the mean of the observaߤ
tions in ܯ

ܿ Context: The ݅-th discovered context from ܵ. ܿ is a
correlated distribution in Թ modeled as the tuple ܿ ؠ ,ܯۃ ,ߤ ܣ ۄܣ

The Context Transformation Matrix: a ݊ ൈ ݇
matrix which translates zero-meaned points to
context ܿ 's distribution by using the top ݇ st.d.-
normalized principal components of ܯ

The ordered collection of all known contexts (ܿ)
exhibited by ܵ. The size of is denoted as || ߮

The Sensitivity Threshold: the distance ݀ሺݔറ௧ሻ af-
ter which ݔറ௧ is not considered to be similar to ܿ ݐ

The minimum context drift size: the number of time
ticks ܵ must stay in a new data distribution (distinct
from all those in) to be considered a new context

 ܦ
Drift Buffer: a buffer with at most ݐ consecu-
tive points that do not fit the contexts in

4.5 The Core pcStream Algorithm

The basic approach of the core pcStream algorithm is to follow the stream's data distribu-
tion. Fuzzy membership scores are available anytime by calculating the statistical similari-
ties between a point and each known context. As long as the arriving points stay within a
distribution of a known context, we assign them to that context. The moment the stream's
distribution does not fit any known context, we define a new one. Each of the concepts has
a window of memory to allow for concept drifts. Should the allocated memory space be
filled, then one of two methods for merging context models is performed. Point anomalies
are detected as short-term drifts away from all known contexts. Lastly, different context
categories are to be detected by adjusting the algorithm's parameters accordingly. The
parameters for pcStream are: the sensitivity threshold ߮, the context drift size ݐ,
the model memory size m, and the percent of variance to retain in projections ߩ. The
pseudo-code for pcStream can be found in Algorithm 1.

On lines 1-3, pcStream is initialized by creating the initial collection with context ܿଵ,
and then by setting the current context (ܿ௧) accordingly. The function ݅݊݅ݐሺܵ, ,ݐ ݉, ሻߩ
runs the function ݈݁݀ܯ݁ݐܽ݁ݎܥሺܺ, ݉, ,ሺ݈ܺ݁݀ܯ݁ݐܽ݁ݎܥ points of ܵ. The functionݐ ሻ on the firstߩ ݉, -ሻ returns a new context model ܿ by using the collection of observaߩ
tions ܺ and target total variance retention percentage ߩ. Remember that the memory of a
context model ܯ is a window (FIFO buffer) with a maximum length of ݉ (forgetting the
oldest observations). Optionally, an initial set of models for can be made from a set of
observations pre-classified as known contexts of ܵ (e.g. a collection of points that capture

 pcStream: A Stream Clustering Algorithm for Dynamically Detecting 127

running and another that captures walking). From this point on, pcStream enters its running
state (lines 4-5).

On lines 4.1-4.3, point ݔറ arrives and ݔറ 's similarity score is calculated for all
known contexts in . Stored in ݅ is the index to the model in to whom ݔറ is most
similar. Reminder, the index of is chronological by order of discovery.

On line 4.4 we determine whether ݔറ fits any of the contexts in . If it does, then
we proceed to lines 4.4.1-4.4.3 where we update the model of best fit ሺܿሻ with in-
stance ݔറ, and update ܿ௧ accordingly. Since this breaks any consistent drift (between
contexts) we empty the drift buffer ܦ into ܿ as well (line 4.4.1). The function ܷ݈݁݀ܯ݁ݐܽ݀ሺܿ, ܺሻ re-computes the tuple ܿ from after adding the observation(s) ܺ
to the FIFO memory ܯ.

If the check on line 4.4 indicates that ݔറ௧ does not any context in , then we add ݔറ௧ to
the drift buffer ܦ, and subsequently check if ܦ is full. If ܦ has reached capacity (ݐ)
then unseen context has been discovered. In which case, ܦ is then emptied and formed
into a new context model (ܿ), which is added to and set as ܿ௧. The function ݈݁݀ܯ݀݀ܣሺܿ, -ାଵ. If the additional model is too much for the memo||ܿ as ሻ adds ܿ to
ry space allocated to pcStream, then the function ݉݁݁݃ݎ൫ܿ, ܿ൯ is used to free one space
for ܿ (in) by merging the average oldest context model ܿ with its nearest context
model ܿ.

Online Algorithm 1: pcStream ሼܵሽ
Input Parameters ሼ߮, ,ݐ ݉, ሽߩ
Anytime Outputs: ሼܿ௧, റ௧ሻሽݔሺ݀
 .1 ՚ ,ሺܵݐ݅݊݅ ,ݐ ݉, ሻߩ
2. ܿ௧ ՚ ܿଵ
ܦ .3 ՚
 ݈ .4

റݔ .4.1 ՚ ሺܵሻݐݔ݁݊
ݏ݁ݎܿݏ .4.2 ՚ റሻݔሺ݀
4.3. ݅ ՚ ሻݏ݁ݎܿݏሺ݊݅ܯ݂ܱݔ݁݀݊ܫ
ሺ݅ሻݏ݁ݎܿݏ ݂݅ .4.4 ൏ ߮

,൫݈ܿ݁݀ܯ݁ݐܷܽ݀ .4.4.1 ሻ൯ܦሺ݉ݑܦ
,ሺ݈ܿ݁݀ܯ݁ݐܷܽ݀ .4.4.2 റሻݔ
4.4.3. ܿ௧ ՚ ܿ

 ݁ݏ݈݁ .4.5
,റݔሺݐݎ݁ݏ݊ܫ .4.5.1 ሻܦ
ሻܦሺ݄ݐ݈݃݊݁ ݂݅ .4.5.2 ൌൌ ݐ

4.5.2.1. ܿ ՚ ,ሻܦሺ݉ݑܦሺ݈݁݀ܯ݁ݐܽ݁ݎܥ ݉, ሻߩ
,ሺ݈ܿ݁݀ܯ݀݀ܣ .4.5.2.2 ሻ
4.5.2.3. ܿ௧ ՚ ܿ

 ݈ ݀݊݁ .5

4.6 The Algorithm’s Computational Cost

In dealing with a streaming algorithm, it is important to understand pcStream’s processing
rate (݂) as it relates to the stream’s arrival rate (݂). From a complexity standpoint, there
are two calculations that occur on the arrival of ݔറ. The first is the calculation of all simi-
larity scores ݀ሺݔറሻ (line 4.2) and the second is a PCA calculation (performed in either ݈݁݀ܯ݁ݐܽ݁ݎܥ or ܷ݈݁݀ܯ݁ݐܽ݀). The complexity of calculating the similarity scores is ||ܱሺ݊݇ሻ. Typically ݇ ا ݊ since most of a model’s variance is captured on a few PCs

128 Y. Mirsky et al.

(we found ݇ to range from 1 to 3 per context in our evaluations) making the complexity ܱሺ݊ሻ.
The complexity of performing the PCA calculation using a naïve method is ܱሺ݉݊ଶሻ [12]. It may seem that such a high exponential complexity is unsuitable for a

streaming environment since ݂ must keep up with ݂. However, for many applica-
tions (such as context awareness on a smartphone), ݊ will be in the order of tens and ݉ will typically be in the scale of about a thousand. Therefore, the time it takes to
perform the PCA is acceptable in the sense of practicality.

Together, the two calculations that occur at each time tick have a rather linear com-
plexity. Using a dataset with an ݊ of 3, the average ݂ for pcStream, D-Stream, Den-
Stream, and CluStream was 0.4, 2.9, 44.6, 240.1 milliseconds respectively (R-Studio on a
single core of an Intel i5 processor). Moreover, with an ݊ of 561, pcStream’s ݂ was 2ms.
Therefore, pcStream is a practical stream clustering algorithm.

For applications where ݊ and / or ݉ are very large, or where ܵ is a high velocity
stream, we offer an addition to the core pcStream algorithm (described above) to help ݂
maintain a speed at least as fast as ݂. The addition entails decoupling the online calcu-
lations (similarity scoring) from the offline calculations (model upkeep) by placing
model update, create, and merge procedures into a priority queue (the operation with
the highest priority is merge, followed by create and then update). Whenever a point is
assigned to context ܿ, it is added to the waiting list for ܿ’s update operation in the
queue (if not already in the queue then the operation is added). Lastly, when it is ܿ’s
update operation’s turn, the operation’s entire waiting list is added chronologically to ܯ
and ܷ݈݁݀ܯ݁ݐܽ݀ሺܿ, ܺሻ is performed. This operation essentially performs a mini-batch
update on the context model.

This addition makes ݂ dependent on the score calculations (negligible in respect to
the PCA operations) and therefore enables pcStream to be scaled to many more appli-
cations. Furthermore, it is possible to parallelize the offline computations over a mul-
tiple threads or networked clusters.

4.7 The Detection of Different Context Categories

Each selection of the parameters ߮, .ܵ , and ݉ changes pcStream’s perspective onݐ
This essentially causes pcStream to focus on all contexts belonging to a single context
category, where ߮ is the degree of distinction between contexts, and ݉ is the rate of
concept drift (see Definition 6).

Concretely, a small ߮ will give pcStream the perspective for indistinct contexts
(i.e. small nuances) while a large ߮ will give the perspective for ones that are more
unique. Similarly, a small ݐ gives the perspective for short term-contexts as op-
posed to more long-term ones, and a small ݉, gives the perspective for sudden con-
cept drifts as opposed to more gradual. Table 2 summarizes the impact that the
pcStream's parameters have on the perspective context category.

Intuitively, multiple context categories are in a sensor stream at any given time. For ex-
ample, at a given moment, a smartphone’s accelerometer can capture the context whether
a user is "awake or asleep", "running or walking", and "running to catch the bus, or run-
ning for sports". Therefore, should one be interested in different context categories
at the same time, multiple instances of pcStream should be run in parallel with the respec-
tive settings.

 pcStream: A Stream Clustering Algorithm for Dynamically Detecting 129

5 Evaluation

5.1 Datasets and Test Platform

The pcStream algorithm was run in MATLAB, and the evaluation of the various other
data-stream clustering algorithms were run in R (a software environment for statistical
computing). The packages we used in R were stream and streamMOA [6, 7]. The
streamMOA package provided an interface to algorithms implemented for the MOA
(Massive Online Analysis) framework for data stream mining [7].

We used three datasets; each one for evaluating a different aspect. The first was the
human activity recognition dataset (HAR) [2] for evaluating pcStream in large dimen-
sional spaces. The second was KDD’99 network intrusion dataset [4], selected for
testing the effect that mini-batch updates have on high velocity streams. Lastly, the
third was the HearO smartphone sensor dataset [25] selected for evaluating
pcStream’s ability to detect different context categories. The HearO dataset is a sen-
sor-fused dataset obtained from smartphones. What makes it unique is its explicit
context labels provided by the smartphone user at various times over several months.
A summarized description of these datasets can be found in Table 3.

Table 2. The effect pcStream’s parameter selection has on detecting contexts

 Buffer Size ሺ࢚ሻ
 Small Large

Threshold ሺ࣐ሻ
Small Short-term indistinct contexts Long-term indistinct contexts
Large Short-term distinct contexts Long-term distinct contexts

Table 3. A description of the three datasets used for pcStream’s evaluation

Dataset ݊ Examples of ݊ # of rows Context groups # labels Examples of labels
HAR 561 Accl. (x,y,z), FFT… 347 Motion Activity 6 sitting, walking, going upstairs

HearO 5

Accl. correlation
(xy,xz,yz), device

temperature, battery
level.

1764

High-level 4 at home, at work, on break
Low-level 9 hungry, interested, shopping

Phone Plugged In 2 yes, no

KDD’99 38 src_bytes, dst_bytes, serror_rate 494,020 Network Attacks 23 buffer overflow, rootkit, teardrop

5.2 Clustering Performance

In the domain of stream clustering, it is common to evaluate the clustering quality by
measuring the sum of square distances (SSQ) of every point in a cluster to its cluster’s
median. However, this metric assumes that clusters do not overlap, and is therefore not
suitable for our clustering problem. Therefore, we use the Adjusted Rand Index (ARI)
[15].

The ARI is a measure of similarity between two data clustering assignments re-
gardless of their spatial qualities. In our case, we measure an algorithm’s performance
(of detecting contexts in a dataset) by calculating the ARI between the algorithm’s
clustering assignment and the dataset’s context labels.

The following was performed to evaluate an algorithm’s clustering performance with
regard to detecting the hidden contexts of streams. First, the dataset was clustered as a
stream. Afterward, the ARI of the resulting cluster assignments was calculated using the

130 Y. Mirsky et al.

context labels provided by t
as the highest ARI achieved
rithm (achieved with a mod
on both HAR and HearO da
ries of context labels). The
be found in Fig. 4. The “Win

Fig. 4. A comparison of va
pcStream

Lastly, we tested pcStre
stream. To measure the impa
dataset. In Fig. 5, there is a p
as the stream’s velocity incr
memory (݉=500), and the
thousands.

Fig. 5. The performance of pcS
pass over the KDD dataset w
mini-batch update.

5.3 Context Categories

One application of pcStrea
particular, pcStream can be
context category. Therefor
pcStream detects different

the dataset. Finally, the clustering performance was recor
d across all possible input parameters of the respective al
derate brute-force search). This was done for each algorit
atasets (note that the HearO dataset has three separate cate
algorithm’s clustering performances on hidden contexts
ndow” is a k-median window algorithm outlined in [3].

arious stream clustering algorithms’ best performances aga

am's clustering performance in the case of a high velo
act, we simulated various arrival-rates ሺ ݂ሻ over the KDD
performance plot which shows how the clustering is affec
eases. Noisy spikes are caused because we set a small mo
duration of most attacks in the dataset last in the order

Stream when using mini-batch model updates. Each point is a
where the on the x-axis indicates the arrival rate of instances

s

m is to use it as a way to analyze a contextual stream
e used to see what hidden contexts are in a stream for so
re, the following was done in order to analyze how w
context categories: First pcStream was run many times

rded
lgo-
thm
ego-
can

ainst

ocity
D’99
cted
odel
r of

a full
per

m. In
ome
well
s on

 pcStream: A Stream Clustering Algorithm for Dynamically Detecting 131

the HearO dataset, each time targeting a different context category by using a differ-
ent ߮ and ݐ (for simplicity we set ݉ to be very large for all trials). Then, for each
of the three context groups (Plugged-In, High-level, and Low-Level), a plot was made
where each coordinate’s color in the plot indicates the ARI achieved when using the
respective parameters (see Fig. 6).

It can be seen in Fig. 6 that each plot describes the context categories of the contexts
in each respective group. For instance, these high-level contexts are generally long-term
and semi-distinctive, while the low-level contexts are briefer and even more indistinct.
Moreover, the context of the phone being plugged in or not is a distinct and short-term
context. Note that there are multiple “hot” regions in each plot of Fig. 6. This is because
each group has multiple contexts, each of which belong to a different context category.

Fig. 6. ARI plots of pcStream for each HearO context group. A coordinate is a parameter selec-
tion and its color indicates the level of ARI achieved. The black arrows indicate the general
trend of context categories based on Table 2. The labels of each context group form regions of
“best parameter selections” correlated to the label’s context category.

6 Conclusion

In this paper we have presented a stream clustering algorithm that effectively and
dynamically detects temporal contexts in sensor streams. In addition, we have pro-
vided mechanisms which account for gradual concept drifts, reoccurring concepts,
and clusters that overlap in geometrical space. Moreover, we have provided a mechanism
for dealing with high velocity streams.

In our evaluations, we have determined that pcStream performs much better than
other data-stream clustering algorithms on sensor-fused datasets. We have demon-
strated that pcStream is capable of detecting different context categories from the
same dataset, and that pcStream is a useful tool for context analysis of sensor-streams.
Although the focus of this paper was on sensor-fused data-streams and the application
of context-awareness, pcStream is applicable to any data-stream with sequential tem-
poral clusters that have unique correlated distributions.

Acknowledgments. This research was supported by the Ministry of Science and Technology,
Israel.

132 Y. Mirsky et al.

References

1. Aggarwal, C.C., et al.: A framework for clustering evolving data streams. In: Proceedings
of the 29th International Conference on Very Large Data Bases vol. 29, pp. 81–92. VLDB
Endowment (2003)

2. Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: Human Activity Recognition
on Smartphones Using a Multiclass Hardware-Friendly Support Vector Machine. In:
Bravo, J., Hervás, R., Rodríguez, M. (eds.) IWAAL 2012. LNCS, vol. 7657, pp. 216–223.
Springer, Heidelberg (2012)

3. Babcock, B., et al.: Maintaining variance and k-medians over data stream windows. In:
Proceedings of the Twenty-Second ACM Symposium On Principles Of Database Systems,
pp. 234–243. ACM (2003)

4. Bache, K., Lichman, M.: UCI Machine Learning Repository (2013).
http://archive.ics.uci.edu/ml

5. Baldauf, M., et al.: A survey on context-aware systems. International Journal of Ad Hoc
and Ubiquitous Computing. 2(4), 263–277 (2007)

6. Bolanos, M., et al.: Introduction to stream: An extensible Framework for Data Stream
Clustering Research with R

7. Bolanos, M., et al.: streamMOA: Interface to Algorithms from MOA for stream
8. Cao, F., et al.: Density-based clustering over an evolving data stream with noise. In: SDM,

pp. 326–337 SIAM (2006)
9. Chandola, V., et al.: Anomaly Detection: A Survey. ACM Comput. Surv. 41(3), 1–58

(2009)
10. Chen, Y., Tu, L.: Density-based clustering for real-time stream data. In: Proceedings of the

13th ACM SIGKDD International Conference On Knowledge Discovery And Data Min-
ing, pp. 133–142. ACM (2007)

11. Gama, J., Medas, P., Castillo, G., Rodrigues, P.: Learning with Drift Detection. In:
Bazzan, A.L., Labidi, S. (eds.) SBIA 2004. LNCS (LNAI), vol. 3171, pp. 286–295.
Springer, Heidelberg (2004)

12. Ge, Z., Song, Z.: Multivariate Statistical Process Control: Process Monitoring Methods
and Applications. Springer (2012)

13. Gomes, J.B., et al.: CALDS: context-aware learning from data streams. In: Proceedings of
the First International Workshop on Novel Data Stream Pattern Mining Techniques, pp.
16–24. ACM, Washington, D.C. (2010)

14. Harries, M.B., et al.: Extracting hidden context. Machine learning. 32(2), 101–126 (1998)
15. Hubert, L., Arabie, P.: Comparing partitions. Journal of classification. 2(1), 193–218

(1985)
16. Jolliffe, I.: Principal Component Analysis. Encyclopedia of Statistics in Behavioral

Science. John Wiley & Sons, Ltd (2005)
17. Katakis, I., et al.: Tracking recurring contexts using ensemble classifiers: an application to

email filtering. Knowledge and Information Systems. 22(3), 371–391 (2010)
18. Liu, W., et al.: A survey on context awareness. In: 2011 International Conference on Com-

puter Science and Service System (CSSS), pp. 144–147. IEEE (2011)
19. Maesschalck, R.D., et al.: The Mahalanobis distance. Chemometrics and Intelligent Labor-

atory Systems. 50(1), 1–18 (2000)
20. Makris, P., et al.: A Survey on Context-Aware Mobile and Wireless Networking: On Net-

working and Computing Environments’ Integration. Communications Surveys & Tuto-
rials, IEEE. 15(1), 362–386 (2013)

 pcStream: A Stream Clustering Algorithm for Dynamically Detecting 133

21. Padovitz, A., et al.: Towards a theory of context spaces. In: 2004, Proceedings of the
Second IEEE Annual Conference on Pervasive Computing and Communications Work-
shops, pp. 38–42. IEEE (2004)

22. Riboni, D., Bettini, C.: COSAR: hybrid reasoning for context-aware activity recognition.
Personal and Ubiquitous Computing. 15(3), 271–289 (2011)

23. Shlens, J.: A tutorial on principal component analysis. arXiv preprint arXiv:1404.1100
(2014)

24. Silva, J.A., et al.: Data Stream Clustering: A Survey. ACM Comput. Surv. 46(1), 1–31
(2013)

25. Unger, M., et al.: Contexto: lessons learned from mobile context inference. In: ACM 2014
International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct Publica-
tion, pp. 175–178. ACM (2014)

26. Widmer, G.: Tracking context changes through meta-learning. Machine Learning. 27(3),
259–286 (1997)

27. Wold, S., Sjostrom, M.: SIMCA: a method for analyzing chemical data in terms of similar-
ity and analogy. Presented at the (1977)

28. Yang, Y., et al.: Mining in Anticipation for Concept Change: Proactive-Reactive Predic-
tion in Data Streams. Data Mining and Knowledge Discovery. 13(3), 261–289 (2006)

	pcStream: A Stream Clustering Algorithm for Dynamically Detecting and Managing Temporal Contexts
	1 Introduction
	2 Related Work
	3 Notation and Problem Definition
	4 Principal Component Stream Clustering
	4.1 The Context Model
	4.2 Merging Models
	4.3 Similarity Scores
	4.4 Detection of New C
	4.5 The Core pcStream Algorithm
	4.6 The Algorithm’s Computational Cost
	4.7 The Detection of Different Context Categories

	5 Evaluation
	5.1 Datasets and Test Platform
	5.2 Clustering Performance
	5.3 Context Categories

	6 Conclusion
	References

