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Abstract. The clustering of unbounded data-streams is a difficult problem since 
the observed instances cannot be stored for future clustering decisions. Moreo-
ver, the probability distribution of streams tends to change over time, making it 
challenging to differentiate between a concept-drift and an anomaly. Although 
many excellent data-stream clustering algorithms have been proposed in the 
past, they are not suitable for capturing the temporal contexts of an entity.  

In this paper, we propose pcStream; a novel data-stream clustering algorithm 
for dynamically detecting and managing sequential temporal contexts. pcStream 
takes into account the properties of sensor-fused data-streams in order to accu-
rately infer the present concept, and dynamically detect new contexts as they 
occur. Moreover, the algorithm is capable of detecting point anomalies and can 
operate with high velocity data-streams. Lastly, we show in our evaluation that 
pcStream outperforms state-of-the-art stream clustering algorithms in detecting 
real world contexts from sensor-fused datasets. We also show how pcStream 
can be used as an analysis tool for contextual sensor streams. 

Keywords: Stream clustering · Concept detection · Concept drift · Context-
awareness 

1 Introduction 

Context, in the scope of machine learning, can be described as any information that helps 
explain an entity’s behavior [9]. Context-awareness is the idea of constantly tracking an 
entity’s context over time for some application [18]. For example, an application of con-
text-awareness is the task of data-leakage prevention for smartphones. In this instance, 
the tracked context is the locomotion of the user (e.g. walking or running) and the beha-
vior of interest is the outgoing emails. By tracking the context, a machine learning algo-
rithm can infer that it is unlikely for an email to be sent while the user is running. 

Modern technology can generate vast amounts of sensor data continuously. Even a 
singular entity, such as a smartphone, can generate a potentially endless amount  
of data from its sensors. A sensor-stream can be viewed as a sequence of attribute 
vectors in geometric space [24]. From these sensor-streams it is possible to obtain a 
context-awareness of the entity [5, 20]. One method is to define an ontology, or a rule 
set, for each known context—as was done in [22]. However, defining contexts for a 
sensor-stream is impractical because the definition of contexts may change over time 
and previously unseen contexts may appear later on. For instance, the definition of a  
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The remainder of the paper is organized as follows: In Section 2, we review related 
work. In Section 3, the notations and problem definition are presented. In Section 4, 
the core pcStream algorithm and its components are presented. In Section 5, the 
pcStream algorithm is evaluated as an unsupervised context detection algorithm in 
comparison to state-of-the-art stream clustering algorithms, and in Section 6 we 
present our conclusion. 

2 Related Work 

As opposed to regular clustering algorithms, data-stream clustering algorithms must 
summarize the data seen in order to preserve memory. CluStream [1] accomplishes 
this by summarizing the observations into micro-clusters using a tuple of three com-
ponents (called CF) which describes the micro-cluster's centroid, radius and diameter, 
which can be updated incrementally. DenStream [8] is a density-based stream cluster-
ing algorithm. It uses the CF form to determine whether a group of micro-clusters are 
a legitimate cluster or a collection of outliers. D-Stream [10] also performs density-
based stream clustering, but across a grid.  

In contrast to the aforementioned algorithms, pcStream summarizes its clusters with 
the mean and principal components (vectors of highest variance) of the cluster's last ob-
servations (discussed in Section 4). Moreover, none of these algorithms consider the 
temporal relation between arriving points while making clustering decisions. This makes 
it difficult to discern between two overlapping concepts and a concept drift. Lastly, they 
do not cluster a stream as if it were an entity transitioning between concepts. Tracking the 
stream from this perspective assists in the detection of outliers and new contexts. 

In order to assign points to clusters, pcStream uses the Soft Independent Modelling 
by Class Analogy method (SIMCA) [27] to calculate similarity scores. SIMCA, popu-
lar in the domain of chemometrics, is a statistical method for the supervised classifi-
cation of instances. The classification is “soft” in that it offers fuzzy classifications. 
Concretely, new instances may be classified as members of one or more classes, or 
even an outlier, based on their Mahalanobis distance from each of the class's distribu-
tions. Only the subspace which describes most of the distribution's variance is re-
tained for this calculation. SIMCA performs well on classes which have distinctly 
different correlated distributions in multidimensional space [19]. 

As far as we know, SIMCA has not been used on unbounded streams, nor has it 
been used as an unsupervised clustering method. Moreover, we have not seen any 
work where SIMCA has been used to dynamically detect new classes (in our case 
contexts). Lastly, in contrast to SIMCA, we leave the statistical threshold open to help 
detect contexts of different categories (discussed later in Section 4). 

3 Notation and Problem Definition 

In this section we define the notation and basic concepts used in this paper. We also pro-
vide a formal problem definition. A full summary of this paper’s notations can be found 
in Table 1. 

Definition 1. Let a context space be defined as the geometrical space Թ௡, where ݊ is the 
number of attributes which define the stream. For instance, one dimension may be the ݕ-axis 
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readings of a smartphone's accelerometer, while another may be the beats per second (bps) 
of the smartphone's user. This definition is similar to Context Space Theory (CST), formally 
proposed in [21]. 

Definition 2. Let a stream ܵ be defined as an unbounded sequence of data objects having the 
form of points in Թ௡, and let ݔറ௜ ؠ ,ଵ,௜ݔൣ ,ଶ,௜ݔ … ,  ௡,௜൧ be the ݅-th point in the sequence. ܵ canݔ
also be viewed as a matrix having ݊ columns and an unbounded number of rows, where row ݅ represents the values sampled at time tick ݅. We use the notation ݐ to denote the current 
time tick and the notation ݔറ௧ to refer to the most recent point received from ܵ. Let ௔݂,ௌ be the 
arrival rate of the row vectors in ܵ measured in Hz.  

Definition 3. We define a high velocity stream as a stream which has an arrival rate that is 
faster than the stream clustering algorithm’s processing rate of new arrivals ( ௣݂). More for-
mally, when ௔݂,ௌ ൐ ௣݂  then ܵ is called a high velocity stream.  

Definition 4. Let ܿ be a context (i.e. concept) defined as a cluster of sequential points having 
a correlated distribution in Թ௡, in which ܵ exists within for at least ݐ௠௜௡ time ticks at a time. 
The distribution of ܿ is generally stationary, but may change gradually over time as it is sub-
jected to concept drift [11]. For instance, with the accelerometer data of a user’s smartphone, 
the context which captures the action of jumping may change as the user gets older or sicker. 
We use the notation ܿ௧ to refer to the current context of ܵ. 

Definition 5. We define a contextual stream to be a stream that captures the temporal con-
texts of a real-world entity. More formally, ܵ is a contextual stream if ܵ travels among a 
finite number of distinct contexts, staying at each for at least ݀ time ticks per visit. The prop-
erty of revisiting certain distributions is known as a reoccurring drift or reoccurring concepts 
[17, 28].  

Let ࡯ be the finite collection of known contexts in which ܵ has been found, such that ܿ௜ א   .denote the number of known contexts |࡯| is the ݅-th discovered context. Let ࡯
It is important to note that ࡯ does not necessarily form a distinct partition of Թ௡. As men-

tioned earlier, contexts are fuzzy by nature and it is possible that two identical points ݔറ௔ and ݔറ௕ belong to two distinctly different contexts ܿ௜ and ௝ܿ.  
For the duration of this paper we will only consider contextual streams. 

Definition 6. We define a context category as all contexts from a contextual stream that have 
the same ݐ௠௜௡, rate of concept drift, and distinction between their distributions. 

Problem Definition. Given the contextual stream ܵ, a target context category and a limited 
memory space, dynamically detect the finite number of contexts exhibited by ܵ, determine 
the current context (ܿ௧) to some degree of certainty, and provide a fuzzy membership score 
for ݔറ௧ at any time.  

4 Principal Component Stream Clustering 

4.1 The Context Model 

Since we define contexts as correlated distributions in Թ௡, we model the contexts  
using principal component analysis (PCA) [16]. PCA captures the relationship of the 
correlation between the dimensions of a collection of observations stored in the ݉ ൈ ݊ 
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Matrix ܯ௜ acts as a windowed memory for ܿ௜ by discarding the ݉th oldest observa-
tion when a new one is added. Windowing over a stream is an implicit method for 
dealing with concept drift [3, 24]. 

4.2 Merging Models 

There are cases where the parameters of pcStream will create too many models for the 
memory space of the host system. Concretely, in the worst case scenario (݇௖೔ ൌ ݊) the 
maximum memory required for context model ܿ௜ is ߠሺ݊ଶሻ for matrix ܣ௜ and ߠሺ݉݊ሻ 
for matrix ܯ௜. In total, the memory space of pcStream would be ߠ൫|࡯|ሺ݊ଶ ൅ ݉݊ሻ൯.  

To enforce a memory limit, we propose that if a new context is discovered though the 
memory limit has been reached, then two models will be merged into one to make space 
for the new model. To select which models to merge, we will follow the method used in 
CluStream where the cluster with the oldest average timestamp (among its observations) 
is merged with its closest neighbor [1]. Let the merge operation be defined as 

,൫ܿ௜݁݃ݎ݁݉  ௝ܿ൯ ൌ ܿ௟                                                  (2) 
 

where ܿ௟ is a context model generated from merging the models ܿ௜ and ௝ܿ. In essence, ܿ௟ is created by generating ܯ௟ from ܯ௜ and ܯ௝, and then calculating ߤ௟ and ܣ௟ from ܯ௟. Since we store the last ݉ observations of each model's history, (2) should take 
into account the temporal history of the observations.  

There are at least two ways of accomplishing this. One way is to evenly interleave the 
first ݉ observations of ܯ௜ and ܯ௝ into ܯ௟. This will ensure that at least half of each con-
text's information will be preserved. Another way is to merge the memories in order of 
timestamp. Doing so will place emphasis on retaining the most recent knowledge. The 
complexity of performing either method is ܱሺ݉ሻ. The selection of which method to use is 
dependent on the application of pcStream. For example, anomaly detection versus situa-
tional awareness. 

4.3 Similarity Scores 

When a new observation ݔറ௧ arrives, we must determine to what degree it belongs to 
each known context ܿ௜ א -As mentioned earlier, contexts are fuzzy in their member .࡯
ship, and the point ݔറ௧ can belong to multiple contexts at once. Therefore, we must 
compute the similarity score of the point in question to each known context. 

We calculate the similarity score the same way the SIMCA method does. There-
fore the point’s statistical similarity to a distribution is calculated as the Mahalanobis 
distance using only the top ݇ PCs of that distribution. Equivocally, they produce this 
score by first zero-meaning the point to that distribution, then transforming it onto the 
distribution’s top ݇ PCs, and then by computing the resulting point’s magnitude [19]. 
More formally, the similarity of point ݔറ to the distribution of ܿ௜ is 
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Table 1. Summary of theory and algorithm notations 

Theory Notations Algorithm Notations 
Nota. Description Nota. Description ݊ The number of attributes in the stream ݌റ௜, ߪ௜ The ݅-th principal component of collection ܺ and 

its corresponding variance Թ௡ 
Context Space: The geometric space in which the 
stream exists, defined by the number of sensors 

റ௜ሻ݌௑ሺݐ݊݋ܿ The percentage of total variance component ݌റ௜ 
describes in collection ܺ ܵ 

Stream: an ∞ ൈ ݊ matrix representing an un-
bounded sequence of row vectors 

 ߩ
The target percent of total variance to preserve 
from each distribution in ݐ ࡯ The row index to an arbitrary time tick in ܵ ݇௖೔  The number of the fewest top principal compo-
nents of ܿ௜ needed to obtain at least ߩ of the 
variance in the distribution of ܿ௜ ݔറ௧ 

The samples receives by ܵ at time tick ݐ, 
represented as the ݐ-th row in ܴ: ൣݔଵ,௧, ,ଶ,௧ݔ … ,  റሻݔ௡,௧൧ ݀௖೔ሺݔ

The distance in standard deviations from point ݔറ to 
the distribution of ܿ௜ measured using the top ݇ 
principal components of that distribution ݔറ௖ The current (last received) vector from ܵ ݉ 
Model Memory Parameter: the maximum number 
of observations a model ܿ௜ may store ௔݂,ௌ The arrival rate of data objects to ܵ, measured in ݖܪ 

݉ ௜ Model Memory: aܯ ൈ ݊ matrix of the last ݉ 
observations assigned to context ܿ௜ ௣݂ 

The respective algorithm's processing rate, meas-
ured in ݖܪ 

-௜ The Mean of a Context: the mean of the observaߤ
tions in ܯ௜ 

ܿ௜ Context: The ݅-th discovered context from ܵ. ܿ௜ is a 
correlated distribution in  Թ௡ modeled as the tuple ܿ௜ ؠ ,௜ܯۃ ,௜ߤ  ௜ܣ ۄ௜ܣ

The Context Transformation Matrix: a ݊ ൈ ݇௖೔  
matrix which translates zero-meaned points to 
context ܿ௜ 's distribution by using the top ݇௖೔ st.d.-
normalized principal components of ܯ௜ ࡯ 

The ordered collection of all known contexts (ܿ௜) 
exhibited by ܵ. The size of ࡯ is denoted as |࡯| ߮ 

The Sensitivity Threshold: the distance ݀௖೔ሺݔറ௧ሻ af-
ter which ݔറ௧ is not considered to be similar to ܿ௜ ݐ௠௜௡ 

The minimum context drift size: the number of time 
ticks ܵ must stay in a new data distribution (distinct 
from all those in ࡯) to be considered a new context 

 ܦ
Drift Buffer: a buffer with at most ݐ௠௜௡ consecu-
tive points that do not fit the contexts in ࡯ 

4.5 The Core pcStream Algorithm 

The basic approach of the core pcStream algorithm is to follow the stream's data distribu-
tion. Fuzzy membership scores are available anytime by calculating the statistical similari-
ties between a point and each known context. As long as the arriving points stay within a 
distribution of a known context, we assign them to that context. The moment the stream's 
distribution does not fit any known context, we define a new one. Each of the concepts has 
a window of memory to allow for concept drifts. Should the allocated memory space be 
filled, then one of two methods for merging context models is performed. Point anomalies 
are detected as short-term drifts away from all known contexts. Lastly, different context 
categories are to be detected by adjusting the algorithm's parameters accordingly. The 
parameters for pcStream are: the sensitivity threshold ߮, the context drift size ݐ௠௜௡, 
the model memory size m, and the percent of variance to retain in projections ߩ. The 
pseudo-code for pcStream can be found in Algorithm 1. 

On lines 1-3, pcStream is initialized by creating the initial collection ࡯ with context ܿଵ, 
and then by setting the current context (ܿ௧) accordingly. The function ݅݊݅ݐሺܵ, ,௠௜௡ݐ ݉,  ሻߩ
runs the function ݈݁݀݋ܯ݁ݐܽ݁ݎܥሺܺ, ݉, ,ሺ݈ܺ݁݀݋ܯ݁ݐܽ݁ݎܥ ௠௜௡ points of ܵ. The functionݐ ሻ on the firstߩ ݉, -ሻ returns a new context model ܿ by using the collection of observaߩ
tions ܺ and target total variance retention percentage ߩ. Remember that the memory of a 
context model ܯ is a window (FIFO buffer) with a maximum length of ݉ (forgetting the 
oldest observations). Optionally, an initial set of models for ࡯ can be made from a set of 
observations pre-classified as known contexts of ܵ (e.g. a collection of points that capture 
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running and another that captures walking). From this point on, pcStream enters its running 
state (lines 4-5). 

On lines 4.1-4.3, point ݔറ௖ arrives and ݔറ௖ 's similarity score is calculated for all 
known contexts in ࡯. Stored in ݅ is the index to the model in ࡯ to whom ݔറ௖ is most 
similar. Reminder, the index of ࡯ is chronological by order of discovery. 

On line 4.4 we determine whether ݔറ௖ fits any of the contexts in ࡯. If it does, then 
we proceed to lines 4.4.1-4.4.3 where we update the model of best fit ሺܿ௜ሻ with in-
stance ݔറ௖, and update ܿ௧ accordingly. Since this breaks any consistent drift (between 
contexts) we empty the drift buffer ܦ into ܿ௜ as well (line 4.4.1). The function ܷ݈݁݀݋ܯ݁ݐܽ݀݌ሺܿ௜, ܺሻ  re-computes the tuple ܿ௜ from ࡯ after adding the observation(s) ܺ 
to the FIFO memory ܯ௜. 

If the check on line 4.4 indicates that ݔറ௧ does not any context in ࡯, then we add ݔറ௧ to 
the drift buffer ܦ, and subsequently check if ܦ is full. If ܦ has reached capacity (ݐ௠௜௡) 
then unseen context has been discovered. In which case, ܦ is then emptied and formed 
into a new context model (ܿ), which is added to ࡯ and set as ܿ௧. The function ݈݁݀݋ܯ݀݀ܣሺܿ, -ାଵ. If the additional model is too much for the memo|࡯|ܿ as ࡯ ሻ adds ܿ to࡯
ry space allocated to pcStream, then the function ݉݁݁݃ݎ൫ܿ௜, ௝ܿ൯ is used to free one space 
for ܿ (in ࡯) by merging the average oldest context model ܿ௜ with its nearest context 
model ௝ܿ. 

Online Algorithm 1: pcStream ሼܵሽ 
Input Parameters ሼ߮, ,௠௜௡ݐ ݉,  ሽߩ
Anytime Outputs: ሼܿ௧,  റ௧ሻሽݔሺ࡯݀
࡯ .1 ՚ ,ሺܵݐ݅݊݅ ,௠௜௡ݐ ݉,  ሻߩ
2. ܿ௧ ՚ ܿଵ 
ܦ .3 ՚  ׎
 ݌݋݋݈ .4

റ௖ݔ .4.1 ՚  ሺܵሻݐݔ݁݊
ݏ݁ݎ݋ܿݏ .4.2 ՚  റ௖ሻݔሺ࡯݀
4.3. ݅ ՚  ሻݏ݁ݎ݋ܿݏሺ݊݅ܯ݂ܱݔ݁݀݊ܫ
ሺ݅ሻݏ݁ݎ݋ܿݏ ݂݅ .4.4 ൏ ߮ 

,൫ܿ௜݈݁݀݋ܯ݁ݐܽ݀݌ܷ  .4.4.1  ሻ൯ܦሺ݌݉ݑܦ
,ሺܿ௜݈݁݀݋ܯ݁ݐܽ݀݌ܷ  .4.4.2  റ௖ሻݔ
4.4.3.  ܿ௧ ՚ ܿ௜ 

 ݁ݏ݈݁ .4.5
,റ௖ݔሺݐݎ݁ݏ݊ܫ  .4.5.1  ሻܦ
ሻܦሺ݄ݐ݈݃݊݁ ݂݅  .4.5.2 ൌൌ  ௠௜௡ݐ

4.5.2.1. ܿ ՚ ,ሻܦሺ݌݉ݑܦሺ݈݁݀݋ܯ݁ݐܽ݁ݎܥ ݉,  ሻߩ
,ሺ݈ܿ݁݀݋ܯ݀݀ܣ .4.5.2.2  ሻ࡯
4.5.2.3. ܿ௧ ՚ ܿ 

  ݌݋݋݈ ݀݊݁ .5

4.6 The Algorithm’s Computational Cost 

In dealing with a streaming algorithm, it is important to understand pcStream’s processing 
rate ( ௣݂) as it relates to the stream’s arrival rate ( ௔݂). From a complexity standpoint, there 
are two calculations that occur on the arrival of ݔറ௖. The first is the calculation of all simi-
larity scores ݀஼ሺݔറ௖ሻ (line 4.2) and the second is a PCA calculation (performed in either ݈݁݀݋ܯ݁ݐܽ݁ݎܥ or ܷ݈݁݀݋ܯ݁ݐܽ݀݌). The complexity of calculating the similarity scores is |࡯|ܱሺ݊݇ሻ. Typically ݇ ا ݊ since most of a model’s variance is captured on a few PCs 
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(we found ݇ to range from 1 to 3 per context in our evaluations) making the complexity ܱሺ݊ሻ.  
The complexity of performing the PCA calculation using a naïve method is ܱሺ݉݊ଶሻ [12]. It may seem that such a high exponential complexity is unsuitable for a 

streaming environment since ௣݂ must keep up with ௔݂. However, for many applica-
tions (such as context awareness on a smartphone), ݊ will be in the order of tens and ݉ will typically be in the scale of about a thousand. Therefore, the time it takes to 
perform the PCA is acceptable in the sense of practicality. 

Together, the two calculations that occur at each time tick have a rather linear com-
plexity. Using a dataset with an ݊ of 3, the average ௣݂ for pcStream, D-Stream, Den-
Stream, and CluStream was 0.4, 2.9, 44.6, 240.1 milliseconds respectively (R-Studio on a 
single core of an Intel i5 processor). Moreover, with an ݊ of 561, pcStream’s ௣݂ was 2ms. 
Therefore, pcStream is a practical stream clustering algorithm. 

For applications where ݊ and / or ݉ are very large, or where ܵ is a high velocity 
stream, we offer an addition to the core pcStream algorithm (described above) to help ௣݂ 
maintain a speed at least as fast as ௔݂. The addition entails decoupling the online calcu-
lations (similarity scoring) from the offline calculations (model upkeep) by placing 
model update, create, and merge procedures into a priority queue (the operation with 
the highest priority is merge, followed by create and then update). Whenever a point is 
assigned to context ܿ௜, it is added to the waiting list for ܿ௜’s update operation in the 
queue (if not already in the queue then the operation is added). Lastly, when it is ܿ௜’s 
update operation’s turn, the operation’s entire waiting list is added chronologically to ܯ௜ 
and ܷ݈݁݀݋ܯ݁ݐܽ݀݌ሺܿ௜, ܺሻ is performed. This operation essentially performs a mini-batch 
update on the context model. 

This addition makes ௣݂ dependent on the score calculations (negligible in respect to 
the PCA operations) and therefore enables pcStream to be scaled to many more appli-
cations. Furthermore, it is possible to parallelize the offline computations over a mul-
tiple threads or networked clusters.  

4.7 The Detection of Different Context Categories 

Each selection of the parameters ߮,  .ܵ ௠௜௡, and ݉ changes pcStream’s perspective onݐ
This essentially causes pcStream to focus on all contexts belonging to a single context 
category, where ߮ is the degree of distinction between contexts, and ݉ is the rate of 
concept drift (see Definition 6).  

Concretely, a small ߮ will give pcStream the perspective for indistinct contexts 
(i.e. small nuances) while a large ߮ will give the perspective for ones that are more 
unique. Similarly, a small ݐ௠௜௡ gives the perspective for short term-contexts as op-
posed to more long-term ones, and a small ݉, gives the perspective for sudden con-
cept drifts as opposed to more gradual. Table 2 summarizes the impact that the 
pcStream's parameters have on the perspective context category.  

Intuitively, multiple context categories are in a sensor stream at any given time. For ex-
ample, at a given moment, a smartphone’s accelerometer can capture the context whether 
a user is "awake or asleep", "running or walking", and "running to catch the bus, or run-
ning for sports". Therefore, should one be interested in different context categories  
at the same time, multiple instances of pcStream should be run in parallel with the respec-
tive settings. 
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5 Evaluation 

5.1 Datasets and Test Platform 

The pcStream algorithm was run in MATLAB, and the evaluation of the various other 
data-stream clustering algorithms were run in R (a software environment for statistical 
computing). The packages we used in R were stream and streamMOA [6, 7]. The 
streamMOA package provided an interface to algorithms implemented for the MOA 
(Massive Online Analysis) framework for data stream mining [7]. 

We used three datasets; each one for evaluating a different aspect. The first was the 
human activity recognition dataset (HAR) [2] for evaluating pcStream in large dimen-
sional spaces. The second was KDD’99 network intrusion dataset [4], selected for 
testing the effect that mini-batch updates have on high velocity streams. Lastly, the 
third was the HearO smartphone sensor dataset [25] selected for evaluating 
pcStream’s ability to detect different context categories. The HearO dataset is a sen-
sor-fused dataset obtained from smartphones. What makes it unique is its explicit 
context labels provided by the smartphone user at various times over several months. 
A summarized description of these datasets can be found in Table 3. 

Table 2. The effect pcStream’s parameter selection has on detecting contexts 

  Buffer Size ሺ࢔࢏࢓࢚ሻ 
  Small Large 

Threshold ሺ࣐ሻ 
Small Short-term indistinct contexts Long-term indistinct contexts 
Large Short-term distinct contexts Long-term distinct contexts 

Table 3. A description of the three datasets used for pcStream’s evaluation 

Dataset ݊ Examples of ݊ # of rows Context groups # labels Examples of labels 
HAR 561 Accl. (x,y,z), FFT… 347 Motion Activity 6 sitting, walking, going upstairs 

HearO 5 

Accl. correlation 
(xy,xz,yz), device 

temperature, battery 
level. 

1764 

High-level 4 at home, at work, on break 
Low-level 9 hungry, interested, shopping 

Phone Plugged In 2 yes, no 

KDD’99 38 src_bytes, dst_bytes, serror_rate 494,020 Network Attacks 23 buffer overflow, rootkit, teardrop 

5.2 Clustering Performance 

In the domain of stream clustering, it is common to evaluate the clustering quality by 
measuring the sum of square distances (SSQ) of every point in a cluster to its cluster’s 
median. However, this metric assumes that clusters do not overlap, and is therefore not 
suitable for our clustering problem. Therefore, we use the Adjusted Rand Index (ARI) 
[15].  

The ARI is a measure of similarity between two data clustering assignments re-
gardless of their spatial qualities. In our case, we measure an algorithm’s performance 
(of detecting contexts in a dataset) by calculating the ARI between the algorithm’s 
clustering assignment and the dataset’s context labels. 

The following was performed to evaluate an algorithm’s clustering performance with 
regard to detecting the hidden contexts of streams. First, the dataset was clustered as a 
stream. Afterward, the ARI of the resulting cluster assignments was calculated using the 
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the HearO dataset, each time targeting a different context category by using a differ-
ent ߮ and ݐ௠௜௡ (for simplicity we set ݉ to be very large for all trials). Then, for each 
of the three context groups (Plugged-In, High-level, and Low-Level), a plot was made 
where each coordinate’s color in the plot indicates the ARI achieved when using the 
respective parameters (see Fig. 6).  

It can be seen in Fig. 6 that each plot describes the context categories of the contexts 
in each respective group. For instance, these high-level contexts are generally long-term 
and semi-distinctive, while the low-level contexts are briefer and even more indistinct. 
Moreover, the context of the phone being plugged in or not is a distinct and short-term 
context. Note that there are multiple “hot” regions in each plot of Fig. 6. This is because 
each group has multiple contexts, each of which belong to a different context category. 

 

Fig. 6. ARI plots of pcStream for each HearO context group. A coordinate is a parameter selec-
tion and its color indicates the level of ARI achieved. The black arrows indicate the general 
trend of context categories based on Table 2. The labels of each context group form regions of 
“best parameter selections” correlated to the label’s context category. 

6 Conclusion 

In this paper we have presented a stream clustering algorithm that effectively and 
dynamically detects temporal contexts in sensor streams. In addition, we have pro-
vided mechanisms which account for gradual concept drifts, reoccurring concepts, 
and clusters that overlap in geometrical space. Moreover, we have provided a mechanism 
for dealing with high velocity streams. 

In our evaluations, we have determined that pcStream performs much better than 
other data-stream clustering algorithms on sensor-fused datasets. We have demon-
strated that pcStream is capable of detecting different context categories from the 
same dataset, and that pcStream is a useful tool for context analysis of sensor-streams. 
Although the focus of this paper was on sensor-fused data-streams and the application 
of context-awareness, pcStream is applicable to any data-stream with sequential tem-
poral clusters that have unique correlated distributions. 
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