Ad Hoc PSM Protocols: Secure Computation
Without Coordination

Amos Beimel'®™) | Yuval Ishai®?, and Eyal Kushilevitz?

! Department of Computer Science, Ben Gurion University,
Beer Sheva, Israel
amos .beimel@gmail.com
2 Department of Computer Science, Technion, Haifa, Israel
{yuvali,eyalk}@cs.technion.ac.il
3 Department of Computer Science, UCLA, Los Angeles, USA

Abstract. We study the notion of ad hoc secure computation, recently
introduced by Beimel et al. (ITCS 2016), in the context of the Private
Simultaneous Messages (PSM) model of Feige et al. (STOC 2004). In ad
hoc secure computation we have n parties that may potentially partici-
pate in a protocol but, at the actual time of execution, only k£ of them,
whose identity is not known in advance, actually participate. This sit-
uation is particularly challenging in the PSM setting, where protocols
are non-interactive (a single message from each participating party to
a special output party) and where the parties rely on pre-distributed,
correlated randomness (that in the ad-hoc setting will have to take into
account all possible sets of participants).

We present several different constructions of ad hoc PSM protocols
from standard PSM protocols. These constructions imply, in partic-
ular, that efficient information-theoretic ad hoc PSM protocols exist
for NC' and different classes of log-space computation, and efficient
computationally-secure ad hoc PSM protocols for polynomial-time com-
putable functions can be based on a one-way function. As an application,
we obtain an information-theoretic implementation of order-revealing
encryption whose security holds for two messages.

We also consider the case where the actual number of participating
parties ¢ may be larger than the minimal k£ for which the protocol is
designed to work. In this case, it is unavoidable that the output party
learns the output corresponding to each subset of k£ out of the ¢ partic-
ipants. Therefore, a “best possible security” notion, requiring that this
will be the only information that the output party learns, is needed.
We present connections between this notion and the previously stud-
ied notion of t-robust PSM (also known as “non-interactive MPC”). We
show that constructions in this setting for even simple functions (like
AND or threshold) can be translated into non-trivial instances of pro-
gram obfuscation (such as point function obfuscation and fuzzy point
function obfuscation, respectively). We view these results as a negative
indication that protocols with “best possible security” are impossible to
realize efficiently in the information-theoretic setting or require strong
assumptions in the computational setting.
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1 Introduction

The notion of ad hoc secure computation was recently put forward in [4]. In the
ad-hoc secure computation problem, there are n parties that may potentially
take part in a secure computation protocol. At the time that the protocol is
executed, some k of these n parties actually participate in the execution. The
goal is to design (efficient) protocols that can work for every set of k parties
S, without knowing the set of participants in advance. As a concrete example,
think of a voting application, where n parties are registered to the elections but
only k of them (the identity of which becomes known only in real time) end up
participating in the vote.

In most standard secure computation models, the ad-hoc nature of the pro-
tocol does not pose a significant challenge: the participating parties can interact
with each other and use a standard general-purpose secure protocol to per-
form the computation. The problem is most challenging in situations where pre-
processing or setup are required, or where interaction is limited. In the extreme,
where non-interactive secure protocols are needed, the single message sent by
each party P; cannot depend on the messages of other parties, whose identities
are not even known to P;.

A simple model for non-interactive secure computation is the Private Simul-
taneous Messages (PSM) model of [14,17]. In this model, there are n parties
Py, ..., P, and a special party called the referee. Before the input is known, the
parties are given correlated randomness! (ry,...,7,). In the online phase, each
party P; gets an input x; and sends a single message m;, depending on x; and
r;, to the referee. Based on the n received messages, the referee should be able to
compute the value of a pre-determined function f on the input x = (z1,...,2,),
namely f(x). The security requires that the referee learns no additional infor-
mation about z. It is known that PSM protocols exist for every finite func-
tion f [14] and efficient PSM protocols exist for every function in NC! and
for classes of functions defined by different types of (polynomial-size) branch-
ing programs [14,17]. In a computational setting, efficient PSM protocols for
all polynomial-time computable functions can be based on one-way functions
by using Yao’s garbled circuit construction [14,20]. The simplicity of the PSM
model makes it an attractive candidate for a complexity theoretic study (see,
e.g., [2]) and its limited interaction pattern makes it useful in applications, such
as minimizing the round-complexity of secure protocols in the standard point-
to-point model (see, e.g., [18]).

In this paper, we study the ad hoc version of the PSM model, where the
referee receives messages from a subset of size k out of the n parties. We assume
that the parameter k is known in advance, but the parties are not aware of the
identity of other participating parties. Before describing our results in detail (in
Sect. 1.1), we discuss some possible variants of the question. First, the original

! Both in the original PSM model and in its ad-hoc variant, it suffices for the parties
to share a source of common randomness that is unknown to the referee. The use of
more general correlated randomness can help reduce the randomness complexity.
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PSM model was mainly studied in the information-theoretic security setting.
In this work, we consider both the information-theoretic variant and the com-
putational variant. In fact, the computational version of ad hoc PSM was first
considered in [4], where it was shown that such protocols can be constructed
based on the existence of a weak form of Multi-Input Functional Encryption
(MIFE) [15], a primitive whose general realization is essentially equivalent to
the existence of general indistinguishability obfuscation.

Second, the problem of ad hoc PSM is significantly different in the case where
we are guaranteed that exactly k& parties will send messages vs. the case where
possibly more than k parties may participate. Most of the time, we will assume
that only k parties send messages and that this guarantee is assured by some
other mechanism, such as a public bulletin board reporting the current partici-
pant count, or an anonymous communication medium that hides all information
except the fact that a message has been sent. On the other hand, in a setting
where a set S of more than k parties may send messages in the protocol, the
referee unavoidably may compute the function f on any subset S’ C S of size k
and learn the value f(zg/). Therefore, in this case, our security notion is a “best
possible security” definition, requiring that this will be the only information that
the referee learns in the protocol. This can be formalized either using a strong
simulation-based definition or a weaker indistinguishability-based definition.

Finally, it will be convenient and, in fact, very natural in the ad-hoc setting
to think of f as a symmetric function. Most of our results do not rely on this
and can be extended to even allow the computed function to depend on the set
of participants S, i.e. to output fs(xg).

1.1 Our Results

Let us start by demonstrating our results using a concrete task of comput-
ing the SUM function. In this case, each party P; is given an input z; € Z,,
and the goal is to compute their sum ., 2; (all additions in this example
are mod m). A standard PSM protocol for SUM works by giving the parties
randomness ri,...,7, €Rr Z, subject to the constraint that Zie[n] r;, = 0.
Then, each party P;, sends a message m; = x; + r; to the referee who outputs
Zie[n] m; = Zie[n] x;, as needed. Moreover, due to the choice of the r;’s, no
additional information about the inputs is revealed to the referee.

In the ad-hoc version of the problem, we wish to compute the SUM of any set
S of k parties that may send messages in the protocol. One option is to prepare,
for each potential set S of size k, independent randomness 77, .. .,r,f that is
random subject to their sum being 0 and proceed by P; sending a message (using
the corresponding randomness r]S ), for each set S to which it belongs. While this
solution works, its randomness complexity and communication complexity are
proportional to (), which is much more than what we are shooting for. Instead,
we describe an efficient solution for this problem.

In our ad hoc PSM protocol, the randomness consists of values r1,...,r, €gr

Z, subject to the constraint that Zie[n] r; = 0, as in the original PSM protocol.
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In addition, we produce shares {r; ;}ic[n), for each r;, using a k-out-of-n secret
sharing scheme (e.g., Shamir). The randomness given to each P; consists of its
r; and its shares of all other random values; that is {r;;};e[n)\{i}- Then, each
party P; that participates in the protocol (i.e., ¢ € S) sends as its message the
value m; = x; + r;, as well as all its shares. The referee sums up all the m;’s
that it got from the k participants, as well as all the values r;, for j ¢ S, that
it can reconstruct from the k shares that it received for each such r;, to get
Yies(Ti+t 1)+ 057 =D ;cs Tis as needed. In terms of security, each r;, for
i € S, remains hidden as the referee receives exactly k—1 shares for these random
elements. In fact, the view of the referee can be simulated from its view in the
original PSM, where parties P;, for j ¢ S, have input z; = 0. Also note that if,
say, k + 1 parties send messages then the referee learns all inputs. However, for
the SUM function, the best possible security definition (that allows the referee
to learn the output on all subsets of size k) allows to recover all k£ + 1 inputs in
most cases (at least when ged(k,m) = 1).

Next, we describe in some detail our main results. The first question that we
ask (in Sect. 3) is whether the existence of a standard k-party PSM computing
a function f guarantees the existence of a k-out-of-n ad hoc PSM protocol for
f. We first prove the existence of an inefficient transformation of this kind but
that has an overhead of (2) While this transformation may be useful for the
case where the number of parties is small (and also proves the existence of an
ad hoc PSM protocol for every function f), our aim is to get an efficient trans-
formation (i.e., with poly(n) overhead). We next present such a transformation
that works whenever f is symmetric, and is efficient whenever k is small (essen-
tially, 2°(®) logn). When k = O(1), the overhead is as small as O(logn) (this
construction relies on perfect hash families, and its complexity depends on the
size of such families of functions from [n] to [k]). The fact that the complexity of
each party grows only logarithmically with the number of parties will be useful
for the application discussed in Sect. 6.

Then, in Sect. 4, we ask whether an ad hoc PSM protocol for f can be con-
structed more efficiently based on a standard PSM protocol for a related (n-
argument) function g. We prove that this is indeed possible, while incurring only
O(n) overhead over the complexity of the protocol for g. Moreover, the compu-
tational complexity of g is closely related to that of f in computational models
for which efficient PSM protocols are known (e.g., if f is in NC! then so is g, and
if f has a polynomial-size branching program then so does g). This implies effi-
cient ad hoc PSM protocols for branching programs in the information-theoretic
setting and for circuits in the computational setting, where the latter relies on
the existence of a one-way function. In addition, in Sect. 5, we present an explicit
ad hoc PSM for the equality function.

In Sect. 6, we show an interesting application of ad hoc PSM protocols. Specif-
ically, we show how to construct an order revealing encryption (ORE) from an
ad hoc PSM protocol for the “greater-than” function. An order revealing encryp-
tion, presented in [10] as a generalization of order preserving encryption [1], is a
private-key encryption that enables computing the order between two messages
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(that is, checking if m; < mo, m1 = mg, or my > my), given their encryptions
(without knowing the private key), but does not disclose any additional infor-
mation. We construct information-theoretically secure order revealing encryption
that is secure as long as only two messages are encrypted. In our construction, we
use an ad hoc PSM protocol constructed in Sect.3 with n = 2* parties (where
A is the security parameter), relying on the fact that the complexity of each
party in the protocol from Sect.3 only grows logarithmically with the number
of parties. We also give a solution for a bigger number of messages, but with a
weaker security guarantee.

The above results refer to the case where exactly k parties send messages
in the protocol. We next examine (in Sect.7) the case where more than k (but
up to some threshold t) parties may send messages. In this case, as discussed
above, one needs to settle for a “best possible security” definition. We extend the
above transformation from standard PSM to ad hoc PSM to this case, showing
that it is possible to construct a PSM protocol for f with best possible security
from a so-called “t-robust PSM” protocol [5] for a related function ¢’, incurring
only O(n) overhead. A t-robust PSM is a protocol where up to t parties may
collaborate with the referee in trying to learn information about the inputs of
other parties. In this case, it is always possible for the adversary to get the output
of f on many inputs, by replacing the messages of the collaborating parties with
messages that correspond to other inputs. Therefore, for such protocols also one
may only hope for a “best possible security”. Our results connect these two
best possible security settings (in both directions). It should be noted, however,
that efficient ¢t-robust PSM protocols in the information-theoretic setting are
currently known only for limited families of functions, and limited values of ¢ [5].

In Sect. 8, we examine the possibility of constructing efficient PSM protocols
with best possible security, in the computational setting. (The naive transforma-
tion of Sect.3 shows that it is possible to get best possible security even in the
information theoretic case but without efficiency.) The two-way connection with
t-robust PSM already implies a two-way connection between this problem and
general-purpose obfuscation. However, it is not clear a-priori that the connec-
tion has relevance in the case of simple functions. We give evidence that efficient
ad-hoc PSM protocols with best possible security are difficult to design even for
very simple functions. For instance, a protocol for a threshold function implies
a construction of fuzzy point function obfuscation [7], a primitive whose only
known constructions rely on multilinear maps. In fact, even a protocol for the
AND function, gives a construction of point function obfuscation.

2 The Setting

We consider a network of n parties, denoted Pi,...,FP,, and a referee; Each
party P; holds an input x;, and the parties hold correlated random strings
r1,...,7n. We want to execute a protocol, where only a subset of the parties
S C {Py,...,P,} participates in the protocol, each one of them sends a single
message to the referee. If exactly k parties participate and send messages then,



Ad Hoc PSM Protocols: Secure Computation Without Coordination 585

based on these k& messages, the referee should be able to compute the value
f(xg) but learn no other information about zg, where xg = (z;);cs. The subset
S of participating parties is selected in an ad hoc manner and, in particular,
the participating parties are not aware of each other. This is the main source
of difficulty in this model. The referee itself necessarily learns the set of par-
ticipants S (as it receives messages directly from the participants; avoiding this
would require the use of anonymous communication). We often assume that f
is symmetric; while this is a natural assumption in such a setting, most of our
constructions can handle a much more general requirement, where the computed
function itself may also depend on the set of participants S (i.e., the output is
fs(xzs)). We call the above model ad hoc PSM. We formalize this notion below
starting with information-theoretic secure protocols.

Definition 2.1 (Ad hoc PSM: Syntax and correctness). Let X, Rq,...,
Ry, M and 2 be finite domains. A k-out-of-n ad hoc PSM for a function f :
Xk — 2 is a triplet II = (GEN, ENC, DEC) where

— GEN() is a randomized function with output in Ry X «-+ X Ry,

~ ENC is an n-tuple of deterministic functions (ENCy, ..., ENC,), where ENC; :
X x Ri - M,

- DEC: ([Z]) x MF — 2 is a deterministic function satisfying the following cor-
rectness requirement: for any S = {i1,...,ix} C[n] and x5 = (ziy,...,x;,) €
Xk

Pr[TZ(T17~-~,Tn)<—GEN() : _q
DEC(S, EzNCl‘1 (l’il N 7"7;1), ey ENCik (l‘ik s Tik)) = f(xs) )
The randomness complexity of IT is the maximum of log|R1|,..., log|Rny|.

The communication complexity of IT is log |M].

Definition 2.2 (Ad hoc PSM: Perfect and statistical security). We say
that an ad hoc PSM protocol I1 for f is k-secure if:

— For every set S € ([Z]), given the messages of S, the referee does not get
any additional information beyond the value of f(xg). Formally, there exists
a randomized function SIM (a “simulator”) such that, for every S € ([Z]) and
for every x5 € X*, we have SIM(S, f(zs)) = Mg, where Mg are the messages
defined by R — GEN() and Mg = (ENC;(x;, R;))ies-

— For every k' < k and every set S’ € ([,?,]), given the messages of S', the
referee does not get any information on the input xg . Formally, there exists
a randomized function SIM such that, for every k' < k, every S’ € ([,Z]) and
every rgr € Xk/, we have SIM(S") = Mg/, where Mg is defined as above.

We say that an ad hoc PSM protocol II for f is (k,¢)-(statistically) secure
if there exists a randomized function SIM such that for every S € ([Z]) and for
every rg € X*,

diSt(SIM (S, f(xs)) ,Ms) <e.

Similarly, for every S’ € ([,?,]), we have dist(SiM(S"), Mg/) < e.
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Ezxample 2.3. We next describe a very simple ad hoc PSM protocol for com-
puting the difference of inputs for k = 2 parties; that is, for i« < j we want to
compute f(z;,x;) = x; —x; (over some Abelian group G). The randomness gen-
eration chooses a random element r € G and gives it to each party. The message
of each P; on input z; is m; = z; + r. The output of the referee on messages
m;, m; from parties P;, P; (where ¢ < j) is m; —m; = x; — ;. The simulator
SIM proving the security of the protocol gets as an input a set S = {i,5} and
A = z; — x;. It chooses a random value r and outputs 7,7 — A. Notice that
both the messages in the protocol and the output of SIM is a pair (a,b), where
a is uniformly distributed in G and b is a — f(z;,x;), thus the simulation is as
required.

While in most parts of this paper we will assume that at most k parties send
messages, we next consider the scenario that parties execute an ad hoc PSM
protocol and a set T of more than k parties sends messages. Clearly, for every
S C T of size k, the referee can compute the output of f on the inputs of S.
Thus, the best possible security requirement is that the referee does not learn any
additional information.

Definition 2.4. An ad hoc PSM protocol I for f is (k,t,€)-secure if there
exists a randomized function SIM such that, for everyt’ <t, every T € ([Z]) and
every xp € Xt

dist(Smv (T, (f(xs))scr,s|=k) » Mr) < €.
An ad hoc PSM protocol IT for f is (k,t)-secure if it is (k,t,0)-secure.

Remark 2.5. In Sect. 3.2, for every function f, we construct an inefficient (k,n)
ad hoc PSM protocol. It follows from [16] (together with our result that (k,n)-
secure ad hoc PSM protocols imply obfuscation) that efficient (k,n)-secure ad
hoc PSM protocols for every function in NC!' do not exist unless the polynomial-
time hierarchy collapses. This impossibility result does not rule out, for example,
efficient (2,n)-secure ad hoc PSM protocols for every function in NC! (and
beyond) or efficient (k, k + 1)-secure ad hoc PSM protocols. We do not know if
such efficient ad hoc PSM protocols exist.

For some functions the (k,t)-security requirement is not interesting as the
best possible security already reveals a lot of information. For other functions
this notion is interesting.

Ezxample 2.6. Let f be the 2-party addition function over a field whose charac-
teristic is not 2. Suppose that a referee got messages from parties P;, P», P5 in
an ad hoc PSM for f, thus, it can compute the sum of every two inputs of these
parties, namely, £1 + 22 = 512,21 + T3 = 51,3, and 2 + 3 = 52 3. From these
sums it can compute the inputs, e.g., 1 = 2_1(81,2 + 51,3 — S2,3)-

Ezample 2.7. Consider the n/2-party AND function and an input where the
value of exactly n/2 of the input variables is 1. Assume that the referee gets
messages from the n parties for this input. If the referee does not know the set
of variables whose value is 1, then it will not be able to efficiently determine it.
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We next consider computationally-secure ad hoc PSM protocols. In such pro-
tocols we want all algorithms to be efficient. We start by defining their syntax.

Definition 2.8 (Computational ad hoc PSM: Syntax). Let n(}\), k()),
and £(\) be polynomials, and F = {fx : ({0, 1} — {0 1} }zen be a
collection of functions. A protocol II = (GEN,ENC,DEC) is a (k(\),n(\))-
computational ad hoc PSM protocol for F' if

~ Algorithm GEN(1?) is a polynomial time algorithm that generates n(\) random
strings (for n(\) parties).

— Algorithms ENC and DEC run in polynomial time.

— There exists a negligible function negl() such that for any A € N, any S C

[n(N)], and any x5 = (2;)ics € ({07 1}z(>\))k(>‘);
Pr [1" «— GEN(1?") : DEC (S, (ENC;(24,74))ics) = f,\(l’s)] > 1 —negl(}).

We next present three definitions of security for computational ad hoc PSM
protocols. The first definition is simulation-based and it applies to k-security
(i.e., to the scenario where exactly k parties send their messages).

Definition 2.9 (Computational ad hoc PSM: Simulation-based secu-
rity). Let n(\), k(\), and £(\) be polynomials, and F = {fy : ({0, 1}M)k() —
{0,1}*}ren be a collection of functions. We say that an ad hoc PSM protocol
(GEN, ENC, DEC) is k(\)-simulation-based secure if there exists a probabilistic
non-uniform polynomial algorithm SIM whose inputs are 1* and the value of f
such that the two ensemble of distributions

r — GEN(1?),

((mi)ies : viES mg < ENC(mhri)) A S N7 S S ([Zgig])v

(:)ies € ({0’ l}e(,\))k(,\)

and

(SIM(I’\, fx((xi)i65)> AeN,Se ([2831)’

(Cﬂi)ies c ({07 1}é(>\))k(>\)
are indistinguishable in polynomial time.

Simulation-based security is a strong requirement that cannot be achieved for
computational ad hoc PSM protocols with best possible security (see discussion
in [3]). Thus, for such protocols, we define weaker security — virtual black-box
(VBB) security, where the adversary can output only one bit and that uses
indistinguishability-based security. To simplify the notation, we only consider
the case where t = n(\).

Definition 2.10 (Computational ad hoc PSM: Virtual black-box Secu-
rity). Let n(\), k(\), and £()\) be polynomials, and F = {fy : ({0, 1}(N))k()
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{0,1}*}ren be a collection of functions. We say that an ad hoc PSM protocol
(GEN, ENC, DEC) is (k(N), n(N))-VBB-secure if, for every non-uniform polyno-
mial time adversary A that outputs one bit, there exists a non-uniform proba-
bilistic polynomial time algorithm SIM and a negligible function negl(\) such that

for every A € N, every S € ([28‘;]), and every 1, ..., Tu5) € ({0, 1}y

’Pr [.A(l)‘, mi...,mp) =1] —Pr {SIMf*(l/\) = 1} ‘ < negl(A),

where

— The first probability is over the messages generated in the following way: first
compute v — GEN(1*) and then m; «— ENC(z;,7;), for every i € [n()\)].

— The second probability is over the randommness of the simulator, which has
access to an oracle fy that on query S € ([k"((/\)‘)]) returns fx(zg).

Definition 2.11 (Computational ad hoc PSM: Indistinguishability-

based security). Let n()\), k(\), and £(X) be polynomials, and F = {fx :

({0, 1}*ONEXN) — 10,1} }aen e a collection of functions. Consider the follow-

ing game between an adversary A and a challenger:

1. The adversary on input 1* chooses a set T C [n(\)] and two inputs (29);er
and (z})ier and sends T and the two inputs to the challenger.

2. The challenger chooses a uniformly random bit b € {0,1} and computes
(r1,...,7) «— GEN(1Y) and m; «— ENc(z?,r;), for every i € T. It then
sends (m;)ier to the adversary.

3. The adversary outputs a bit V.

The adversary wins the game if b = b and fr(2%) = fa(zk), for every S C T
such that |S| = k(X).

We say that a computational ad hoc PSM protocol (GEN, ENC, DEC) is a
(k(X\), n(N))-indistinguishably-secure ad hoc PSM protocol for F if, for every
non-uniform polynomial-time adversary A, the probability that A wins is at most
1/2 + negl(\) for some negligible function negl.

Our default model in the rest of the paper, unless explicitly mentioned, is
(k, k)-secure ad hoc PSM protocol with perfect security.

3 Ad hoc PSM Protocols for a Function f from a PSM
for f

In this section we present a k-out-of-n ad hoc PSM protocol for any function f
by applying transformations to k-party PSM protocols for the same f.
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3.1 From a PSM for f to an n-out-of-n ad hoc PSM for f

In an n-party PSM protocol for f, if all n parties send messages, then the
referee learns f(x1,...,x,) and does not learn any additional information. In
an n-out-of-n ad hoc PSM protocol, there is an additional requirement: if less
than n parties send messages, then the referee should learn no information. The
definition of PSM does not imply the latter requirement.

Ezample 3.1. Consider a function which returns x;. In a PSM for this function,
P can send its input, while in an ad hoc PSM protocol, this should not be done.

In many PSM protocols this additional requirement does hold. Furthermore,
for many functions, the requirement for smaller sets of active participants follows
from the security requirements of the PSM.

Example 3.2. Consider a PSM protocol for the AND function. If the input of
P, is 0, then the output of AND is 0 for every input for Py,..., P,_1. Thus,
the messages mq,...,m, of Pp,..., P, are equally distributed when z,, = 0, for
every input for Py,..., P,_1. Since the messages of Py, ..., P,,_1 are independent
of x,,, the messages of parties Py, ..., P,_1 are equally distributed for every input
for these parties. L.e., in any PSM protocol for AND the referee does not learn
any information from the messages of Pi,..., P,_1 or, similarly, any other set
of less than n active participants.

Lemma 3.3. If there is an n-party PSM protocol II for f with randomness
complexity Rand(IT) and communication complexity Comm(IT), then there is an
n-out-of-n ad hoc PSM protocol for f with randomness complexity Rand(II) +
n - Comm(IT) and communication complexity n - Comm(IT).

Proof. We construct an ad hoc PSM protocol 1,y for f from the PSM protocol
II for f, as follows.

Randomness generation:

— Generate randomness for the PSM protocol II; denote 71, ...,7, the gen-
erated randomness of Py, ..., P,, respectively.
— Choose n uniformly random strings uq, ..., u,, each of length Comm(IT).

— Share each u;j, for j € [n], using an n-out-of-n secret sharing scheme; let
u;,; be the i-th share of u;.

— The randomness of P; in I,y is i, (Uj,:)jeln]-

Message generation:

— Let m; be the messages of P; in I on input z; and randomness 7;.
— The message of P; in I,y is m; @ u; and (uy;)je[n]-

If the n parties send their messages, then the referee can reconstruct u; for
every ¢ € [n], compute m;, and reconstruct f(xi,...,z,) using the decoding
algorithm of IT.

The security of I1,;, when n parties send messages follows from the security
of IT (as the strings uq, ..., u, are random). When less than n parties send their
messages, the referee gets less than n shares of each wu;, thus, these strings act
as random pads and the referee learns no information. a
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3.2 A Naive ad hoc PSM Protocol for Any f

In this section we show how to construct, given a (standard) k-party PSM pro-
tocol for f, a k-out-of-n ad hoc PSM protocol for f that is n-secure (that is,
if a set T of at least k parties send their messages, then the referee can com-
pute the output of f on any subset of inputs of size k and learns no additional
information).

Theorem 3.4. If there is a k-party PSM protocol II for f with randomness
complexity Rand(IT) and communication complexity Comm(IT), then there is
a (k,n)-secure ad hoc PSM protocol for f with randomness complexity (}}) -
(Rand(II) +n - Comm(II)) and communication complexity (}) - n - Comm(ITI).

Proof. Let I, be the k-out-of-k ad hoc PSM protocol constructed from IT in
Lemma 3.3. We construct an ad hoc PSM protocol IT’ for f as follows:

Randomness generation:

— For each set S € ([Z]), independently generate randomness for I, and
give this randomness to the parties in S.

Message generation:

— Each party P; sends its message in protocol I}, associated with the set
S, for every S’ of size k such that ¢ € S’.

Function reconstruction by the referee: For a set S of k participating
parties, the referee (only) uses the messages of the parties in S of the PSM
IT,), for S to reconstruct f(zg).

We next prove the security when a set T' of size at least k sends messages.
We claim that the referee only learns f(xg) for every S C T of size k. Since the
randomness of each execution of the PSM protocol 11}, is chosen independently,
the referee can only learn information from the messages of IT,;, for each set S of
size k. In an execution for a set S C T it can only learn f(xg). In any execution
of the PSM protocol for S such that S € T, the referee misses a message of at
least one party thus, by Lemma 3.3, learns no information from this execution.

The randomness and communication of the ad hoc PSM protocol II’ are (Z)
times larger than the randomness and communication, respectively, of the PSM
protocol I1,,. 0O

As every function f has a PSM realizing it [14,17], the previous theorem
implies that every function has an ad hoc PSM protocol.

Corollary 3.5. For every k-argument function f, there is an n-secure k-out-
of-n ad hoc PSM protocol realizing f.
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3.3 A 2-out-of-n ad hoc PSM Protocol from a PSM Protocol for f

Suppose that we have a 2-party PSM protocol II for a symmetric function f.
We denote the parties in this PSM by Q¢ and @1. We want to construct an ad
hoc PSM protocol IT* for f using II. The idea is to instruct the first party P;
to simulate Qo and instruct the second party P; to simulate );. The problem
is that in an ad hoc PSM protocol a party does not know who the other party
is; informally, it does not know if it is the “first party” or the “second party”.
Instead, we execute a few copies of the PSM protocol II where, in some copies
of the PSM, party P; plays the role of )y, and in other copies it plays the role
of @;. Specifically, we view each i € [n] in its logn-bit binary representation
i = (i1,...,%0gn), and execute logn copies of II, where in the ¢th copy P; plays
the role of Q;,. Since for any 7 # j, there exists an index ¢ such that i, # jy,
in the ¢th copy P;, P; simulate both Q¢ and @ and the referee can compute f
from this copy.

However, information can now leak when P; and P; simulate, in some copy,
the same Qy; that is, if iy = jy, for some £. In particular, in such copy, P; and
P; send the same message if x; = z;. To overcome this problem, in the ¢th copy,
where party P; plays the role of @;,, party P; “encrypts” its message m using
a key k;, and each party playing the role of Q;, sends the key k;, as part of its
message. Thus, if both F;, P; play the role of the same party @, then the referee
does not obtain the key, and cannot learn any information from this copy of the
PSM. The formal description of the ad hoc PSM protocol IT* follows.

Randomness generation:

— Let p be a prime such that logp > max{Comm(II),logn}, where
Comm(I7) is the length of the messages in the PSM protocol II. All arith-
metic in the protocol is in IF,.

— For ¢ =1 to logn:

e Independently generate randomness for the PSM protocol IT; denote
by 7¢,0,7¢,1 the generated randomness of Qo, @1, respectively.
e Choose four random values a0, bg,0,a¢,1,be,1 €r Fp.
— The randomness of P;, where ¢ = (i1,...,%0gn), 1S

(70,40, 02,05 b0,0, 02,1, b0,1)1<0<10g n-
Message generation for every P; € S:

— For every ¢ € {1,...,logn}, party P; computes m;, — the message that
Qi, sends in II on input z; with randomness 7 ;,.
Py sends (m e + aci, i+ beyi,)1<e<iogn and (agq,, bei,)1<e<iogn-

Assume that P; and P; send messages and the referee wants to compute
f(xs, ;). It finds an index ¢ such that i, # j,. Without loss of generality, i, =0
and j, = 1, that is, in the ¢th copy of II, party P; plays the role of Q)9 and P;
plays the role of Q1. As P; sends m; ¢ + ago -7+ be,o and P; sends ago,b.,0, the
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referee can recover m;  — the message of (). Similarly, the referee can recover
m; ¢ — the message of (); — and, using the reconstruction procedure of II, it can
compute f(x;,z;).

By the privacy property of protocol I, the referee does not learn any addi-
tional information from an ¢th copy of the PSM, where iy # j,. Furthermore,
this is true also for the concatenation of the messages in all the copies where
i¢ # jo; note that since f is symmetric the output of the protocol in each such
copy is the same. On the other hand, in any copy where iy = js, the referee gets
two “encrypted” messages mj ¢ + agi, - %+ bei, and m; o+ ag i, - j + bei,. Since
i # j (and ag,,be;, are random), then all pairs of “encrypted” messages are
possible and the referee learns no information from this copy of II. The security
of IT* follows.

Let Rand(I7) and Comm(II) be the randomness complexity and communi-
cation complexity of IT, respectively. The randomness complexity of the new
17" is

O (logn - max{Rand(IT), Comm(IT),logn}),

and the communication complexity of II'* is O(logn - max{Rand(II),logn}).

3.4 A k-out-of-n ad hoc PSM Protocol from a PSM Protocol for f

We want to generalize the above ad hoc PSM protocol IT* to larger values of k.
Again, we will execute many copies of the original k-party PSM protocol II. The
properties we require are: (1) for every set S C [n] of size k, there exists a copy
in which the parties in S play roles of distinct parties in I7, and (2) in copies
where the parties in .S do not play roles of distinct parties in I7, no information
is leaked. To achieve the first requirement, we use a perfect hash family.

Definition 3.6. A perfect hash family H = {h : [n] — [k]} is a set of functions
such that for any set S C [n] of size k, there exists at least one h € H that is
1-1 over S.

Example 3.7. For k = 2, the family of bit-functions H = {hy,..., hiogn}, where
he(i) =i¢+1 (and iy is the £th bit in the binary representation of ¢) is a perfect
hash family.

A perfect hash family with (Z) functions can be easily constructed, but much
more efficient constructions, probabilistic or explicit, are possible. E.g., picking
the h’s at random, it is enough to have |H| ~ e¥ - klogn (for a specific size-k set
S, a random function is 1-1 w/prob k!/k* > e~F by Sterling formula, and we
need to take care of about n* such sets).

We next describe the ad hoc PSM protocol, assuming a k-party PSM protocol
II for a symmetric function f and a perfect hash family H.

Theorem 3.8. Assume that there is a k-party PSM protocol II for a symmetric
function f with randomness complexity Rand(IT) and communication complex-
ity Comm(II). Then, there is a k-out-of-n ad hoc PSM protocol for f with
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randomness complezity O(e* - klogn - (Rand(II) + k* - max{Comm(IT),logn}))
and communication complezity O(e® - k3 logn max{Comm(IT),logn}).

Proof. Denote the parties of IT by Q1, ..., Q. We construct a k-out-of-n ad hoc
PSM protocol IT* as follows.

Randomness generation:

— Let p be a prime such that logp > max{Comm(II),logn}, where
Comm(I7) is the length of the messages in I1.

— For every h € H do:
e Independently generate randomness for the hth copy of II; let

Th,1,---,Thk De the generated randomness for Q1,. .., Qx respectively.
e Choose k random polynomials Ap 1(Y), ..., Ap k(YY) of degree k—1 over
F,.

e Consider each polynomial A, ;(Y) as an clement in FX and share
it in a k-out-of-k additive sharing scheme; denotes its shares as
Ah,jJ, . 7Ah,j,k-

— The randomness of P; in the ad hoc PSM protocol IT* is

(Th,hi)s Ah(iys A1) - - - s Abk,h(i) el -
Message generation for every P; € S:

— For every h € H, party P; computes m; 5 — the messages that Qj,(;) sends
in the PSM protocol IT on input z; with randomness 7y, ;). Party P; sends
(Apneiy () +mi n)ner and, in addition, the shares (A j i) heH,jelk]-

Assume that a set S of size k sends messages and the referee wants to compute
f(zg). The referee finds a function h € H that is 1-1 on S. Let i € S. Party P;
plays the role of Qp;) in the hth copy of IT, and sends the message Ay, () (7) +
m; . Furthermore, all £ parties in S send their shares in a k-out-of-k secret-
sharing scheme with the secret Ay, ;). Thus, the referee can reconstruct Ay, j(i),
compute Aj, 5;y(i), and recover m; . Similarly, the referee can recover all k
messages in the hth copy of IT and can decode f(zg).

By the privacy property of protocol I, the referee does not learn any addi-
tional information from an Ath copy of II, for every h such that h is 1-1 on S.
Furthermore, this is true also for the concatenation of the messages in all such
copies and, since f is symmetric, the output of the protocol in each such copy
is the same. On the other hand, in any copy where h is not 1-1 on S, the ref-
eree does not get any information on Ay, j,;), since it gets at least two identical
shares of this secret. The referee gets at most k£ messages “encrypted” by the
same secret key Aj p(;). The values {4 4(;)(9)}ics are k points on a random
polynomial of degree k — 1, thus, they are uniformly distributed and serve as

random pads, i.e., the referee gets no information from such hth copy of the
PSM IT.
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The randomness complexity of IT* is

|H| - (Rand(II) + k? - max{Comm(IT),log n})
~ " - klogn - (Rand(IT) + k* - max{Comm(II),logn}),

To analyze the communication complexity of IT*, note that for each h, each
party P; sends its encrypted message and also a share for Ay, ;, for all j € [k].
All together, the communication complexity of each party is

|H| - k? - max{Comm(IT),logn} ~ e*k3log n - max{Comm(IT),logn}.
O

Remark 3.9. There may be several functions in H, say h,h’, that are 1-1 on S
(and, moreover, hg is different than h'). Since we assume here that the function
f is symmetric, the output is the same in both copies of II and, since the
randomness is independent, there is no additional information. If f was not
symmetric the referee may learn multiple outputs (under different orders) and
hence additional information on the input.

4 An ad hoc PSM Protocol Based on a PSM Protocol
for a Related Function

In this section we construct an ad hoc PSM protocol for f from a PSM protocol
for a related function g. The construction is similar to the construction of the
ad hoc PSM protocol for SUM described in Sect.1.1. To construct the ad hoc
PSM protocol for the k argument function f : X¥ — Y, we define a (partial)
n-argument function g : (X U{L})" — Y U{L}, where if there are more than
n—k inputs that are |, the function outputs L, if there are exactly n — k inputs
that are 1, the function outputs the output of f on the k£ non-L inputs, and if
there are less than n — k inputs that are L, then the function is undefined (in
the latter case, we do not care what g outputs).

Lemma 4.1. If there exists a PSM protocol II, for g with randomness com-
plezity Rand(I1,) and communication complexity Comm(I1,), then there exists
an ad hoc PSM protocol for f with randomness complexity Rand(Il;) + n -
max{Comm(II;),logn} and communication complexity n - max{Comm(II,),

logn}.

Proof. We construct an ad hoc PSM protocol Il for f from the PSM protocol
11, as follows.

Randomness generation:

— Generate randomness for the PSM protocol Ilg; let 7q,...,r, be the gen-
erated randomness of Py, ..., P,, respectively.
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— Let m ; be the message that P; sends in I/, with randomness r; and
input L. Share m ; using a k-out-of-n secret sharing scheme; let m ; ;
be the ¢-th share.

— The randomness of P; in the ad hoc PSM protocol is 7, (m1 ; ;) ;-

Message generation:

— The message of P; on input x; is its message on input x; and randomness
r; in the PSM protocol I, and, in addition, (m j;);i-

Assume that parties in a set S of size exactly k send messages. Then, the
referee has the k£ messages in 11, of the parties in S with inputs x; # L and, for
each j ¢ S, it has k shares of the message m | ;. Thus, the referee can reconstruct
91y yn) = f((x)ics), where y; = x; if i € S and y; = L otherwise. On the
other hand, since each party p; € S does not send its share of m ;, the referee
gets k — 1 shares of m ;; hence, the referee has no information on m ;. Thus,
when k parties send messages, the referee in II; has the same information that
the referee has in II, and the privacy requirement for /Iy protocol follows from
the privacy requirement of the PSM II,.

Assume that parties in a set S of size less than k parties send messages. In
this case, we claim that the referee in II; gets no information even if we give it
more information, namely, m, ; for every P; ¢ S. In this case, the referee gets
messages of inputs whose output is 1. By the privacy of the PSM protocol, these
messages are distributed as the messages when all the inputs are 1, that is, the
referee does not learn any information on the inputs.

The randomness in the above ad hoc PSM II; is Rand(II,) +n - Comm(I1,).
The communication in IT; is O(n-Comm(I1,)) (assuming Comm(I1,) is at least
logn). O

Example 4.2. Assume that f : {0,1}* — {0,...,k} is a symmetric function
(that is, the output of f only depends on the number of 1’s in the input). The
function f has a small branching program (i.e., the size of the branching program
is O(k?)), thus f itself has an efficient PSM protocol [17]. Furthermore, the
function g has a branching program of size O(nk?), thus, it has an efficient PSM
protocol, i.e., a PSM with communication complexity O(n?k*). This implies an
ad hoc PSM protocol for f with communication O(n3k?).

If a function f has a small non-deterministic branching program, then the
corresponding function g has a small non-deterministic branching program, thus,
by [17], g has an efficient PSM protocol. By Lemma 4.1, we get for all k < n
efficient k-secure ad hoc PSM protocols for every function that has a small non-
deterministic branching programs.

Similarly, if f has a small circuit, then g has a small circuit, thus, by using
Yao’s garbled circuit construction [14,20] we get a simulation-based-secure PSM
for g assuming the existence of a one-way function. By Lemma 4.1, we get for all
k < n efficient computational k-secure ad hoc PSM protocols (with simulation-
based-security) for every function that has a small circuit assuming the existence
of a one-way function.
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5 A Protocol for Equality

Define the equality function EQ : ({0,1}*)¥ — {0,1} as the function, whose
input is k strings of length ¢ and whose output is 1 if and only if all strings are
equal. We next present an ad hoc PSM protocol for EQ.

Lemma 5.1. There is a statistically-secure ad hoc PSM protocol for EQ whose
randomness complexity and communication complezity are O(n + £).

Proof. We next describe the ad hoc PSM protocol.

Randomness generation:

— Let p be a prime number such that logp > max{n, ¢}.
— Choose at random an element a € F,, such that a # 0.

— Choose k—1 random elements rg, ..., 7,2 in I, and define the polynomial
QY)= 25;02 r; Y (over ).
— Choose n random elements ji,..., j, in F,

— The randomness of P; in the ad hoc PSM protocol is (j;, Q(j:), ).

Message generation for every P; € S:
- F)z sends ]uQ(]z) + ax;.
Function reconstruction by the referee:

— Assume the referee gets k pairs (¢1,21),..., ¢k, 2zx). If all point lie on a
polynomial of degree k — 2 answer “equal”, otherwise answer “not equal”.

First assume that all k inputs are equal, say to «. In this case the k pairs
lie on the polynomial Q(Y) + ax and the referee answers “equal”. Furthermore,
since the free coefficient of Q(Y') + a« is 7o + ac, the values (¢1,21), ..., (Uk, 2x)
are independent of a.

We next consider the case that not all of the k& inputs are equal. Since
J1,---,Jn are uniformly distributed, we can assume, without loss of general-
ity, that S = {P,..., Px}. Fix any inputs 1, ...,z such that x # x, for some
1 < ¢ < k (again, this is w.l.o.g.). We prove that with probability at least 1—k/p
over the choice of ji,...,jk, the values z1,..., 2, are uniformly distributed in
IF’;. In particular, this implies that with probability at least 1 — k/p, the referee
answers “not equal”. Furthermore, it implies the privacy for this case.

Fix any j1,...,jk—1 and z1,...,25—1. Let H(Y) and M(Y") be the polynomi-
als of degree k — 2 such that H(j;) = z; and M (j;) = z; for every 1 <i <k — 1.
Such polynomials exist and they are unique. Notice that for every a # 0 there
exists a unique polynomial Q(Y) of degree k — 2 that can be chosen in the ran-
domness generation of the protocol, where Q(Y) = M(Y)—a-H(Y) (since both
the r.h.s. and the Lh.s. are polynomials of degree k — 2 that agree on the k — 1
points ji,...,Jk—1). Thus, the message of Py is

2, = Q(jr) + axy, = M(ji) — a - H(ji) + axy.
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The protocol fails (i.e., outputs “equal” although not all inputs are equal) if and
only if zx = M (ji); the last equality is true if and only if H (ji) = x. Notice that
since H(Y) # xy, since H(j;) = x¢ # x. Since H(Y) # x1 is a polynomial of
degree k—2, there are at most k—2 values of ji such that H (ji) = . Thus, with
probability at least 1 —(k—2)/p > 1—(k—2)/2", the referee in this case outputs
“not equal”. Assuming that such ji, is not chosen, z;, = M (ji) +a(—H (ji) +xk);
as a is chosen at random, the value zj is random (provided that the kth pair
does not lie on the polynomial). O

6 Order Revealing Encryption from an Ad Hoc PSM
Protocol

An order revealing encryption is a private-key encryption that enables computing
the order between two messages (that is, checking if my < mg, m; = mq, or
mq > mgy), given their encryptions (without knowing the private key), but does
not disclose any additional information. In this section, we show how to use ad
hoc PSM protocols to construct information-theoretically secure order revealing
encryption that is 2-bounded (namely, the encryption is secure as long as only
two messages are encrypted).

Definition 6.1. The greater than function, GTE, : {0,1}¢ x {0,1}¢ — {-1,
0,1}, is defined as follows:

-1 Ifzx<y
GTE@(%,y): 0 Ifx:y
1 Ifx >y,

where we identify the strings in {0,1}* with the integers in {0,...,2¢ — 1}.

Definition 6.2 (Order Revealing Encryption (ORE): Syntax and cor-
rectness). Let e : N — [0,0.5). An €(\)-ORE for messages in {0,1}* is com-
posed of 4 efficient algorithms:

~ GENogg is a randomized key generation algorithm, that on input 1 (where
X is a security parameter), outputs a key k;

— ENCogrEg is an encryption algorithm, that on input message m and a key k,
outputs an encryption c;

- DECoRrE is a decryption algorithm, that on input an encryption c and a key k,
outputs a message m satisfying the following correctness requirement for any
m € {0,1}¢:

Pr [k — GENorg(1*) : DECore (ENConp(m, k), k) = m} > 1—¢(N).

— COMPoRE s a comparison algorithm, that given any two encryptions ci,co,
outputs a value in {—1,0,1} such that for any mi,mo € {0,1}¢:

Pr [k — GENogg(1Y),c1 — ENCogg(ma, k),

>1—€(N).
Cy — ENCORE(mg,k‘) : COMPORE (Cl,Cg) = GTE@(ml,mg)] - 6( )



598 A. Beimel et al.

If the comparison algorithm is the comparison over the integers (e.g., it returns —1
whenever ¢; < cg), then the encryption is called Order Preserving Encryption

(OPE).

Remark 6.3. Given the private key k and an encryption ¢, one can use a binary
search using COMPoRrg to decrypt c. That is, we do not need to specify the
decryption algorithm. For efficiency, one can avoid this binary search by encrypt-
ing the message using a standard (semantically secure) encryption scheme in
addition to the ORE encryption.

We next define the security requirement of ORE. Our definition is the infor-
mation theoretic analogue of the IND-OCPA security requirement from [8]. The
definition of IND-OCPA is similar to the traditional IND-CPA definition of pri-
vate key encryption, however, as the adversary can learn the order between two
messages from their encryptions, the IND-OCPA definition prevents the adver-
sary from using this information by limiting the encryption queries that it can
make (see (1) in Definition 6.4 below).

Definition 6.4 (ORE: Security). Consider the following game between an
all-powerful adversary and a challenger:

— The input of both parties is a security parameter 1 and a bound on the number
of queries 1°.
— The challenger chooses a random bit b with uniform distribution and generates
a key k «— GENogrp(1?).
— Fori=1 tot do:
e The adversary chooses two message mb, mi € {0,1}¢ and sends them to
the challenger.
e The challenger computes ¢; <« ENCORE(mé, k) and sends c¢; to the
adversary.
— The adversary returns a bit b'.

We say that the adversary wins if b =1 and for every 1 <i < j <t
GTE,(m}, m)) = GTE,(m},m]). (1)

Let € : N — [0,0.5). We say that an ORE is €(X\)-secure if for every polyno-
mial t(\) and every adversary A the probability that A with parameters 1*, 18N
wins is at most 1/2+ €(X\). We say that an ORE is t-bounded e(\)-secure if for
every adversary A the probability that A with parameters 1*,1 wins is at most
1/2 4+ €(N).

We next describe some relevant results for OPE and ORE. In this discussion
all encryption schemes are computationally secure. Order preserving encryption
was introduced by Agrawal et al. [1]; their motivation was encrypting a database
while allowing to answer range queries given the encrypted data (without the
secret key). A cryptographic treatment of OPE was given by Boldyreva et al. [8,
9]; they gave a formal definition of OPE (called IND-OCPA) and showed that,
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in any OPE satisfying this definition, the length of the encryption is 2¢(), where
¢ is the length of the messages (this is true even if the attacker can only ask to
encrypt 3 messages). In a follow up work, Boldyreva et al. [10,11] defined ORE.
As ORE is a special case of multi-input functional encryption (MIFE) [15], it
is implied by indistinguishability obfuscation (iO). Boneh et al. [12] constructed
ORE directly from multi-linear maps (with bounded multi-linearity). ¢-bounded
ORE can be constructed based on the LWE assumption or from pseudorandom
generators computable by small-depth circuits [13].

We next show how to construct ORE from an ad hoc PSM protocol for the
greater than function GTE,.

Theorem 6.5. There exists a 2-bounded 1/2*-secure ORE with messages in
{0,1}¢ and encryptions of length O(£2X + \?).

Proof. We start with a 2-out-of-n ad hoc PSM protocol IIgTg for GTE: The
function GTE, has a deterministic branching program of size O(¢) thus, by [17],
it has a PSM protocol with randomness and communication complexity O(¢?).
By Theorem 3.8, GTE, has an ad hoc PSM protocol with complexity O(¢2log n+
log” n). Note that Theorem 3.8 requires that the function for which we construct
an ad hoc PSM protocol is symmetric. As GTE;(mg, mq) = —GTEy(m1, ma),
the transformation described in Theorem 3.8 from a PSM protocol to an ad hoc
PSM protocol is valid for GTE,.

We next describe a construction of ORE, that is, we desribe algorithms
(GENORE, ENCorEg, COMPoRE) (by Theorem 6.3 we do not need to describe
DECoRg). We use the ad hoc PSM IIgrg with n = 2* parties (where ) is the
security parameter).

— Algorithm GENorp generates a key k by choosing a random string for
GENGrE, this key has length O(¢2logn + log?n). We emphasize that dur-
ing the key generation we do not apply GENgrg as its output is too long (it
contains n stings).

— Algorithm ENCogrg encrypts a message x by choosing a random party F;
(where 1 < i <n) and using GENgTg (k) to generate the random string r; of
P; in IIgtr.2 The encryption of z is ¢ and ¢ « ENCgrE,i(2,7;) — the message
of P; on input z and randomness r;.

— AlgOI‘ithm COMPORE((’M7 Cl), (iQ, Cg)) returns DECGTE({il, ig}, c1, 02) if 2 75
io and “FAIL” otherwise.

If two messages are encrypted using different parties (i.e., i1 # i2), then
the correctness of the comparison and the security of IIgTg guarantees that,
given the two encryptions, exactly their order is revealed (i.e., the first message
is smaller, equal, or greater than the second message). If the two messages are
encrypted using the same party (i.e., i1 = i3), then correctness and security are
not guaranteed. However, the probability of this event is 1/n = 1/2*, which is
negligible. o

2 The time required to generate r; is O(£? logn + log? n).
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Remark 6.6. In the proof of Theorem 6.5, we can replace the ad hoc PSM pro-
tocol for GTE, obtained via the PSM protocol from [17] by any ad hoc PSM
protocol for GTE, as long as its complexity is n(n, A) log® n for some function 7
and constant c. In particular, if we use a (2,t)-secure ad hoc PSM protocol for
GTEy, then the resulting ORE would be ¢t-bounded secure.

The ORE of Theorem 6.5 is secure only when 2 messages are encrypted. If 3
messages are encrypted, then the adversary gets 3 messages of the ad hoc PSM
protocol for GTE, and the security of the ad hoc PSM protocol is broken. We
can construct a t-bounded 1/A-secure ORE as sketched below:

— The key generation algorithms generates keys for o = poly (A, t) copies of the
ORE of Theorem 6.5.

— The encryption algorithms encrypts m using a random subset of the keys of
size A\y/a.

— Given encryptions of two messages, if there is a key that was used to encrypt
both messages, then use the comparison algorithm of that copy to compare
the two messages. The probability that no such key exists is 279,

The security of the above ORE is guaranteed as long as no 3 messages are
encrypted with the same key. The probability that there are 3 messages that are
encrypted under the same key can be reduced to 1/ if « is big enough.

7 NIMPC Vs. (k,t)-Secure Ad Hoc PSM

In this section we consider two notions of PSM protocols, (k,t)-secure ad hoc
PSM protocols and Non-Interactive secure MPC (NIMPC) protocols. Recall that
an ad hoc PSM is (k, t)-secure if the referee getting at most ¢ messages does not
learn any information beyond the value of f on any subset of size k of the inputs.
A t-robust NIMPC for a function f is a PSM protocol, where a referee colluding
with t parties can only compute the values of the function when the inputs
of the non-colluding parties is fixed (see [4] for a formal definition of NIMPC
protocols). We show that the existence of NIMPC protocols is equivalent to the
existence of (k,t)-secure ad hoc PSM protocols.

In the information-theoretic setting, these results should be interpreted as
negative results, maybe implying that efficient protocols do not exists in both
models. In the computaional setting, this results imply an efficient construction
of computational ad hoc PSM protocols.

7.1 Ad hoc PSM = NIMPC

Given an n-out-of-2n ad hoc PSM protocol for a boolean function f, we construct
an n-party robust NIMPC protocol for f with the same complexity.

Lemma 7.1. If there exists an (n,t)-secure n-out-of-2n ad hoc PSM protocol
for a boolean function f :{0,1}" — {0,1}, then there exists an n-party (t —n)-
robust NIMPC protocol for f with the same communication complezity.
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Proof. Let IT* be the guaranteed ad hoc PSM protocol. Consider the following
NIMPC protocol II.

Randomness generation:

— Let r1,...,79, < GENp«().
— Choose at random n random bits bq,...,b,.
— For i € [n] let
o M;o — (20 — b, ENC7+ 24—, (72i—p,,0)).
o M;1 «— (20 — 1+ b;, ENCp+ 2i— 14, (T2i—14b;, 1)).
— The randomness of P; is M, o, M; 1.

Message generation for every P; € S:
— P; on input z; € {0,1} sends M, ,,.
Function reconstruction by the referee:

— The referee gets n messages, where for each i it gets from P; either the
messages of Py; or Py; 1. It uses the decryption of IT* to compute f.

We next argue that I is robust. Let A be a set of parties in IT of size 7 < t—n.
The randomness of A and the messages of all other parties in IT are messages of
distinct n+7 < ¢ parties in IT*. By the (n, t)-security of IT*, from these messages
the referee in IT* can only compute the output of f on any subset of size n of
these parties in IT*, i.e., the inputs of the parties in IT that are not in A are fixed.
Thus, in I1, the referee and the set A can only compute the residential function.
Thus, the (n,t)-security of IT* implies the (¢ — n)-robustness of IT. Notice that
the referee knows the identity of the party in II* for which the messages was
generated; however, by choosing random b;’s, it does not know if this message
is for an input 0 or 1. g

7.2 NIMPC = Ad Hoc PSM

Our goal is to construct a (k,t)-secure ad hoc PSM protocol for a boolean
function f from an NIMPC protocol II computing a related function. We
would like to use ideas similar to the construction in Sect.4. Recall that,
given a k-argument function f : X* — Y, we defined an n-argument func-
tion g : (X U{L})™ — Y U{L}, where if there are exactly n — k inputs that
are 1 then the output of g is the output of f on the k non-L inputs, and it
is | otherwise.®> We constructed a k-secure ad hoc PSM protocol for f by first
generating the randomness using the PSM for g, and sharing the messages of
each party with input L. We would like to start from an NIMPC protocol for
g and get a (k,t)-secure ad hoc PSM protocol for f. There is a problem with
this solution — in the resulting ad hoc PSM protocol the referee will get for each

3 In Sect. 4, if there were less than n — k inputs that are L, then the function was
undefined; here we need to define the output as L.
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active party messages for some input x; and for the input L. The definition of
the robustness of NIMPC protocols guarantees that if it gets one message from
a party, then the referee can only evaluate the function on points where the
input of this party is fixed to some (unknown) value. The definition does not
guarantee that if a referee gets two messages from one party then it can only
evaluate the output on points where the input of this party is fixed to one of
these two (unknown) values.

To overcome this problem we define a new function ¢” : {0,1}?" — Y with

3n variables x1 0, 1,1, 22,0, 2,15 - - - s Ln,0, Tn,1, Y1, - - -, Yn, Where given an assign-
ment aj0,a1,1,02,0, 02,1, - - - A0 n,15C1; - - -, Cn, Of g’ we define an assignment
ai,as,...,a, of g as follows:
1 if a0 = a1,
a; = C; if a; o0 = 1, a; 1 = O7

1-— C; if a; o0 = 0, a1 = 1
and ¢”'( =
g (a1,0,01,1,02,0,02,15--,0n,0,0n,1,C1,y. -, Cn) - g(ala az, ..., an)~

Theorem 7.2. If there is a 3n-party 2n-robust NIMPC protocol I, for g with
randomness complezity Rand(IIy») and communication complexity Comm(I1,)
then there exists a (k,n)-secure ad hoc PSM protocol for f with randomness
complezity O(Rand(I1y)+n-Comm(IIy)) and communication complezity O(n-
Comm(ﬂgu)).

Proof. Denote the parties of the NIMPC Ilg» by Pio,Pi1,...,Pno, Pa1, @1,
.., Q. We next describe an ad hoc PSM protocol Il for f.

Randomness generation:

— Generate the randomness of Iy for ¢”; let r1,0,71,1, .-, Tn,0,"n,1,q1,
..,Qn be the generated randomness of P, Pi1,...,Pp0,Pn1,Q1,...,
Q.. respectively.
— Forevery 1 <75 <n:
e Choose ¢; € {0,1} at random and let m; be the message that @Q; sends
in II,» with randomness ¢; and input c;.
e For every b € {0,1}, let m;; be the message that P;; sends in ITg»
with randomness 7;; and input 0.
— The randomness of P; in the ad hoc PSM protocol is

73,0, 74,15 Cis (mi)lgigm (mj,b)lgign,be{o,u-
Message generation for every P; € S:
— Let u; be the message that P; g, sends in II,» with input 1 and ran-

domness 7 c; @z, -
— P; sends (Ci (&%) .Z‘i), Us; and, in addition, (mi)lgign, (mj,b)j;éi,be{O,l}-

Assume that a set S € ([Z]) sends messages. To compute the value of f on
the inputs of S, the referee applies the decoding procedure of II,~, where for
every i € [n],
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— If i € S, then the message of P, (@, i u; (i-e., an encoding of 1); otherwise
it is m; ¢, @0, (i-€., an encoding of 0),

— the message of P;1_(c,@x,) 18 71— (c;@2;) (i-€., an encoding of 0), and

— the message of Q; is m; (i.e., an encoding of ¢;).

The correctness follows as these messages correspond to the input

(2i,b)icn bef0,1}s (Ci)ien)
where:

— Ifi¢ S, then 2,0 = 2,1 =0, that is, it correspond to the input a; = L of g.
= Ifie S, then z; ¢;0., = 1 and 21_(5,c;02,) = 0,
o If x; = ¢;, then z;0 = 1 and z; 9 = 0, that is, it correspond to the input
a; = ¢; = x; of g,
o If z; # c;, then z;0 = 0 and z; o = 1, that is, it correspond to the input
a;=1—¢;=uz; of g.
That is, if ¢ € S, then it correspond to the input a; = z; of g.

To conclude, the referee reconstructs

g”((zi,b)ie[n},be{o,l}a (Ci)ie[n]) = g((xi)ies, (J—)igs) = f((zi)ies)-

For the (k,t)-security, note that if a set T of size ¢’ sends messages in the
ad hoc PSM protocol for f, then the referee gets two messages for P; ¢;q¢z, for
every ¢ € S and one message for every other party. Thus, by the robustness of
the NIMPC protocol 11, the referee can only compute outputs of g, where the
input of every i ¢ S is fixed to L and the input of every ¢ € S is either x; or
L. Since g is defined to be L if the number of non-bottom inputs is not k, the
referee can only compute the values of f on subsets of size k of T'. O

The transformation of Theorem 7.2 also applies if the NIMPC protocol is
computationally-secure. Specifically, in [4] it is shown that if 1O and one-way
functions exist, then there is a computational indistinguishably-secure NIMPC
protocol for every function. This implies that if iO and one-way functions exist
then there is a computational (k,n)-indistinguishably-secure ad hoc PSM pro-
tocol for every function f.

8 Ad Hoc Protocols for and Threshold Imply Nontrivial
Obfuscation

Computational ad hoc PSM protocols for general functions imply obfuscation.
This follows from Lemma 7.1, showing that ad hoc PSM protocols imply NIMPC
protocols, and by results of [4], showing that NIMPC protocols imply obfusca-
tion. To prove this result, ad hoc PSM protocols for fairly complex functions,
i.e., universal functions, are used. In this section, we show that ad hoc PSM pro-
tocols for simple functions already imply obfuscation for interesting functions.
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Specifically, computational ad hoc PSM protocols for AND with VBB security
imply point function obfuscation and ad hoc PSM protocols for threshold func-
tions with VBB security imply fuzzy point function obfuscation [7]. There are
several definitions of point function obfuscation in the literature (see [6]). In this
paper, we consider the strong virtual black-box notion of obfuscation of Barak
et al. [3] for point function and fuzzy point function obfuscation. This notion
was considered for point function obfuscation in, e.g., [19]. As the only known
constructions for fuzzy point function obfuscation are based on strong assump-
tions (e.g., i0), these results imply that even ad hoc PSM protocols with VBB
security for the threshold function may require strong assumptions.

Notation 8.1. For every x € {0,1}", define the point function I, : {0,1}" —
{0,1} where I,(y) =1 if x = y and I,(y) = 0 otherwise. For every x € {0,1}"
and 0 < § < 1, define the fuzzy point function F? : {0,1}" — {0,1} where
Fo(y) = 1 if dist(x,y) < dn and F2(y) = 0 otherwise, where dist(z,y) is the
Hamming distance. We will also denote by I, and F, the canonical circuits that
compute these functions.

Lemma 8.2. If there exists an (n,2n)-VBB-secure ad hoc PSM protocol for
AND, then there is a point function obfuscation, i.e., an obfuscation for

{Iﬂc}we{O,l}" .

Proof. The obfuscation algorithm of a point function I, uses the computational
ad hoc PSM pI‘OtOCOl IIanp = (GENAND,ENCAND,DECAND) for AND. We
denote the 2n parties in ITaxp by {Pip}ie[n],pefo,1}- Algorithm OBF(1",x) is
as follows:

— Let (7i,0)ic[n),bef0,1} < GENanD(1™).

— For every i € [n] let 2 4, < 1 and z; 77 < 0.

— For every i € [n] and b € {0,1} let m; , < ENCAND(2i5,Tip)-
— Return a circuit C that on input y € {0,1}" computes

DECAND ({(%, ¥i) Yien]s (Miy: )ien))-

Correctness: The circuit C' returns the output of the decoding algorithm
DEC on the messages (1m;,y, )ic[n], Which encode the inputs (2; 4, )ic[n)- Hence, C
returns AND((2i,y,)ic[n])- If ¥ = z, then for every i € [n], y; = z; and z;,, = 1,
thus C returns 1. If y # x, then y; = Z; for at least one i € [n], thus z;,, =0
and C' returns 0.

Security: Let A be an adversary attacking the obfuscation in the real world,
that is, the adversary gets the above circuit C. We construct a simulator Sim,
with an oracle access to I, such that there exists a negligible function negl() for
which, for every = € {0,1}",

| Pr[A(1",C) = 1] — Pr[Smm’= (1") = 1]| < negl(n), (2)

where the first probability is taken over the randomness of .4 and the randomness
of OBF(1",z) and the second probability is taken over the randomness of Sim.
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We first define an attacker Aaxnp against the ad hoc PSM protocol ITanp:
AaND gets as an input 2n messages and generates a circuit C from these messages
as OBF does, and executes A on C. By the VBB-security of ITanp, there exists
a simulator SIM, , for the adversary Aanp; this simulator SiManp should have
an oracle access to the function AND on any n of the 2n inputs (2i)icn],be{0,1}-

The simulator SiM for the obfuscation, with oracle access to I, emulates
SIMaAND, Where the queries to AND are answered as follows: if a query contains
two variables z; ¢ and z; 1, for some i € [n], then the answer is 0 (as the value
of one of them is zero). Otherwise, for every ¢ there is exactly one y; such
that z;,, is in the query; in this case z;,, = 1 if and only if y; = x5, i.e.,
AND((2i,y,)icn) pefony) = Liff o = (y1,...,yn) iff L((y1,...,¥yn)) = 1. In this
case, SIM answers the query by invoking its oracle I,. The VBB-security of I/anp
implies that (2) holds. O

For § < 0.5, let Ths : {0,1}™ — {0,1} be the following function:
Ths(z1,...,z,) =1 iff le > (1-9)n.
i=1

We next construct fuzzy point function obfuscation from an ad hoc PSM
protocol for Thy with VBB security. The construction and its proof of correctness
are similar to those in Lemma 8.2; however, the proof of security is more involved.
For this proof, we need the following claim.

Claim 8.3. Let § < 0.5. There is an efficient algorithm that, given a point w
such that F(w) = 1 and an oracle access to F?, can find x.

Proof. Let w = (wy,...,w,) and W = (Wy,...,W,). Since dist(z,w) < dn <
0.5n, it must be that dist(x,@) > 0.5n > dn, i.e., F2(w) = 0. There must be a j
such that F2(wy,...,w;,Wji1,-..,W,) = 1 and F2(wy,...,wj_1,W5,...,Wy) =
0. Furthermore, such j can be found by n — 1 queries to the oracle F?. Let
v = (wi,...,W;,Wj41,.-.,Wy); it must be that dist(z,v) = |dn]. If v; = z;,
for some 4, and we flip the éth bit in v (i.e., consider v @ ¢;), then the distance
between the resulting sting and = will be larger than dn. On the other hand,
if v; # x;, then dist(x,v ® ¢;) < dist(z,v) < dn. Thus, the following procedure
recovers x:

— For i =1 to n: if Fg(m,v @ e;) = 0 then z; = v;, otherwise z; = ;.
]

Lemma 8.4. Let § < 0.5. If there is an (n,2n)-VBB-secure ad hoc PSM proto-
col for Thg, then there is a fuzzy point function obfuscation, i.e., an obfuscation

for {Fg}xe{m}t

Proof. The obfuscation algorithm OBFpy,, of a fuzzy point function F°
uses the computational n-out-of-2n ad hoc PSM protocol Iy, = (GENTy,
ENCry, DECTy) for Ths. We denote the parties in [Tty by {P;p}icin)pefo,1}-
Algorithm OBF(1", z) is as follows:
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Let (7ip)ien] befo,1} < GENp(17).

— For every i € [n] let z; ,, < 1 and z; 7 < 0.

For every i € [n] and b € {0,1} let m; p < ENCTn (2, 7ip)-
— Return a circuit C that on input y € {0,1}" computes

DECTL({(4,¥i) Yiem), (Miy: )iemn))-

Correctness: The circuit C' returns the output of the decoding algorithm
DEC on the messages ((1mi,y,)ic[n)), Which encode the inputs (24, )ie[n)- Hence,
C returns Ths((zi,y, )icn)- If dist(x,y) < on, then y; = z; for at least (1 —d)n
values of ¢, and z; ,, = 1 for at least (1 — d)n values of 4, thus, C returns 1. If
dist(x,y) > on, then y; = 7; for more than (1 — 0)n values of 4, thus, z;,, =1
for less than (1 — §)n values of ¢ and C' returns 0.

Security: Let A be an adversary attacking the obfuscation in the real world.
We construct a simulator SiMy,,,y,, with an oracle access to F;f , such that there
exists a negligible function negl() for which for every = € {0,1}"

| PrlA(", C) = 1] — Pr{SivEe, (1) = 1]] < negl(n), 3)

where the first probability is taken over the randomness of A and the random-
ness of OBFpyz,y (17, x) and the second probability is taken over the randomness
of SIMfuzzy-

We first define an attacker Aty against the ad hoc PSM protocol IIty: Aty
gets as an input 2n messages and generates a circuit C from these messages as
OBFfuzzy does, and executes A on C. By the VBB-security of II1y,, there exists
a simulator SiMTy for the adversary Ary; this simulator SiMry, should have an
oracle access to the function Ths of any n of the inputs (2;)icn,be{0,1}-

The simulator SIMy,,,y for the obfuscation, with oracle access to Ff , emu-
lates SiMTy,, where the queries to Ths are answered as follows: If for every i
there is exactly one y; such that z;,, is in the query, then z;,, = 1 if and
only if y; = x;, i.e., Ths((2iy,)icimn)beto,1y) = 1 iff dist(x, (y1,...,yn)) < dn iff
F3((y1,..-,Yn)) = 1. Thus, in this case, SIMy,,,, answers the query by invoking
its oracle F.

The challenging case is when a query contains two variables z; o and z;; for
some 7 € [n]; we call such queries “illegal”. In this case, we do not know how to
answer the query directly (e.g., as we did in Lemma 8.2). The idea of answering
the query is that if Thy returns 1 on the query, then the simulator can find a
point w such that FJ(w) = 1 (as explained below), from such point it finds =
(using Claim 8.3), computes (2)ic[n],be{0,1} @ OBFtyzy does, and answers the
current and future queries using these values. If the simulator does not find such
point w, then it returns 0.

Consider a query to Ths that contains exactly o pairs z; o and z; ; for some
« > 0 and assume that the answer to the query is 1. Without loss of generality,
the query is

(Zi’y'i)lgign_2a7 Zn—20+41,0, #n—2a+1,15-- 5 #n—a,05 Fn—o,l
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for some y1, ..., Yn—24- The value of exactly « of the variables
Zn—2a+1,05 #n—2a+1,15 -+ s Zn—a,0s fn—a,1

is 1, thus, 327> 2, ,, +a > (1 — §)n. Furthermore,

n n
E zi0 + E zi1 = 2a,
i=n—2a+1 i=n—2a+1

i.e., at least one of the sums is at least «. This implies that if the answer to
the query is 1, then Thg(yl, ey Yn—20,0,...,0) = 1 or Thi(yl, e Yn—2a
1,...,1) = 1. Therefore, for each “illegal” query, the simulator asks two queries
to the oracle Thi; if the answers to both of them are zero, the simulator answers
0 to the query. Otherwise, the simulator uses Claim 8.3 to find =, computes
(2ib)ien)bef0,1} a8 OBFryy,y does, and answers all further queries of SiMty, using
these values. The VBB security of ITty, implies thet (3) holds. O
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