
Brief Announcement: Privacy Preserving Mining
of Distributed Data Using a Trusted

and Partitioned Third Party

Nir Maoz and Ehud Gudes(B)

Department of Mathematics and Computer Science, The Open University,
1 University Road, 43537 Ra’anana, Israel

ntaizi@yahoo.com

1 Introduction

We like to discuss the usability of new architecture of partitioned third party,
offered in [1] for conducting a new protocols for data mining algorithms over
shared data base between multiple data holders. Current solution for data min-
ing over partitioned data base are: Data anonimization [4], homomorphic encryp-
tion [5], trusted third party [2] or secure multiparty computation algorithms [3].
Current solutions suffer from different problems such as expensive algorithms in
terms of computation overhead and required communication rounds, revealing
private information to third party. The new architecture offered by Sherman
et al. allow the data holders to use simple masking techniques that are not
expensive in computation nor assume trust in the third party, yet allow to per-
form simple and complex data mining algorithms between multiple data owners
while private data is not revealed. That come with the assumption of no col-
lude between the two parts of the PTTP. In the PTTP architecture offered by
Sherman et al. [1] the trusted third party is divided into two parts CE the Com-
puter Engine which does the data mining and mathematical calculation on behalf
of the participants and to the Randomizer R which generates random numbers
and permutations needed for the protocol, and share them securely with the
participants. All communication between data base holders and the CE or R is
assumed to be private e.g. using symmetric encryption with private key shared
between the two sides broadcasting each other. In this paper, we show one basic
data mining algorithms for calculating union/intersection, to show the power of
this architecture. We developed few more basic and complex algorithms, for cal-
culating aggregation functions, Min/Max and association rules. Although, some
of these operations like union/intersection were discussed in [1], we developed
different and simpler protocols than those suggested there.

2 Intersection/Union

In this section we describe a PTTP protocol for computing intersection and
union of private sets. The set is separated horizontally between the different

c© Springer International Publishing AG 2017
S. Dolev and S. Lodha (Eds.): CSCML 2017, LNCS 10332, pp. 193–195, 2017.
DOI: 10.1007/978-3-319-60080-2 14

194 N. Maoz and E. Gudes

databases holders. In the setting that we consider here, each of the private data-
bases includes a column in which the entries are taken from some groundset
Ω. For example, if the column includes the age of the data subject, in whole
years, then we may take Ω = {0, 1, . . . , 120}. Our protocol enables the different
database holders to compute the union or intersection of their columns; The
protocol uses a PTTP. The main idea of the protocol, is to create for each DBi

two Boolean vectors. Both are of the length of the groundset. All DBi will sort
the groundset in the same order (e.g. alphabetic order). Each DBi will create
one vector that have 1 for each index in the vector that represent the position
of the item it has in its DB and 0 for the rest of the indexes. Then each DB
creates another vector which has a 0 for each index in the vector that repre-
sent the position of the item it has in its DB and 1 for the rest of the indexes
(Exactly the inverse vector). Than it will concatenate both vectors, and apply a
permutation, shared by all participants, on the result vector. After applying the
permutation, no one can know, without knowing the permutation, which item
a specified DB holds or not even how many items there are in each DB. The
reason is, that in the way we build the concatenated vector, there is exactly the
same number of 1’s and 0’s (Ω times) which prevent the knowledge of how many
items each DB holds. And since the vector is permuted, there is no way to know
which 1’s belong to the first half of the vectors (index of item the participant
hold) and which 1’s belong to the second half (index of item the participants
doesn’t hold). The parties in our protocol are as follows:

• Q is the querier who issues the query to be answered.
• Di, 1 ≤ i ≤ M , are the databases.
• CE (Computation Engine) and R (Randomizer) are the two parts of the

PTTP.

In the protocol, V = VΩ is a vector that includes all values in the groundset
Ω. Protocol 1 shows the algorithm in detail.

3 Conclusions

We show in this paper how one can use the new PTTP architecture proposed by
Sherman et al. to create simple algorithms like union/intersection over distrib-
uted database, without the need for strong cryptography techniques or the use
of hash functions. Using PTTP also results in less communication rounds and
in some cases also reduces the size of the messages. In most cases the new algo-
rithms can also protect against malicious coalitions. That said, more research is
still needed in order to shift more privacy preserving responsibilities from the
two parts of the the PTTP back to the database holders, so that even coalition
which involve both parts of the PTTP won’t allow to reveal significant infor-
mation. Finally, more research is also needed to show the utility of the PTTP
architecture for other data mining tasks such as: clustering or decision trees
construction.

Brief Announcement: Privacy Preserving Mining of Distributed Data 195

Protocol 1. A PTTP protocol for Computing Set Operations.
1: Q sends the query to DBi, 1 ≤ i ≤ M , and the query type (either intersection or

union) to R.
2: Q sends R which private column participate in the query (e.g. the age column).
3: R generates a random permutation σ on the set of integers {1, . . . , 2|Ω|} and sends

it to DBi, 1 ≤ i ≤ M .
4: for all 1 ≤ i ≤ M do
5: DBi sets a Boolean vector Vi={vi,1,. . . ,vi,|Ω|} where

vi,j =

{
1 ifDBi hold private value j
0 otherwise

,

6: DBi sets a Boolean vector ¬Vi={¬vi,1,. . . ,¬vi,|Ω|} where

¬vi,j =

{
0 ifDBi hold private value j
1 otherwise

,

7: DBi sets a new vector that is the concatenation of the two previous mentioned
vectors, CV = Vi ‖ ¬Vi

8: DBi calculate PVi = σ(CV) = σ(Vi ‖ ¬Vi) = σ({vi,1,. . . ,vi,|Ω|,¬vi,1,. . . ,¬vi,|Ω|})
9: DBi sends its vector to CE.

10: CE computes the intersection or union of all vectors received from the M databases
and send the result vector RV to R.

11: R calculate the final vector FV = σ−1(RV)
12: R throws away the second half of the vector and output it.

Acknowledgment. The authors would like to thank Tassa Tamir, for providing very
helpful comments on the algorithms presented here.

References

1. Chow, S.S.M., Lee, J.-H., Subramanian, L.: Two-party computation model for
privacy-preserving queries over distributed databases. In: NDSS 2009

2. Ghosh, J., Reiter, J.P., Karr, A.F.: Secure computation with horizontally partitioned
data using adaptive regression splines. Comput. Stat. Data Anal. 51(12), 5813–5820
(2007)

3. Tassa, T.: Secure mining of association rules in horizontally distributed databases.
IEEE Trans. Knowl. Data Eng. 26(4), 970–983 (2014)

4. Tassa, T., Gudes, E.: Secure distributed computation of anonymized views of shared
databases. ACM Trans. Database Syst. (TODS) 37(2), 11 (2012)

5. Zhong, S.: Privacy-preserving algorithms for distributed mining of frequent itemsets.
Inf. Sci. 177(2), 490–503 (2007)

	Brief Announcement: Privacy Preserving Mining of Distributed Data Using a Trusted and Partitioned Third Party
	1 Introduction
	2 Intersection/Union
	3 Conclusions
	References

