
Scalable Attack Path Finding
for Increased Security

Tom Gonda(B), Rami Puzis, and Bracha Shapira

Department of Software and Information Systems Engineering,
Ben-Gurion University of the Negev, Beer-Sheva, Israel

tomgond@post.bgu.ac.il

http://bgu.ac.il

Abstract. Software vulnerabilities can be leveraged by attackers to gain
control of a host. Attackers can then use the controlled hosts as step-
ping stones for compromising other hosts until they create a path to the
critical assets. Consequently, network administrators must examine the
protected network as a whole rather than each vulnerable host indepen-
dently. To this end, various methods were suggested in order to ana-
lyze the multitude of attack paths in a given organizational network, for
example, to identify the optimal attack paths. The down side of many of
those methods is that they do not scale well to medium-large networks
with hundreds or thousands of hosts. We suggest using graph reduction
techniques in order to simplify the task of searching and eliminating opti-
mal attacker paths. Results on an attack graph extracted from a network
of a real organization with more than 300 hosts and 2400 vulnerabilities
show that using the proposed graph reductions can improve the search
time by a factor of 4 while maintaining the quality of the results.

Keywords: Network security · Attack graphs · Planning · Graph
reduction · Attack models

1 Introduction

The software products used in today’s corporate networks are vast and diverse
[1]. As a result, software vulnerabilities can be introduced to the network which
an attacker can later leverage in order to gain control of the organization’s hosts.
In practice, even organizations that are minded of security can have hosts with
many critical vulnerabilities present in their network [2].

One of the security analyst tasks is to decide which vulnerabilities and which
hosts to patch against attacks. The cost of patching a host, and the effort involved
can some times be extremely high [3]. There is a risk that a patch will break a
production system, on top of the maintenance time it takes to patch the system.

This raises the now-common need to prioritize which vulnerabilities in which
hosts to patch. An important factor in the decision to patch a host or not is
how an attacker can leverage the host as a stepping stone in order to reach

c© Springer International Publishing AG 2017
S. Dolev and S. Lodha (Eds.): CSCML 2017, LNCS 10332, pp. 234–249, 2017.
DOI: 10.1007/978-3-319-60080-2 18



Scalable Attack Path Finding for Increased Security 235

critical assets. In order to find the probable path of an attacker, many models
have been suggested to represent all attacker’s possible paths in a network [4,5].

We chose to use MulVAL (Multi-host, Multi-stage Vulnerability Analysis
Language) framework [6] to represent an attacker’s possible actions in the net-
work. A brief description of the framework, and the logical attack graphs (Also
called LAGs) it produces can be found in Subsect. 3.2.

Using the models that represent the attacker’s possible actions, many
researchers then applied planning methods to find the optimal attacker’s path
[7–9]. The downside of many of those methods is that they do not scale well to
medium to large networks.

In this paper we aim to reduce the time it takes to find attack paths which
an attacker might use, by reducing the size of the attack graph. We intend to
do so without effecting the quality of the optimal path. We review the metrics
in which we will check that comparison in Sect. 6.

Our contribution is a reduction (described in Sect. 4) that allows finding
low-cost attacker paths faster, without compromising the quality of the paths
found (experiments in Sect. 7). In results compared to existing approaches on
graphs containing more than 200,000 nodes, which represent 309 network hosts
with 2398 vulnerabilities the proposed reduction improved the running time in
a factor of 4.

2 System Overview

This paper deals with reducing the size of the LAGs, in order to speed the com-
putation time for finding attack paths. Figure 1 shows the overall workflow of our
work. First, network scans are being performed to collect data about the network
structure and vulnerabilities present in the network as described in Subsect. 3.1.
Next, the reductions presented at the related work (Sect. 5) are applied, in order
to reduce the input to the graph generation framework (MulVAL). Then, the
MulVAL framework is applied to create a logical attack graph. The LAG model
is presented in Sect. 3.2. After the LAG was generated, our reduction which is
presented in Sect. 4 can be applied in order to reduce the LAG generated in the
previous step. At last, the result of the reduced graph is converted to a planning

Fig. 1. Work-flow illustration



236 T. Gonda et al.

problem, and solved by a generic planner, as explained in Sect. 3.3. Each exper-
iment described in Sect. 7 will go through all the above steps, although in each
experiment only one reduction will be applied, either before or after the graph
generation phase.

3 Background

One of the foundations of our work is attack graphs. Attack graphs have been
used in multiple variations for over a decade to represent possible attacks on a
system [10,11]. Attack graphs usually include information about the precondi-
tions needed to execute actions (exploits, password guessing, network sniffing,
etc.) and the possible outcomes of these actions (like agent being installed on
target machine, accounts compromised and more). In many cases, attack graphs
represent all the attack paths in the target network. Attack path usually repre-
sent a series of actions which end with the attacker gaining unauthorized access
to an asset. Our main focus is LAGs [12] since they have been the most scalable
among the models, and provide open-source implementations.

To produce the attack graph, we had to provide vulnerability scans of the
different hosts in the network, and the connections between hosts. We used real-
world networks for our work. The way we scanned the networks and produced
the topology for the attack graph is outlined in Subsect. 3.1.

We then transformed the attack graph into a planning problem, and used a
generic solver to find the optimal attacker path within that attack graph. Scien-
tific background about planning with numeric state variables and the transfor-
mation from attack graph to a planning problem can be found in Subsect. 3.3.

3.1 Data Set

In order to create attack graphs as close as possible to the real world, we decided
to produce the attack graphs from a large institute with thousands of hosts. For
our work we looked at each VLAN in the institute separately. VLAN (Virtual
Local Area Network) is a way to unite computers of certain characteristic within
an organization. As an example, in corporate network, different departments
could be assigned different VLANs so that the sales department and the HR
department will have a form of segregation between. In a similar manner, in an
academic network, different departments will be assigned different VLANs.

It’s a common practice to have a DMZ (demilitarized zone) VLAN, a separate
VLAN in which all the services exposed to the Internet will be located. The DMZ
VLAN will usually have a restricted access to the rest of the VLANS to minimize
the damage an attacker can do in case he compromises a machine in the DMZ.

In order to produce the attack graph we had to find the following information
about each VLAN:

1. What are the vulnerabilities in each host in the VLAN?
2. What connections can be made from a VLAN to the rest of the VLANs (some

connections can be blocked or enabled through firewall between the VLANs)?



Scalable Attack Path Finding for Increased Security 237

To collect this information we used Nessus vulnerability scanner [13]. We chose
Nessus after a comparison with additional vulnerability scanner - OpenVAS [14]
since Nessus is more common in attack graph research and has better integration
to the MulVAL framework which we used to produce the attack graphs.

We chose 3 different VLANs in the institute which we decided to scan. The
scan have been performed in the following manner: First we scanned all the
VLANs from the Internet, external to the organization. Then, for two of the
VLANs we scanned, we positioned the scanning computer inside the VLAN and
scanned the 2 other VLANs, and the VLAN itself from within, An illustration
can be seen in Fig. 2.

In order to change the location of the scanning computer between VLANs
without the need of physically changing locations we used trunk ports. When
using trunk ports, Ethernet frames are tagged with the desired VLAN and then
passed to the desired VLAN through ports that are able to handle tagged Eth-
ernet frames. This allowed easier scanning from multiple VLANs without having
to physically access the different locations in the organization.

An obvious result we have observed is that scanning a VLAN from different
locations produced different results. For example, in some VLANs scanned from
the Internet, no hosts were detected. This was probably caused by a firewall
filtering connections to this VLAN. In some hosts, we have seen different set of
services exposed to different VLANs. For example, when scanning some VLANs
from the Internet, only the web service at port 80 was available. When scanning
the same host from within the organization we have seen additional services
exposed such as web management or network share services.

We used the different scan results achieved when scanning from the different
locations to create the topology of the network. For each VLAN, we treated
the scan made from within the VLAN as representing the ‘true state’ of the
network. An assumption was made that no device filtered or altered the scan
within a VLAN. This is somewhat a possible assumption, since communication
within VLAN does not go through any hosts, so the possibility of interference
is low. Hence, in the model, the hosts in each VLAN, the services they run and
the vulnerability those services have were taken from the scan made from the
host inside the VLAN. Before explaining how the connection between hosts were
created, a few formal definitions are needed.

Definition 1. VLAN. A VLAN V is a set of ip addressed such that each ip
address is within the VLAN. We denote the different VLANs in the organization
as V1, V2, V3. For formality, we will define the internet as a VLAN as well,
denoted Vinternet. In our case Vinternet has only one ip.

Definition 2. Connection. A connection c is defined by the tuple:

(ip src, ip dst, protocol, port)

Where ip src is the source ip of the connection, ip dst is the destination of the
connection. protocol is the network protocol being used (like tcp or udp) and,
port is the port used. A connection represent that the source ip can initiate a
connecting to the destination ip, in the protocol stated and in the port stated.



238 T. Gonda et al.

Definition 3. Scan Item. A scan item s is defined by a tuple:

(ip, protocol, port, software, vulnerability)

Where ip is an ip of a scanned computer. software is a software installed on
the computer and vulnerability is the CVE of the vulnerability found in that
software.

Definition 4. Scan. A scan Sij is a set of scan items. Sij holds:

∀s ∈ Sij : p1(s) ∈ Vj

Where pn is the n projection of s. A scan represents all the hosts and vulnerabil-
ities found in Vj when scanned from Vi. Since the computer scanning from the
internet is irrelevant for us:

∀i ∈ {1, 2, 3} : Si,internet = ∅
We defined two types of connection: Inner network connection:

INNERi = {∀ip ∈ Vi ∀s ∈ Sii|(ip, p1(s), p2(s), p3(s))}
Meaning that we model a connection for any two hosts within the VLAN, in all
protocols and ports found when scanning the VLAN from within.

Inter network connection:

INTERij = {∀ip ∈ Vi ∀s ∈ Sij |(ip, p1(s), p2(s), p3(s)}
Meaning that we model a connection between a host in Vi to a host in Vj in
some protocol and port only if when scanning Vj from Vi a vulnerability was
found in the host at Vj in that protocol and port.

Finally the connections allowed in our model are:

K = {1, 2, 3}
⋃

i∈K

INNERi ∪
⋃

i�=j∈K

INTERij ∪ INTERinternet,1

We included connection from the internet to only one VLAN in our network
because otherwise the graphs produced and solutions found would often be trivial
one step solutions.

Fig. 2. Scan methodology overview



Scalable Attack Path Finding for Increased Security 239

Fig. 3. Example attack graph

3.2 Logical Attack Graph

Logical attack graphs (LAGs) are graphs that represent the possible actions and
outcomes of attacker trying to gain a goal asset in a system. The graph contains
3 types of nodes:

Derived fact nodes (can also be referred as privilege nodes) represent a capa-
bility an attacker has gained after performing an action (derivation phase).
Example of such node can be a node stating that the attacker can execute arbi-
trary code on a specific machine with certain privileges. These are the diamond
shaped nodes seen in Fig. 3.

Derivation nodes (can also be referred as action nodes) usually represent an
action the attacker can take in order to gain a new capability in the system.
The outcome of performing an action, is an instantiation of a new derived fact.
Example of an action node can be seen in Fig. 3 as the oval nodes. One of the
possible ways to gain code execution in a host is launching an exploit that allows
remote code execution. Another possibility is obtaining a password of a valid
user, and logging in with his credentials. A derived fact can be instantiated by
either one of it’s parent nodes, which are action nodes. In order to instantiate an
action node (or derivation node) all of it’s parent nodes need to be instantiated.

Primitive fact nodes are the ground truth nodes of the model, they represent
facts about the system. Usually they can represent network connectivity, firewall
rules, user accounts on various computer and more. In the example Fig. 3 they
are the box shaped nodes.

Definition 5. Attack Graph. Formally, attack graph is represented as a tuple:

(Np,Ne,Nc,E, L,G)

Where Np, Ne and Nc are three sets of disjoint nodes in the graph, E is a set of
directed edges in the graph where

E ⊆ (Ne × Np) ∪ ((Np ∪ Nc) × (Ne)

L is a mapping from a node to its label, and G ⊆ Np is a set of the attacker
goals. Np, Ne and Nc are the sets of privilege nodes, action nodes and primitive
fact nodes, respectively.



240 T. Gonda et al.

The edges in a LAG are directed. There are three types of edges in attack
graph: (a, p) an edge from an action node to a predicate node, stating that by
applying a an attacker can gain privilege p. (p, a) is an edge from a predicate
node to an action node, stating that p is a precondition to action a. (f, a) is
an edge from fact node f to an action node a stating that f is a precondition
to action a. The labeling function maps a fact node to the fact it represents,
and a derivation node (action node) to the rule that is used for the derivation.
Formally, the semantics of a LAG is defined as follows: For every action node a,
let C be a’s child node and P be the set of a’s parent nodes, then

(∧L(P ) ⇒ L(C))

is an instantiation of interaction rule L(a) [12]. In our work we add cost function
C to the LAG. C(a) where a ∈ Ne is the cost the attacker pays to perform an
action.

3.3 Planning with Numeric State Variables

Planning is a branch of AI that deals with choosing action sequences in order to
achieve a goal. A planning framework is usually given a description of the possible
propositions in the world, the possible actions including their preconditions and
effects, the initial set of proposition, and the desired propositions in the goal
state. It’s goal is to find sequence of actions that results in a state that satisfies
the goal.

Formally, Numeric planning task is a tuple (V, P,A, I,G) Where P is a set
of logical propositions used in the planning task. V = {v1, v2...vn} is a set of
n numeric variables. A state s is a pair s = (p(s), v(s)) where p(s) ⊆ P is the
set of true proposition for this state, and v(s) = (v1(s), v2(s)...vn(s)) ∈ Qn is
the vector of numeric variables assignments. A is a the set of actions in the
problem. An action is a pair (pre(a), eff(a)) where pre (precondition) is the
precondition needed to be satisfied in order to activate the action. Formally, when
planning with numeric states, precondition, con, is also a pair (p(con), v(con))
where p(con) ⊆ P is the set of proposition required to be true. v(con) is a set
of numeric constraints. In our model, we do not have numeric constraints before
activating actions, so we will not go into details about their formal definition. An
effect is a triple eff = (p(eff)+, p(eff)−, v(eff)) where p(eff)+ ⊆ P is a set
of propositions assigned true, as an effect of the action activation, p(eff)− ⊆ P
is a set of propositions assigned false as an effect of the action activation, and
v(eff) is a set of effects on the numeric variables in V .

In a numeric planning task, I is a state representing initial state s =
(p(s), v(s)), and G is a condition representing the goal condition [15]. In our
model, attacker’s actions comes with a cost (such as risk of detection, or ease
of exploitation for vulnerabilities). Our goal is to find a plan with minimal cost
for the attacker, assuming an attacker will try to reach his goals with minimal
effort or risk.

PDDL is Planning Domain Definition Language, a language build for repre-
senting multiple planning problems, specifically it allows modeling numeric tasks.



Scalable Attack Path Finding for Increased Security 241

PDDL also allows specifying optimization criterion, which is an expression the
solver will later minimize or maximize. The variable we would like to minimize
in our work is the attacker cost for reaching a goal.

Researchers have used planning to represent attacker trying to achieve goals
in the network for quite some time [7,9,16]. It seems that the two prominent
planners in this domain have been the Metric-FF [15], and SGPlan [17]. In our
work we have used Metric-FF planner, since it was able to handle with larger
amount of predicates and actions generated when converting attack graphs to a
planning problem.

We transformed an attack graph to a planning problem in the following
manner: All of the primitive fact nodes have been turned into propositions.
Those propositions are initially true in the initial state of the task. All of the
derived fact nodes (privilege nodes) where translated into propositions in the
model, they are initially false in the model. Each derivation node (action node),
became an action a = (pre(a), eff(a)) in the planning task. pre(a) = (p, v)
where p is a set of the action’s precondition, and v is a set numeric constraints.
In our model, p contains the proposition of all of the action node’s parents in the
graph. As an example, in Fig. 3, the action ‘Login using password’ will have two
proposition as preconditions, one that represents the primitive fact ‘remote login
enabled’ and another that represent the derived primitive ‘password obtained’.

As stated above, the effect of a is a triple (p(eff)+, p(eff)−, v(eff)) where
p(eff)+ is the predicate representation of the action node’s parent. In our exam-
ple, it will be the predicate of ‘Execute Code on host 1’. p(eff)− = ∅ since in our
current model, the attacker does not lose previously achieved goals by launching
new attacks. The numeric effect of an action node is an increase of the numeric
variable representing the attacker total effort. Each action node can be assigned
with a cost cost ∈ N . If an action is assigned with a cost, then the numeric effect
of the action is: v(eff) = (total effort,+ =, cost). The goal of the planner is
to find a sequence of actions that end in one of the goal predicate true, while
minimizing total effort variable.

4 PathExpander Algorithm

In this section we will describe our proposed reduction algorithm. In the core
of the algorithm we find the shortest path between a source node and a target
node, and expand the graph using this shortest path. For this, we assume that
our graph has a source node, and that the graph has a single target node. We
argue that these are valid assumptions in our model. For source node, all the
attack graphs have a fact node representing the attacker initial location. This
can be used as the source node for our algorithm. For target node, we choose
the goal node in the LAG. In case there are multiple goal nodes in the attack
graph, we can easily create a single goal by creating virtual actions applicable
only from goal nodes, which lead to a single new goal node. This transition was
described in depth in [18].

After we have the shortest path between a goal node and a source node in the
LAG, we verify that all of the action node’s preconditions are met in that path.



242 T. Gonda et al.

Algorithm 1. PathExpander algorithm
1 function PathExpander(G, s, t)

Input : LAG G, source s, target t
Output: Reduced LAG G′

2 forall v ∈ G do
3 Color(v) = White;
4 end
5 Q ← WeightedShortestPath(G, s, t);
6 while Q �= ∅ do
7 v ← Q.pop();
8 if Type(v) = fact then
9 Color(v) ← Black;

10 else if Type(v) = action then
11 if Color(v) = White then
12 Color(v) ← Grey;
13 Q.push(v);
14 if ∃u ∈ v.parents s.t Color(u)=Grey then
15 Continue; /* Loop Detected */

16 else
17 forall u ∈ v.parents do
18 Q.push(u);
19 end

20 end

21 else if Color(v) = Grey ∧ ∀u ∈ v.parents : Color(u) = Black then
22 Color(v) ← Black

23 else if Type(v) = privilege then
24 if ∃u ∈v.parents s.t Color(u) = Black then
25 Color(v) ← Black;
26 continue;

27 if Color(v) = White then
28 Color(v) ← Grey;
29 Q.push(v);
30 U = FilterGreyNodes(v.parents);
31 Q.push(GetMinimumNode(U));

32 end
33 return Subgraph of G induced by black nodes

A precondition to an action node can be either derived predicate (privilege node)
or a primitive fact node. In case it’s a primitive fact node, we simply add that
node to the reduced graph. In case it’s privilege node, we have to decide which
action will satisfy that node. We choose to expand the action with minimal cost
that can satisfy the privilege node. Careful care should be taken in order to han-
dle possible cycles in the graph. We have solved this complexity by incorporating
a mechanism similar to the DFS search algorithm.

The algorithm is specified in Algorithm 1. In line 5, we assign a stack data
structure, Q, with the shortest path in the attack graph G, where the source node



Scalable Attack Path Finding for Increased Security 243

is at the top of the stack, and the goal node is at the bottom. If we encounter a
leaf node (fact node) we can’t expand that node further, and mark it as a solved
node in line 9. If we encounter an action node for the first time, we add it to the
stack, to revisit and make sure all his parent nodes were also satisfied. If one of
the action node’s parents was visited already (grey) this means we encountered
a cycle and should not mark this action node as resolved. If all of the action
node’s children were resolved (black), we can resolve this action node (line 22).
For privilege node, we first check if one of it’s parents (action nodes) is satisfied
(line 24). If so, then the action node also satisfied the current privilege node (line
25). If the privilege node is not already satisfied by an action node, we expand
the privilege node’s cheapest parent (which is an action node) that is not already
expanded (lines 30 and 31).

Fig. 4. Example PathExpander execution. Source node is f1 and destination node is p1

Fig. 5. Example LAG forwhichPathExpander algorithm returns non-optimal sub-graph



244 T. Gonda et al.

In Fig. 4, the goal node is p1, and the source node is f1. First the shortest
path is found. In this case the shortest path includes f1 → a1 → p1 - Fig. 4a.
We pop f1, it’s a leaf node, so we mark it black, and continue to the next node.
We pop a1, it’s not yet visited so we mark it gray, and push it back to the stack
to revisit. a1 has one parent node, p2 so we push p2 to the stack. p2 is poped, it
is a privilege node that has no black children, so we continue. It’s color is white,
so we mark it gray. We push p2 back since we’ll have to revisit and make sure
p2 was satisfied. p2 has two parents: a2 and a3. The edge (a2, p2) is cheaper
than (a3, p2) so we push a2 to the stack. After we pop a2, we notice it has a
gray parent node (p2) meaning a cycle. So we skip a2, after marking him gray
(Fig. 4b). Since we pushed p2 before pushing a2, we will pop p2 again. This time,
p2 has only one white parent node - a3. So we push a3. This time, all of a 3’s
children can be satisfied (f3, Fig. 4c). So we satisfy a3, and then when we revisit
p2 again we notice it has a black (satisfied) parent, and satisfy p2 as well. We
now pop a1, this time, all of his parent nodes are black (f1 and p2), so we mark
it black too (Fig. 4d). We pop p1, and it has a black child node: a1, hence we
will mark p1 as satisfied as well. We will return the sub-graph induced from the
nodes f1, a1, p2, a3, f3, p1 and the edges between them in the original graph.

This sub-graph will not always be optimal. For instance, in Fig. 5, for source
node f1 and destination node p1, the resulting subgraph will contain the nodes:
f1, a1, p1, p2, a3, f3 with cost 4. While the cost for the sub-graph from the
nodes: f1, a2, p1 will be 3. Experiment show that the path expander algorithm
often returns a sub-graph that contains the optimal solution.

5 Related Work

Since LAGs were used to illustrate all possible paths an attacker can take in
order to compromise the network, it became apparent that these graphs are often
complex and difficult to comprehend fully. A human user may find it problematic
to reach appropriate configuration decisions looking at these attack graphs.

For this reason, many researchers have set their goal to reduce the size of a
LAG, with minimal impact to the conclusion that can be drawn from the reduced
attack graph [19–21]. Zhang et al.’s work is the only reduction that could directly
be used on LAGs and that the reduction outcome can be transformed into a plan-
ning problem. Similar methods have been proposed for Multiple Prerequisites
(MP) graphs [11].

5.1 Effective Network Vulnerability Assessment Through Model
Abstraction

In their work, Zhang et al. [21] suggest that the graph reduction will take place
before the attack graph is generated. The steps to achieve this reduction are:

1. Reachability-based grouping. Hosts with the same network reachability (both
to and from) are grouped together.



Scalable Attack Path Finding for Increased Security 245

2. Vulnerability grouping. Vulnerabilities on each host are grouped based on
their similarities.

3. Configuration-based breakdown. Hosts within each reachability group are fur-
ther divided based on their configuration information, specifically the types
of vulnerabilities they possess.

Following those steps results in an reduced input to attack graph generators -
namely MulVAL, which results in a reduced and easier to understand attack
graph. In an experiment described in the article, an attack graph with initially
217 nodes and 281 edges was reduced to 47 nodes and 55 edges. In our exper-
iments we also applied those algorithms with some success. In their work, the
authors also examined the effect such reductions have on the quantitative secu-
rity metrics of the attack graph which represent the likelihood an asset will
be compromised [22]. It was shown that using this reductions yields different
security metrics for different hosts in the network, compared to the original
model. The authors claimed that the new security metrics represent the real
world better, since many of the vulnerabilities are dependent of each other. We
implemented some of the reductions described here, and tested their effectiveness
(This will be described in the results section).

6 Evaluation

Our goal is to evaluate how different reductions affect two main parameters. The
first parameter is the time it takes finding minimal attack path.

TotalT ime = Gen + Reduce + Solve

Where Gen is the time it takes MulVAL framework to generate an attack graph,
Reduce is the running time of the reduction algorithm and Solve is the time it
takes the solver to find a solution. The second parameter we took into account is
the cost of the minimal plan found by the solver using the different reductions.

TotalCost =
∑

a∈P

Cost(a)

Where P is the plan action sequence found by the solver, and Cost(a) is the cost
of an action in the sequence according to our attack graph. Initially, the costs
in our experiments were taken from exploitability metric in CVSS (Common
Vulnerability Scoring System) [23] to represent the easiest exploitable path in
the graph. Meaning the path found is the easiest exploitable path for an attacker.

After some experiments we have noticed that the TotalCost of all the paths
found have the same cost which is the number of steps an attacker takes. By
investigating the results we have concluded that the vulnerabilities costs using
the exploitability metric lack variance. To illustrate: more than 70% out of 2500
vulnerabilities were of cost 1 and 2 (the easiest exploits). In order to produce
more varied data, we have randomly assigned the cost for vulnerabilities in



246 T. Gonda et al.

our experiments, drawn from a uniform distribution. To test the reductions on
datasets with different sizes, we created 4 additional datasets from the original
dataset, in which only vulnerabilities above certain CVSS impact metric (rep-
resenting the damage an attacker can cause by applying a vulnerability) were
included. This created 5 different datasets with varying number of hosts and
vulnerabilities, and varying cost for vulnerabilities.

7 Results

Figure 6 shows the running time in seconds it took to find the attacker path for
each reduction on networks in different sizes. The Y axis, in log scale, shows
the overall time it took find an attack path. This includes the time it took to
generate the attack graph, the time it took to reduce the attack graph and the
time it took the planner to solve the planning problem. “Without” is the baseline,
meaning that we do not change the original LAG in any form. “Grouping”
Refers to the 1st reduction presented in Subsect. 5.1 in which hosts with similar
reachability configuration are grouped. “Aggregate” refers to the 2nd reduction
in Subsect. 5.1 in which similar vulnerabilities in a software installed on a host are
aggregated together. “Aggregate and Group” means applying the two previous
reductions together. “PathExpander” is our algorithm described in Sect. 4. The
X axis, in log scale shows the number of nodes in the attack graph. The largest
graph which included all the hosts and vulnerabilities had 220,700 nodes and
represented 309 hosts containing 2398 software vulnerabilities. The results show
that as the size of the network gets bigger, PathExpander algorithms finds an
attacker path about 4 times faster than the second best reduction (Aggregate
and Group). The trend-line for the PathExpander is y = 0.3892x + 3.9922 with
R2 = 0.9939 while the trend-line for the Aggregate and Group reduction is
y = 1.5598x − 8.59 with R2 = 0.9622.

Fig. 6. Total run time in respect to the size of the network and reduction used



Scalable Attack Path Finding for Increased Security 247

Figure 7 shows the cost of the plan found using each reduction in respect
to the size of the network. As we can see, using different reductions we found
plans with different costs. This is possible due to the fact the planner we have
used, Metric-FF is not an optimal planner, and does not guarantee to return the
optimal plan. Another important fact we notice is that sometimes by reducing
the size of the graph, we find better paths than those found in the non-reduced
graph. We have manually checked the planning input files in those cases and
made sure that the low-cost plan found on the reduced graph were present in
the non-reduced graph, and indeed they were present.

Fig. 7. Total cost in respect to the size of the network and reduction used

8 Conclusion and Discussion

By looking at the results, we can see two interesting trends which are desired
for our method. First, in terms of running time, we observe that as the network
gets bigger, PathExpander finds solutions much faster than the compared meth-
ods. In the largest network which contained 220,700 nodes and represented 309
network hosts with 2398 vulnerabilities, our method found a result more than 3
times faster (93.34 s compared to 356.91 s) than the second best reduction used
(Aggregate and Group).

In terms of the quality of the results, our methods consistently found the
best attacker path compared to the other methods. We suspect that this is due
to the fact that the planner we have used, Metric-FF is not an optimal planner.

Those two results show that using the PathExpander algorithm in order to
reduce an attack graph before searching for solution using general planner can
both improve the overall running time it takes to find an attacker path, and the



248 T. Gonda et al.

quality of the paths found. This can allow security administrators derive better
conclusions in regards to which vulnerabilities in which hosts to patch first in
order to keep the network secure.

Although in our experiments, drawn from real-life scenarios, the cost of the
paths found were always optimal, in the general case this might not always
be true. In the future we aim to analyze the conditions in which the results are
guaranteed to be optimal. More-over we intend to examine how similar reduction
methods can be applied to more complex models that include both costs for
actions and probabilities of success.

Another possibility for future work is to relax the assumptions about the
attacker. Mainly the fact that this work assumes that the attacker knows the
networks structure and is aware of the target assets. Works such as [24,25] have
started examining this topic, and the question stands how PathExpander can be
applied in those models.

References

1. Morrow, B.: Byod security challenges: control and protect your most sensitive data.
Netw. Secur. 2012(12), 5–8 (2012)

2. Zhang, S., Zhang, X., Ou, X.: After we knew it: empirical study and modeling of
cost-effectiveness of exploiting prevalent known vulnerabilities across IaaS cloud.
In: Proceedings of the 9th ACM Symposium on Information, Computer and Com-
munications Security, pp. 317–328. ACM (2014)

3. Shostack, A.: Quantifying patch management. Secure Bus. Q. 3(2), 1–4 (2003)
4. Ammann, P., Wijesekera, D., Kaushik, S.: Scalable, graph-based network vulner-

ability analysis. In: Proceedings of the 9th ACM Conference on Computer and
Communications Security, pp. 217–224. ACM (2002)

5. Sheyner, O.M.: Scenario graphs and attack graphs. Ph.D. thesis, US Air Force
Research Laboratory (2004)

6. Ou, X., Govindavajhala, S., Appel, A.W.: MulVAL: a logic-based network security
analyzer. In: USENIX Security (2005)

7. Roberts, M., Howe, A., Ray, I., Urbanska, M., Byrne, Z.S., Weidert, J.M.: Per-
sonalized vulnerability analysis through automated planning. In: Working Notes
of IJCAI 2011, Workshop Security and Artificial Intelligence (SecArt 2011), vol. 4
(2011)

8. Sarraute, C.: New algorithms for attack planning. In: FRHACK Conference,
Besançon, France (2009)

9. Ghosh, N., Ghosh, S.: An intelligent technique for generating minimal attack graph.
In: First Workshop on Intelligent Security on Security and Artificial Intelligence
(SecArt 2009). Citeseer (2009)

10. Poolsappasit, N., Dewri, R., Ray, I.: Dynamic security risk management using
Bayesian attack graphs. IEEE Trans. Dependable Secure Comput. 9(1), 61–74
(2012)

11. Ingols, K., Lippmann, R., Piwowarski, K.: Practical attack graph generation for
network defense. In: 22nd Annual Conference on Computer Security Applications
Conference, ACSAC 2006, pp. 121–130. IEEE (2006)

12. Ou, X., Boyer, W.F., McQueen, M.A.: A scalable approach to attack graph gener-
ation. In: Proceedings of the 13th ACM Conference on Computer and Communi-
cations Security, pp. 336–345. ACM (2006)



Scalable Attack Path Finding for Increased Security 249

13. Beale, J., Deraison, R., Meer, H., Temmingh, R., Walt, C.V.D.: Nessus Network
Auditing. Syngress Publishing, Rockland (2004)

14. OpenVAS Developers: The Open Vulnerability Assessment System (OpenVAS)
(2012)

15. Hoffmann, J.: The Metric-FF planning system: translating “ignoring delete lists”
to numeric state variables. J. Artif. Intell. Res. 20, 291–341 (2003)

16. Obes, J.L., Sarraute, C., Richarte, G.: Attack planning in the real world. arXiv
preprint arXiv:1306.4044 (2013)

17. Chen, Y., Wah, B.W., Hsu, C.W.: Temporal planning using subgoal partitioning
and resolution in SGPlan. J. Artif. Intell. Res. 26, 323–369 (2006)

18. Albanese, M., Jajodia, S., Noel, S.: Time-efficient and cost-effective network hard-
ening using attack graphs. In: 2012 42nd Annual IEEE/IFIP International Con-
ference on Dependable Systems and Networks (DSN), pp. 1–12. IEEE (2012)

19. Noel, S., Jajodia, S.: Managing attack graph complexity through visual hierarchical
aggregation. In: Proceedings of the 2004 ACM Workshop on Visualization and Data
Mining for Computer Security, pp. 109–118. ACM (2004)

20. Homer, J., Varikuti, A., Ou, X., McQueen, M.A.: Improving attack graph visual-
ization through data reduction and attack grouping. In: Goodall, J.R., Conti, G.,
Ma, K.-L. (eds.) VizSec 2008. LNCS, vol. 5210, pp. 68–79. Springer, Heidelberg
(2008). doi:10.1007/978-3-540-85933-8 7

21. Zhang, S., Ou, X., Homer, J.: Effective network vulnerability assessment through
model abstraction. In: Holz, T., Bos, H. (eds.) DIMVA 2011. LNCS, vol. 6739, pp.
17–34. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22424-9 2

22. Homer, J., Ou, X., Schmidt, D.: A sound and practical approach to quantifying
security risk in enterprise networks. Kansas State University Technical Report, pp.
1–15 (2009)

23. CVSS: A complete guide to the common vulnerability scoring system (2007)
24. Shmaryahu, D.: Constructing plan trees for simulated penetration testing. In: The

26th International Conference on Automated Planning and Scheduling, vol. 121
(2016)

25. Hoffmann, J.: Simulated penetration testing: from “Dijkstra” to “turing test++”.
In: ICAPS, pp. 364–372 (2015)

http://arxiv.org/abs/1306.4044
http://dx.doi.org/10.1007/978-3-540-85933-8_7
http://dx.doi.org/10.1007/978-3-642-22424-9_2

	Scalable Attack Path Finding for Increased Security
	1 Introduction
	2 System Overview
	3 Background
	3.1 Data Set
	3.2 Logical Attack Graph
	3.3 Planning with Numeric State Variables

	4 PathExpander Algorithm
	5 Related Work
	5.1 Effective Network Vulnerability Assessment Through Model Abstraction

	6 Evaluation
	7 Results
	8 Conclusion and Discussion
	References


