
Supervised Detection of Infected Machines
Using Anti-virus Induced Labels

(Extended Abstract)

Tomer Cohen1, Danny Hendler1(B), and Dennis Potashnik2

1 Department of Computer Science, Ben-Gurion University of the Negev,
Beer Sheva, Israel

hendlerd@cs.bgu.ac.il
2 IBM Cyber Center of Excellence, Beer Sheva, Israel

Abstract. Traditional antivirus software relies on signatures to
uniquely identify malicious files. Malware writers, on the other hand,
have responded by developing obfuscation techniques with the goal of
evading content-based detection. A consequence of this arms race is that
numerous new malware instances are generated every day, thus limiting
the effectiveness of static detection approaches. For effective and timely
malware detection, signature-based mechanisms must be augmented with
detection approaches that are harder to evade.

We introduce a novel detector that uses the information gathered
by IBM’s QRadar SIEM (Security Information and Event Management)
system and leverages anti-virus reports for automatically generating a
labelled training set for identifying malware. Using this training set, our
detector is able to automatically detect complex and dynamic patterns
of suspicious machine behavior and issue high-quality security alerts. We
believe that our approach can be used for providing a detection scheme
that complements signature-based detection and is harder to circumvent.

1 Introduction

With tutorials for writing sophisticated malicious code, as well as malicious
source code and tools for malware generation freely available on the Internet
in general and the dark web in particular [10,18], developing new malware is
becoming easier and sharing malicious code and exploits between different cyber-
criminal projects becomes common.

Moreover, polymorphic and metamorphic malware that utilize dead-code
insertion, subroutine reordering, encryption, and additional obfuscation tech-
niques, are able to automatically alter a file’s content while retaining its func-
tionality [15,23]. As a consequence, the number of new malicious files is growing
quickly. Indeed, the number of new malware released to the wild on January
2017 alone is estimated as approx. 13 million and the number of known malware
is estimated as approx. 600 million [21]!

c© Springer International Publishing AG 2017
S. Dolev and S. Lodha (Eds.): CSCML 2017, LNCS 10332, pp. 34–49, 2017.
DOI: 10.1007/978-3-319-60080-2 3



Supervised Detection of Infected Machines Using Anti-virus Induced Labels 35

A direct implication of this high rate of new malware is that anti-virus prod-
ucts, which rely heavily on signatures based on file-contents for identifying mal-
ware, must be complemented by detection approaches that are harder to evade.
One such approach is to attempt to identify the behavioral patterns exhibited
by compromised machines instead of relying only on the signatures of the files
they download. This approach is more robust to most malware obfuscation tech-
niques, since new malware variants typically have new signatures but exhibit the
same behavioral patterns.

Many organizations employ SIEM (Security Information and Event Manage-
ment) systems, which are software products and services that consolidate infor-
mation streams generated by multiple hardware and software sources within the
organization. SIEM systems facilitate the real-time analysis of gathered infor-
mation in terms of its security implications. They are able to enforce enterprise
security policies and to generate events and alarms when (customizable) sta-
tic rules are triggered. The rich data available to contemporary SIEM systems
holds the potential of allowing to distinguish between the behavior of benign
and compromised machines.

This is the approach we take in this work. Our study is based on data col-
lected by IBM R© Security QRadar R© system [9]. QRadar collects, normalizes
and stores the data, received from various networks and security devices, and
also enriches it with additional analytics, such as new events generated by its
Custom Rule Engine (CRE). We have developed a detector for compromised
machines that automatically mines these log files in a big-data environment,
in order to extract and compute numerous features for identifying malicious
machine behavior. A key challenge is that of generating a labelled set of training
examples, each representing the activity of a specific machine during a specific
time interval, on which supervised machine learning algorithms can be invoked.
Analyzing numerous activity logs manually in order to determine whether or not
they are benign is expensive and time-consuming. Moreover, since the behavior
of infected machines may vary over time, the process of manual labeling should
be repeated sufficiently often, which is unrealistic.

Instead, our detector leverages the alerts issued by the anti-virus running on
the client machine in order to automatically identify periods of time in which
the machine is likely infected and label them as “black” instances. “White”
training instances are generated based on the activity of machines for which no
AV alerts were issued for an extended period of time. This allows our detector
to automatically and periodically generate labelled training sets. Our work thus
makes the following contributions:

– Our experiments prove that malicious behavior of infected machines can be
accurately detected based on their externally observed behavior.

– We devise a novel detector for infected machines in big data SIEM environ-
ments, that uses anti-virus induced labels for supervised classification.

– We present the results of extensive evaluation of our detector, conducted
based on more than 6 terabytes of QRadar logs collected in a real production
environment of a large enterprise, over the period of 3.5 months between



36 T. Cohen et al.

1.12.15–16.3.2016. Our evaluation shows that our detector identifies security
incidents that trigger AV alerts with high accuracy and indicates that it is
also able to alert on suspicious behavior that is unobserved by the AV.

2 Related Work

Some previous work used anti-virus (AV) labels for categorizing malicious exe-
cutables into malware categories such as bots, Trojan horses, viruses, worms, etc.
Perdisci et al. [20] proposed an unsupervised system to classify malware based
on its network activities. Nari and Ghorbani [17] proposed a scheme of building
network activity graphs. Graph nodes represent communication flows generated
by the malware and are marked by the type of the flow (DNS, HTTP, SSL,
etc.) and edges represent the dependencies between the flows. Bekerman et al.
propose a machine-learning based system for detecting malicious executables.
The data set consists of malware network traces, that were tagged based on the
detections of an IDS system, and traces of benign flows. Whereas the goal of the
aforementioned studies is to detect malicious executables or to categorize them
to malware families, the goal of our system is to detect infected machines based
on their network behavior.

We now describe several previous works that proposed systems for identifying
infected machines. Narang et al. [16] propose a method for detecting a P2P botnet
in its dormant phase (in standby for receiving a command from the C&C) by col-
lecting network traces from benign P2P application and P2P botnets and extract-
ing features from the traces. Several studies [3,11] attempt to detect the life-cycle
phase when a newly infected bot searches for its C&C, by leveraging the fact that
this search often generates a large number ofDNSquery failures.Another approach
[5,7] is to leverage the fact that different bots send similar messages to the C&C.
Unlike these works, our system does not look for a specific phase in the malware’s
life-cycle, nor does it limit itself to the detection of specific malware types.

Some previous work examines the behavior of hosts in a time window, extract-
ing features based on the events associated with the host in the time windows
and training a machine learning classifier based on these features. Bocchi et al.
[4] use tagged data set based on a single day of network traces, captured by
a commercial ISP. They use time windows of 30 min when a host is inspected
and an instance is generated based on all the events that occurred during the
time window. Unlike their detector which operates on offline data, our system is
integrated within the QRadar SIEM system. It can therefore use a multitude of
log sources (described in Sect. 4), reporting about different aspects of the com-
puter’s network’s behavior. Moreover, out study was conducted based on data
collected during a significantly longer period of 3.5 months.

Gu et al. [6] present a system called Botminer, that uses clustering algo-
rithms for detecting infected hosts. A key difference between our system and
theirs is that, whereas our detector is designed to detect any type of malware,
Botminer is limited to bot detection. Yen et al. [22] propose an unsupervised
machine-learning based system to detect anomalous behavior of machines in an
enterprise environment. The data is collected using a SIEM system used by EMC.



Supervised Detection of Infected Machines Using Anti-virus Induced Labels 37

The authors define a time window of a single day to inspect a host and create an
instance based on all the events relating to this host that occurred during this
time window.

3 The QRadar Environment

Our detector is based on data collected by an IBM R© Security QRadar R© SIEM
(Security Information and Event Management) system [9], which we shortly
describe in this section. SIEM systems are organization-level software products
and services that consolidate information streams generated by multiple hard-
ware and software sources and facilitate the real-time analysis of this data in
terms of its security implications. The devices that send their reports to the
instance of QRadar which we used in this study are the following: Symantec
endpoint protection solution, network firewalls, personal firewall, IDS, routers,
DNS servers, DHCP servers and authentication servers.

Devices that send streams of information to QRadar are called log sources.
Some of these devices (e.g. firewalls and AVs) send streams of events. Network
devices (e.g. routers and switches), on the other hand, generate streams of flows
and are therefore called flow sources. Events include security-related data, such as
firewall denials, ssh unexpected messages, teardown UDP connection, teardown
TCP connection, etc. QRadar also enriches event streams by adding new events,
generated by its CRE, such as port scanning, excessive firewall denials across mul-
tiple internal hosts from a remote host, local windows scanner detected, etc. Flows,
on the other hand, report on network traffic. Table 1 lists key flow fields.

Table 1. Flow fields

Field name Description

Source IP The IP address of the machine that initiated the flow

Destination IP The IP address of the destination machine

Source port The port used by the machine that initiated the flow

Destination port The port used by the destination machine

First packet time The time of the first packet

Incoming packets The number of packets sent by the source

Outgoing packets The number of packets sent by the destination

Incoming bytes The total number of bytes sent by the source

Outgoing bytes The total number of bytes sent by the destination

Direction Indicates who initiated the flow, a machine that belongs to
the enterprise or a machine outside the enterprise

Source IP location The geographical location of the source IP

Destination IP location The geographical location of the destination IP

TCP flags The TCP flags used in the flow session



38 T. Cohen et al.

QRadar’s event collector collects the logs from the devices, parses, and nor-
malizes them to unified QRadar events. The normalized stream of data is then
passed to an event processor, which enriches the data and generates additional
events, according to the custom rules defined in the system. Some events may
designate a security threat and trigger an alert, called an offense, that is sent
to a security analyst. For example, an AV report can trigger such an offense.
Another example is a collection of firewall denials generated by a single remote
host that may trigger an “excessive firewall denials across multiple hosts from a
remote host” offense.

The QRadar instance we worked with can locally save up to one month of
events and flows. In order to aggregate more data, normalized data is forwarded
to a remote HDFS [1] cluster. The data gathered in the HDFS cluster sums
up to more than 2 TB of data each month, from which approximately 1.6 TB
are events and the rest are flows. On an average day, more than 2000 unique
enterprise user IPs are seen and more than 32 M events and 6.5 M flows relating
to these users are collected.

Gathered data is partitioned to hourly files: each hour is represented by
two files – one aggregating all flows reported during that hour, and the other
aggregating all events reported during that hour. Each event is comprised of
fields such as event name, low and high level categories, source and destination
IPs, event time, and event payload. The event name designates the event’s type.
Each event type (identified by the event’s event name field) belongs to a single
low-level category, which serves to group together several related event types.
Similarly, low-level categories are grouped together to more generic high-level
categories. Table 2 lists a few events, specifying for each its low- and high-level
categories.

We implemented our detector on Spark [2]. Spark is an open source cluster
computing framework that is able to interface with Hadoop Distributed File
System (HDFS) [1]. Since our feature extraction is done using Spark, our detector
is scalable and can cope with big data.

Table 2. QRadar sample events

Event name Low-level category High-level category

Virus Detected, Actual action: Left
alone

Virus Detected Malware

Virus Detected, Actual action:
Detail pending

Virus Detected Malware

Teardown UDP connection Firewall session closed Access

Firewall allow Firewall permit Access

Built TCP connection Firewall session opened Access



Supervised Detection of Infected Machines Using Anti-virus Induced Labels 39

4 The Detector

Our detector leverages the alerts issued by the anti-virus running on client
machines in order to automatically identify time windows in which the machine is
likely infected and label them as “black” instances. “White” training instances
are generated based on the activity of machines for which no AV alerts were
issued for an extended period of time. Each such time window includes events
and flows pertaining to the machine under consideration. Before providing a
detailed description of our detector and the features it uses, we define more pre-
cisely what we mean by the terms flows, black instances, and white instances.

A flow is an aggregation of packets that share the same source address,
source port, destination address, and destination port. The stopping condition
for aggregation differs between udp and tcp. Aggregation of udp packets stops
when no new packets arrive for a predefined time. Aggregation of tcp packets
stops either when no new packets arrive for a predefined time or when a packet
with a set FIN flag has been sent or received.

A black instance is a positive example that is provided to the ML algorithm
used by our detector. It describes a period of time in which a host is assumed to
be infected. The generation of a black instance is triggered upon the occurrence of
certain types of anti-virus (AV) events on a host. The black instance encapsulates
all the events/flows from/to the host before and after the AV event occurred on
it. We have set the length of the time window to 7 h, 6 h before the AV event
and 1 h after it.

Events of the following two types trigger the generation of a black instance:
“Virus Detected, Actual action: Left alone” and “Virus Detected, Actual action:
Details pending”. The reason for basing the generation of black instances on
these AV events is that their semantics guarantees that a malware is indeed
active on the host when the event is generated for it. In both these event types,
a malware was detected on the machine but was not deleted by the AV, hence
it is likely that the malware was active on the host some time before the AV
event and possibly remained active for at least some period of time after the AV
event.

The AV’s configuration in our system is such that it attempts to delete all
detected malware. Nevertheless, in some circumstances, the malware cannot be
deleted, either because it is the image of a running process or because the AV
lacks permissions for doing so.1

A white instance is a negative example that is provided to our detector. It
describes a period of time in which it is assumed that no malware operates within
the host. It encapsulates the events and flows pertaining to a clean host within
a time window of 7 h. By clean, we mean that no significant AV event for that
machine was reported for 7 days before and after the white instance.

1 Newer AV versions have the capability of stopping the process and then deleting the
file.



40 T. Cohen et al.

Features. As mentioned previously, our data consists of network flows (provided
in netflow form) and security-related events. We have defined more that 7000
features to be computed based on a time window of data. The features can be
divided to the following groups.

1. Event name #: number of events with the same specific name (that is, events
of the same specific type) in the time window.

2. Event name distribution: number of events with the same name divided by
the number of all events in the time window.

2. Low level category #: number of events with the same low level category in
the time window.

4. Low level category distribution: number of events with the same low level
category divided by the number of all events in the time window.

5. High level category #: number of events with the same high level category in
the time window.

6. High level category distribution: number of events with the same high level
category divided by the number of all events in the time window.

7. Flows on port: the number of flows with the specific port number (split into
outgoing ports and incoming ports).

8. Flow port distribution: the number of flows with the specific port number
divided by the number of all flows in the time window.

9. Flow statistics: average, max, min, variance and deviation of the aggregation
fields of the flows, for example: number of packets in/out, number of bytes
in/out, etc.

In order to lower dimensionality, we used well-known feature selection algo-
rithm. We applied 6 algorithms and selected the top 40 features output by each,
thus reducing the number of features to 135. The algorithms we applied are:
Information Gain [12], Information Gain Ratio [8], Chi Squared, Relief [13], Fil-
ter [24] and SVM-based feature selection. Each algorithm contributed approx.
20 unique features and the rest of the features were shared between one or more
algorithms.

Constructing the Machine Learning Model. The training set is labelled
based on AV reports. To construct black instances, we find all significant AV
reports (see the definition of a black instance earlier in this section) available
from the data collected by QRadar. Then, raw black instances are built around
each such event (6 h before and 1 h after the event). Raw instances are the
aggregation of all events and flows pertaining to the IP of the machine on which
the AV event occurred and fall within the time window. Then, we compute the
features, normalize the instance (we provide more details on normalization later)
and label the instance as black.

Raw white instances are created based on sampled clean periods of machines.
Such instances are normalized similarly and are labeled as white. Based on the
set of these training instances, a machine learning model is built. The data set we
worked with exhibits imbalance: there were far more white instances than black



Supervised Detection of Infected Machines Using Anti-virus Induced Labels 41

instances. In order to alleviate this problem, we employed under-sampling. After
experimenting with a few under-sampling ratios, we have set the ratio between
the black and the white instances in our training set to 1:10 (i.e., there are 10
times more white instances than black instances). This is consistent with the
findings of Moskovitch et al. [14], who investigated how the ratio between black
and white instances in the training set affects model accuracy in the malware
detection domain.

The required number of white instances is obtained by random sampling of
a large pool of white instances. This pool is created by generating, per every
machine IP appearing in the data, 8 instances per day (centered around hours
24am, 3am, 6am, 9am, 12pm, 15pm, 18pm and 21pm) for each day in the training
period.

We invoked the detector on a test set of the instances. The construction of
the training set and the test set2 is done on the HDFS cluster using map-reduce
code. The computation of feature selection, model construction and classification
are currently done on a stand-alone machine, since these ML algorithms were
not available on our HDFS cluster.

The input to our detector are QRadar’s events and flows. These are accu-
mulated and aggregated within predetermined time windows, per every machine
under consideration. Then, features are extracted and their values are normal-
ized, resulting in instances to be classified. Next, an ML algorithm is invoked on
these instances, using the most recent model available, resulting in classification
of the instances, based on which detection warnings are issued when necessary.

Data Filtering. The QRadar data we received consists of events and flows
for all the machines in the enterprise network. These include servers (e.g. DNS
servers and mail servers), endpoint computers, and smartphones. The AV reports
which we use for labelling, however, are only generated on endpoint comput-
ers. Moreover, the network behavior of servers and smartphones is substantially
different from that of endpoint computers in terms of flow and event type dis-
tributions. In our evaluation we therefore focused on modelling and detecting
infected endpoint computers (both desktops and laptops) and filtered out data
from servers and smartphones.

Some of the training instances created by the algorithm had little or no activ-
ity, which is not helpful for differentiating between malicious and benign activity.
Therefore, when constructing the training set, we filtered out all instances whose
level of activity (in terms of numbers of flows and events) was below a certain
threshold.

Some events always accompany significant AV event of the types “Virus
Detected, Actual action: Left alone” or “Virus Detected, Actual action: Details
pending”. We had to eliminate features based on these events in order to
avoid over-fitting that would detect AV events rather than suspicious network
behavior.

2 More details on the test set are provided in Sect. 5.



42 T. Cohen et al.

Normalization of Data Values. If the resolution of feature values is too fine,
then over-fitting may result due to the fact that the model may classify two
instances differently based on very small differences in field values. To mitigate
this potential problem, we normalized feature values in the following manner.

– Features that count the number of events/flows from any specific type were
normalized by applying the log function and then rounding the result to the
closest integer value.

– Distribution-features (whose values represent fractions) were rounded up to
the nearest second decimal place.

Setting Time Window Length. A key issue affecting detection accuracy is
that of setting the length of the time windows that define training and detection
instances. As described in Sect. 4, black instances are built around significant
AV events indicating that a malware is running on the machine for which the
event is issued. In general, however, we do not know for how long the malware
is active before and after the AV event and the extent to which its activity is
reflected in the network behavior of the infected host. The following questions
have to be addressed in this regard.

1. How long should the time window extend before the AV event?
2. How long should the time window extend after the AV event?

Setting the length of the time window before and after the AV event involves
striking a good balance in the following inherent tradeoff: an overly small win-
dow may imply losing significant information characterizing malicious activity,
whereas an overly large window may imply incorporating data that is irrele-
vant. Let us call the period within the time window that precedes the AV event
the earlier period and the period following the AV event the later period. We
conducted several experiments in order to optimize these periods. Based on the
results of these experiments, we chose to define time windows of 7 h–6 h before
the AV event and 1 h after it.

5 Evaluation

In this section we report on the results of our evaluation. We created a training
set based on QRadar data from 1.12.2015–29.2.2016. We use undersampling with
a ratio of 1:10 between black and white instances to overcome the imbalance
exhibited by our dataset. We then created a classification model based on this
training set and evaluated its accuracy on the rest of the data, spanning the
period 1.3.2016–16.3.2016 (henceforth referred to as the evaluation period). We
conducted a few experiments, described in the following.



Supervised Detection of Infected Machines Using Anti-virus Induced Labels 43

Instance-Based Experiment. We created a test set that consists of all the
time windows built around significant AV events that were reported on the first
half of March 2016 (there were 59 such instances) and all white instances during
this period. White instances are created in a manner similar to that described in
Sect. 4. More precisely, 8 instances are constructed per IP per day starting 24am,
every 3 h. Those instances whose time interval does not contain any significant
AV event are designated as white. The total number of machines that appear in
the test set is 4987 and the total number of instances in the test set is 285,494.

Fig. 1. Detection results for instance-based experiment.

We evaluated the following machine learning algorithm implemented in
WEKA [19]: Random Forest, Decision tree (J48), Adaboost+J48, Bagging+J48,
Random Forest, and Adaboost+Random Forest. The results are presented in
Fig. 1. Best results were obtained by the Bagging+J48 algorithm, which yields
a TPR of 0.81 on black instances and a TPR of 0.996 on white instances, with
ROC area 0.86.

Compromised Machine Detection Experiment. As mentioned in Sect. 4,
events and flows are bound to an endpoint IP. In the enterprise network, however,
the IP of a machine changes on a regular basis. Consequently, we cannot track
the activity of a machine over an extended period of time solely based on the
IPs associated with events/flows.

In order to address this problem, our code constructs a mapping between
IP/time pairs and machine MAC addresses. This mapping is constructed using
DHCP events and personal firewall events reported to Q-Radar. Unfortunately,
DHCP and firewall events were not available for all machines in the course of the
first half of March, but we were able to construct the mapping for 10 machines
on which a total of 32 black instances occurred (which we henceforth refer to
as compromised machines) and for additional 2110 machines on which no such
events occurred (which we henceforth refer to as clean machines).

In the compromised machine detection experiment, we evaluate the
extent to which the classifier alerts on compromised machines during the



44 T. Cohen et al.

Fig. 2. Detection results for the compromised machine detection experiment.

evaluation period. In order to do so, we use a test set that contains all the
instances (8 per day) constructed for all mapped machines. We evaluate classi-
fication results as follows.

– If the detector alerts (classifies as positive) during the first half of March on
one or more instances of a compromised machine, all black instances that
occurred on that machine during the evaluation period are considered true
positive, otherwise they are all considered false negative.

– For all instances that are from clean machines, if the instance is alerted on it
is considered false positive, otherwise it is considered true negative.

The results of this experiment are shown by Fig. 2. In terms of true positive
rate, 3 algorithms (J48, Bagging+J48, Adaboost+J48) alert on all compromised
machines (hence all 32 black instances are true positive), whereas the other
two algorithms (random forest and Adaboost+random forest) alert on 9 out 10
compromised machines and only miss a single machine, on which a single black
instance occurred during the evaluation period (hence 31 black instances are
true positives).

All algorithms exhibit excellent detection rate on white instances but the
random forest algorithms (with and without Adaboost) are the clear win-
ners, both exceeding true positive rate of 0.9997 (!). In absolute numbers,
Adaboost+random forest has only 29 false positives and random forest only
has 31 (out of a total of approx. 135,000 white instances), all of which occurred
on a set of 14 clean machines.

5.1 Early Detection Experiment

In this section, we evaluate the extent to which our detector is able to alert on
suspicious activity before the AV does. In order to be able to track machine
activity across day boundaries, we conduct also this evaluation for the set of
machines for which a mapping exists throughout the evaluation period. In this
experiment, we consider a black instance as a true positive, if our detector alerted
on the machine on which it occurred within ±3 days of the event.

Similarly to the compromised machine detection experiment, we use a test set
that contains all the instances (8 per day) constructed for all mapped machines.
First, we compute true positive and false positive rates as follows.



Supervised Detection of Infected Machines Using Anti-virus Induced Labels 45

Fig. 3. True positive/negative results for a ±3 days alert period.

– For every black instance, if the detector alerts (classifies an instance as pos-
itive) on that machine within ±3 days of the black instance, it is considered
true positive, otherwise it is considered false negative.

– For all instances that are at least 3 days afar from all black instances (if any)
on their machine, if the instance is alerted on it is considered false positive,
otherwise it is considered true negative.

The results are shown in Fig. 3. Comparing with Fig. 2, true positive results
are identical for all algorithms except for Adaboost+random forest, for which the
number of true positives is now down to 24 (as compared with 31 in the compro-
mised machine detection experiment). True negative results are also similar to
those presented in Fig. 2. The random forest algorithms are the winners and both
exceed true negative rate of 0.9997. In absolute numbers, Adaboost+random for-
est has 31 false positives and random forest has 38 (out of a total of approx.
135,000 white instances), all of which occurred on a set of 14 clean machines.

As we described above, a black instance is considered a true positive if the
detector alerts on that machine within ±3 days. We say that the detector pro-
vides early detection for a black instance, if it alerts on the same machine on
some instance that precedes the black instance by at most 3 days. If the algo-
rithm provides early detection for an algorithm, then the early detection period
is the length of time between the black instance and the earliest alert on that
machine that precedes it by at most 3 days.

Clearly, an instance for which the detector provides early detection is a true
positive. Based on the results presented by Figs. 2 and 3, we conclude that the
Random Forest algorithm strikes the best balance between true positive and true
negative rates. In the early detection experiment, we evaluated its capability of
providing early detection.

Overall, out of the 31 true positives, the Random Forest algorithm provides
early detection for 25. The average early detection period is approx. 22 h. Figure 4
presents a histogram of the early detection period achieved by the algorithm.



46 T. Cohen et al.

5.2 Evaluation Using X-Force Exchange

IBM’s X-Force Exchange is a cloud-based threat intelligence platform. It offers
an API that allows the user to make queries regarding suspicious IPs and URLs
(among other services). When querying about an IP/URL, X-Force Exchange
returns a few scores in the range [0−10] that quantify the IP’s reputation w.r.t.
several risk categories. The higher the score, the more suspicious is the IP/URL.
The risk categories relevant for the evaluation we describe next are: Bots, Botnet
Command and Control Server, and Malware.

We used X-Force Exchange in order to obtain an alternative method of eval-
uating the quality of our detector that is orthogonal to the features it uses. We
did this by querying X-Force Exchange on IPs and URLs that are communicated
with during instances in our test set. Our hypothesis was that black instances, as
well as instances alerted on by our detector, would possess statistically-significant
X-Force Exchange lower reputation levels (and therefore higher risk scores).

Fig. 4. Early detection histogram for the Random Forest algorithm.

Table 3 presents the average scores obtained for suspected (alerted), black,
and white instances in the 3 relevant categories. As expected, the average score
of black instances is significantly higher than that of white instances for all
categories and the gap is especially large for the Botnet C&C category. Suspected
instances on which our detector alerts obtain scores that are also significantly
higher than those of white instances and, for the Bots and Malware categories,
even higher than those of black instances.

Table 3. X-Force average scores

Category Suspected Black White

Bots 4.211538 3.246154 1.969231

Malware 5.812 5.7 4.24

Botnet command and control 3.015385 4.6 1.323077



Supervised Detection of Infected Machines Using Anti-virus Induced Labels 47

Table 4. X-Force p-values

Category Black vs. Suspectet Black vs. White Suspectet vs. White

Bots 0.223193 0.046219 0.014266

Malware 0.161492 8.28E−08 1.42E−08

Botnet command
and control

0.031646 1.04E−06 0.024139

We have also checked the statistical significance of the differences in score
by computing their p-values and show the results in Table 4. As anticipated, the
differences between the scores of black and white instances, as well as those of
suspected and white instances, are statistically significant. On the other hand,
the differences between black and suspected instances in the Bots and malware
categories are insignificant, but they are significant for the botnet C&C category,
where the grade of black instances is higher. Collectively, these results provide a
clear indication that at least part of the presumed false positives of our detector
do indicate suspicious host behavior that is not alerted by the AV.

6 Discussion

In this work, we presented a novel detector for infected machines in big data
SIEM environments, that uses anti-virus induced labels for supervised classifi-
cation. Our detection uses features that were selected out of more that 7000
features, computed based on time windows of QRadar data, containing reports
on machines’ flows and events.

We also present the results of extensive evaluation of our detector, conducted
based on more than 6 terabytes of QRadar logs collected in a real production
environment of a large enterprise, over the period of 3.5 months. Our evaluation
shows that our detector identifies security incidents that trigger AV alerts with
high accuracy. Moreover, it is able to provide early detection for a majority of
these events. Our evaluation also indicates that our detector is able to alert on
suspicious behavior that is unobserved by the AV.

One direction for future work is to find additional features that can further
improve the accuracy of our detection approach. One possible way of doing this
is to use the reputation of IPs/URLs that are communicated with during a
time-window. These were used by us for evaluation, but not for constructing a
detection model.

Another interesting direction is to conduct an experiment for observing the
rate of concept drift exhibited by the models learnt using our approach and
leverage its results for optimizing the duration and frequency in which models
are learnt. Finally, it would also be interesting to check the extent by which
models learnt on one QRadar system are applicable to other QRadar systems.



48 T. Cohen et al.

Acknowledgments. This research was supported by IBM’s Cyber Center of Excel-
lence in Beer Sheva and by the Cyber Security Research Center and the Lynne and
William Frankel Center for Computing Science at Ben-Gurion University. We thank
Yaron Wolfshtal from IBM for allowing Tomer to use IBM’s facilities, for providing us
the data on which this research is based, and for many helpful discussions.

References

1. Hadoop distributed file system. http://hadoop.apache.org/
2. Spark cluster computing. http://spark.apache.org/
3. Antonakakis, M., Perdisci, R., Nadji, Y., Vasiloglou II, N., Abu-Nimeh, S., Lee,

W., Dagon, D.: From throw-away traffic to bots: Detecting the rise of DGA-based
malware. In: USENIX Security Symposium, vol.12 (2012)

4. Bocchi, E., Grimaudo, L., Mellia, M., Baralis, E., Saha, S., Miskovic, S., Modelo-
Howard, G., Lee, S.-J.: Magma network behavior classifier for malware traffic.
Comput. Netw. 109, 142–156 (2016)

5. Dietrich, C.J., Rossow, C., Pohlmann, N.: CoCoSpot: clustering and recognizing
botnet command and control channels using traffic analysis. Comput. Netw. 57(2),
475–486 (2013)

6. Gu, G., Perdisci, R., Zhang, J., Lee, W., et al.: BotMiner: clustering analysis of net-
work traffic for protocol-and structure-independent botnet detection. In: USENIX
Security Symposium, vol. 5, pp. 139–154 (2008)

7. Gu, G., Zhang, J., Lee, W.: BotSniffer: detecting botnet command and control
channels in network traffic (2008)

8. Hall, M.A., Smith, L.A.: Practical feature subset selection for machine learning
(1998)

9. IBM: IBM Security QRadar SIEM. http://www-03.ibm.com/software/products/
en/qradar-siem/

10. iicybersecurity: International institute of cyber security. https://iicybersecurity.
wordpress.com

11. Jiang, N., Cao, J., Jin, Y., Li, L.E., Zhang, Z.-L.: Identifying suspicious activities
through DNS failure graph analysis. In: 2010 18th IEEE International Conference
on Network Protocols (ICNP), pp. 144–153. IEEE (2010)

12. Kent, J.T.: Information gain and a general measure of correlation. Biometrika
70(1), 163–173 (1983)

13. Kira, K., Rendell, L.A.: The feature selection problem: traditional methods and a
new algorithm. In: AAAI, vol. 2, pp. 129–134 (1992)

14. Moskovitch, R., Stopel, D., Feher, C., Nissim, N., Elovici, Y.: Unknown malcode
detection via text categorization and the imbalance problem. In: IEEE Interna-
tional Conference on Intelligence and Security Informatics, ISI 2008, pp. 156–161.
IEEE (2008)

15. Musale, M., Austin, T.H., Stamp, M.: Hunting for metamorphic JavaScript mal-
ware. J. Comput. Virol. Hacking Tech. 11(2), 89–102 (2015)

16. Narang, P., Ray, S., Hota, C., Venkatakrishnan, V.: PeerShark: detecting peer-
to-peer botnets by tracking conversations. In: 2014 IEEE Security and Privacy
Workshops (SPW), pp. 108–115. IEEE (2014)

17. Nari, S., Ghorbani, A.A.: Automated malware classification based on network
behavior. In: 2013 International Conference on Computing, Networking and Com-
munications (ICNC), pp. 642–647. IEEE (2013)

http://hadoop.apache.org/
http://spark.apache.org/
http://www-03.ibm.com/software/products/en/qradar-siem/
http://www-03.ibm.com/software/products/en/qradar-siem/
https://iicybersecurity.wordpress.com
https://iicybersecurity.wordpress.com


Supervised Detection of Infected Machines Using Anti-virus Induced Labels 49

18. Deep Web News. https://darkwebnews.com
19. Weka 3: Data mining software in Java. University of Waikato. http://www.cs.

waikato.ac.nz/ml/weka/
20. Perdisci, R., Lee, W., Feamster, N.: Behavioral clustering of http-based malware

and signature generation using malicious network traces. In: NSDI, vol. 10, p. 14
(2010)

21. AV TEST: The independent it-security institute. https://www.av-test.org/en/
statistics/malware/

22. Yen, T.-F., Oprea, A., Onarlioglu, K., Leetham, T., Robertson, W., Juels, A.,
Kirda, E.: Beehive: Large-scale log analysis for detecting suspicious activity in
enterprise networks. In: Proceedings of the 29th Annual Computer Security Appli-
cations Conference, pp. 199–208. ACM (2013)

23. You, I., Yim, K.: Malware obfuscation techniques: a brief survey. In: 2010 Interna-
tional Conference on Broadband, Wireless Computing, Communication and Appli-
cations (BWCCA), pp. 297–300. IEEE (2010)

24. Yu, L., Liu, H.: Feature selection for high-dimensional data: a fast correlation-based
filter solution. In: ICML, vol. 3, pp. 856–863 (2003)

https://darkwebnews.com
http://www.cs.waikato.ac.nz/ml/weka/
http://www.cs.waikato.ac.nz/ml/weka/
https://www.av-test.org/en/statistics/malware/
https://www.av-test.org/en/statistics/malware/

	Supervised Detection of Infected Machines Using Anti-virus Induced Labels
	1 Introduction
	2 Related Work
	3 The QRadar Environment
	4 The Detector
	5 Evaluation
	5.1 Early Detection Experiment
	5.2 Evaluation Using X-Force Exchange

	6 Discussion
	References


