Broadcast Channels with Privacy Leakage

Constraints

Ziv Goldfeld, Gerhard Kramer and Haim H. Permuter

Abstract

The broadcast channel (BC) with one common and two privatsages with leakage constraints is studied, where
leakage refers to the normalized mutual information betwaenessage and a channel symbol string. Each private
message is destined for a different user and the leakagestothier receiver must satisfy a constraint. This model
captures several scenarios concerning secrecy, i.e., dthneither or neither of the private messages are senrgi |
and outer bounds on the leakage-capacity region are defNVitout leakage constraints the inner bound recovers
Marton’s region and the outer bound reduces to the UVW-obtemd. The bounds match for semi-deterministic
(SD) and physically degraded (PD) BCs, as well as for BCs wittlegraded message set. The leakage-capacity
regions of the SD-BC and the BC with a degraded message s®fteregast results for different secrecy scenarios. A
Blackwell BC example illustrates the results and shows hmweakage-capacity region changes from the capacity
region without secrecy to the secrecy-capacity regionglifferent secrecy scenarios.

Index Terms

Broadcast channel, Marton’s inner bound, Privacy Leak&gerecy, Physical-layer Security.

|. INTRODUCTION

Confidential and non-confidential messages are often titieshover the same channel. However, the underlying
principles for constructing codes without and with secraoy different. Without secrecy constraints, codes should

use all available channel resources to reliably conveyrinéion to the destinations. The presence of confidential
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messages, on the other hand, requires that some resouecalfoarted to preserve secrecy. We study relationships
between the coding strategies and the fundamental limitoofmunication with and without secrecy. To this end
we incorporate secret and non-secret transmissions oweo-aiter broadcast channel (BC) by considering the BC
with privacy leakage constraints (Fig. 1).
Information theoretic secrecy was introduced by Shanhpmfib studied communication between a source and
a receiver in the presence of an eavesdropper. Wyner modetedt communication over noisy channels when he
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Fig. 1: BC with privacy leakage constraints.

introduced the degraded wiretap channel (WTC) and deriteeddcrecy-capacity regiohl[2]. Csiszar and Korner

[3] extended Wyner's result to a general BC where the sousmeteansmits a common message to both users. The
development of wireless communication, whose inherenhapure makes it vulnerable to security attacks, has
inspired a growing interest in understanding the fundaaldimiits of secure communication.

Multiuser settings with secrecy were extensively treatedhie literature. Broadcast and interference channels
with two confidential messages were studied’in [4], whereiirand outer bounds on the secrecy-capacity region of
both problems were derived. The secrecy-capacity regiothfosemi-deterministic (SD) BC was established in [5].
The capacity region of a SD-BC where only the message of tehastic user is kept secret from the deterministic
user was derived in_[6]. The opposite case, i.e., when thesagesof the deterministic user is confidential was
solved in [7]. Secret communication over multiuser chasneds considered in[8], where the authors derive inner
and outer bounds on the rate-equivocation region of the/#@ (RBC) with one or two confidential messages.
Gaussian multiple-input multiple-output (MIMO) BCs and \@F were studied ir [9]=[14], whilé [15]=[17] focused
on BCs with an eavesdropper as an external entity from wHhicin@ssages are kept secret.

We study a two-user BC over which a common message for botts @sel a pair of private messages, each
destined for a different user, are transmitted. A limitedoant of rate of each private message may be leaked
to the opposite receiver. The leaked rate is quantified asdhmalized mutual information between the message
of interest and the channel output sequence at the oppcsite Setting either leakage to zero or infinity reduces
the problem to the case where the associated message isectiaficor non-confidential, respectively. Thus, our
problem setting captures as special cases four scenanm®mrong secrecy, i.e., when both, either or neither of
the private messages are secret. We derive novel inner ated lbounds on the leakage-capacity region of the
BC. The bounds are tight for SD-BCs, physically degraded)(BOs, and BCs with a degraded message set, thus
characterizing their leakage-capacity regions, whichewast known before. Furthermore, we derive a condition
for identifying the privacy leakage threshold values abedgch the inner bound saturates.

Various past results are captured as special cases. Bygt#iénleakage thresholds to infinity, our inner bound
recovers Marton’s inner bound with a common message [18[;twis optimal for every BC with a known capacity
region. Making the leakage constraint inactive in our obmund recovers the UVW-outer bound[19] or the New-
Jersey outer bound [20]. These bounds are at least as goaé\asysly known bounds (see [21], [22] and[23]).



The leakage-capacity region of the SD-BC reduces to eacheofdgions in[[5]+[7] and[24] by discarding the
common message and choosing the leakage constraints appelyp The capacity result also recovers the optimal
regions for the BC with confidential messageé's [3] and the Bt widegraded message set (without secrécy) [25].

Our code construction splits each private message irgokdic and aprivate part. The public parts along with
the common message constitute a public message that isetktgdboth users, and therefore, each public part
is leaked to the opposite receiver by default. The codebobltke private parts are double-binned to allow joint
encoding and to control the amount of rate leaked from eaclhatpr part. The bin sizes are chosen to satisfy
the total leakage constraints. Our coding scheme is ea#lgrdi Marton code with an additional layer of bins,
whose sizes correspond to the amount of leakage; the langse textra bins are, the smaller the leakage. The
resulting achievable region is simplified using the Foukilatzkin elimination for information theory (FME-IT)
software [26]. The outer bound is established by using telgisg identities[[27]. A Blackwell BC (BWC) [28],
[29] illustrates the results and visualizes the transitidrthe leakage-capacity region from the capacity region
without secrecy to the secrecy-capacity regions for déffieisecrecy scenarios.

This paper is organized as follows. In Sectidn Il we desctiteeBC with privacy leakage constraints. In Section
[ we state inner and outer bounds on the leakage-capesifipn and characterize the leakage-capacity regions
for the SD-BC, the BC with a degraded massage set and the PCBB&ion[IV discusses past results that are
captured within our framework. In Sectiéd V we study a BWCrapée and visualise the results, while Secfion VI

provides proofs. Finally, Sectidn VIl summarizes the mathiavements and insights of this work.

II. NOTATIONS AND PROBLEM DEFINITION

We use the following notations. Given two real number$, we denote byfa : b] the set of integergn €
N|[a] < n < [b]}. We defineR; = {z € Rlz > 0}. Calligraphic letters denote discrete sets, eXj,,while
the cardinality of a sett’ is denoted byl X'|. X" stands for then-fold Cartesian product oft. An element of
X" is denoted byt = (21, z2,...,2,), and its substrings asf = (@i, Tiy1,...,2;); wheni = 1, the subscript
is omitted. Whenever the dimensienis clear from the context, vectors (or sequences) are derinteboldface
letters, e.g.x.

Let (97}‘, IP’) be a probability space, whefe is the sample spacé; is the o-algebra and? is the probability
measure. Random variables 0\(ér, F, ]P) are denoted by uppercase letters, eXj.with conventions for random
vectors similar to those for deterministic sequences. Nbam’éf represents the sequence of random variables
(Xi, Xit1, ..., X;), while X stands forX™. The probability of an evend € F is denoted byP(.A), while
]P’(A\B) denotes conditional probability ofl given B. We usel 4 to denote the indicator function od. The set
of all probability mass functions (PMFs) on a finite s€tis denoted byP(X). PMFs are denoted by the capital
letter P, with a subscript that identifies the random variable anddssible conditioning. For example, for two
random variablesX and Y we usePx, Pxy and Px|y to denote, respectively, the marginal PMF &f the
joint PMF of (X,Y) and the conditional PMF oK givenY'. In particular,Px|y represents the stochastic matrix

whose elements are given By (z|y) = P(X = z|Y = y). We omit subscripts if the arguments of the PMF are



lowercase versions of the random variables. The supportRiI& P and the expectation of a random variable
are denoted by supp’) andEX, respectively.

For a discrete measurable spd€e F), a PMFQ € P(Q) gives rise to a probability measure ¢, F), which
we denote byPg; accordingly,Pg (A) = > weaQw), for every A € F. For a sequence of random variables
X™ we also use the following: If the entries &f™ are drawn in an independent and identically distributad().
manner according t®Px, then for everyx € X™ we havePx~(x) = [];_; Px(z;) and we write Pxn(x) =
Py (x). Similarly, if for every (x,y) € X™ x V" we have Py« x(y|x) = [[;_; Py|x(yi|lz:), then we write
Pyuixn(y|x) = Py x(y[x). We often use&l’y or Q. when referring to an i.i.d. sequence of random variables.
The conditional product PMIQ;}IX given a specific sequencec X™ is denoted b}Q’;‘X:x.

The empirical PMF/, of a sequenca € X" is

(1)

where N(alx) = > | 1y,,—q). We use7"(Px) to denote the set of letter-typical sequences of lengthith
respect to the PMFPy and the non-negative numbef30, Ch. 3], [31], i.e., we have

T (Px) = {x € X" lux(a) — Px(a)| < ePx(a), Va € X}. 2

The BC with privacy leakage constraints is illustrated ig.Bl. The channel has one sender and two receivers.
The sender randomly chooses a trigteg, m1, m2) of indices uniformly and independently from the s[et:
2nfo] x [1 ¢ 2nfa] x [1 @ 27F2] and maps them to a sequengee X", which is the channel input. The
sequencex is transmitted over a BC with transition probabili@s, y, x. If the channel transition matrix factors
aslyy,—r(x)}@vys|x, for some functionf : X — Y1, or asQy, | xQy,|y, wWe call the BC SD or PD, respectively.
The output sequencg; € Y, wherej = 1,2, is received by decoder. Decoderj produces a pair of estimates
(mgj>,mj) of (mg, m;).

Definition 1 (Code Description) An (n, Ry, R1, Re) codeC,, for the BC with leakage constraints is defined with
respect to the three message séts = [1:2"7%], j =0,1,2, and has:

1) A stochastic encoder that is described by a mappipg Mo x M; x My — P(X™).

2) Two decoding functionsy; : Vi — (Mg x M;) U {e}, for j = 1,2, wheree ¢ M, for k = 0,1,2, is an

error symbol.

Denote the set of alin, Ry, R1, R2) codes for the BC with leakage constraints ®y and letC,, be a random
variable with alphabet,, distributed according t&c, € P(<,). The probability measur® used throughout this
work is induced by an underlying PMF af}, x My x M1 X My x X" x YI' X V& x Mg x M1 x My x Ma
given by

~ (1) 4 ~(2) 4 A (1) 4 ~(2) A
P(CnamOamlamanaylayQamg )7mlamg )7m2) = PCn(Cn)P(Cn)(mOamlamanaylayQamg )7mlamg )7m2)7

(3a)



where

~ (1 ~ ~ (2 ~
P(Cu) (moamlamana Y1aY27mé )amhmé )amQ)

1
A YRINVRINVA ¥ 1 ; . (3b
|M0||M1||M2|fE(X|m0,mlamQ)QYl,Yg\X(YIay2|X) N1 {(mgy)ymj)qu(yj)} (3b)

is defined by the codé,, = ([, ¢1, d2).

Definition 2 (Error Probability) The average error probability for afn, Ry, R1, R2) code(,, is
Po(Cn) = PNV, NP, NIy, o) # (Mo, Mo, My, Ms)|C,, = C
e( n) ( 0 > 0 > 1 2) 7&( 0 0 1, 2) n n

1 n
= m Z Z QY17Y2‘X(ylay2’fE(mOamlva))a (4a)
(mo,m1,m2) (y1,y2) €V xXV5':
EMoXxMaX Mz ¢ (y1)#(mo,m1) or
d2(y1)#(mo,m2)

The average error probability for receiver= 1,2 is
P..;(Cn) = Pe, (M, 11;) # (Mo, M;)|Cp = € ). (4b)

Definition 3 (Information Leakage) The information leakage a¥/; to receiver 2 under arin, Ry, R, R2) code
Cy is

1
I(M1; Y3 |C,, = Cp). (5a)

n

Ll(cn)
Similarly, the information leakage df/; to receiver 1 undect,, is
1

When the aforementioned quantities are subsequently tised;onditioning ofC,, may be omitted when it is

clear from the context.

Definition 4 (Achievable Rates)Let (Lq, Ls) € Ri. A rate triple (Ry, R1, R2) € Ri is (L1, Lo)-achievable if

for anye, &1,&; > 0 there is a sufficiently large and an(n, Ry, R1, R2) codeC,, such that

P.(Cp) <€ (6a)
Li(Cn) < L1+ & (6b)
L2 (Cn) S L2 + 52. (GC)

The (L1, Lo)-leakage-capacity regiod (L1, L2) is the closure of the set of thd 1, Lo)-achievable rates.

Remark 1 (Inactive Leakage Constraints) SettingZ; = R;, for j = 1,2, makes(6h)-(6d) inactive and reduces

the BC with privacy leakage constraints to the classic BGwitcommon message. This is a simple consequence



of the non-negativity of entropy, which implies that for @hye ¢,

(respectively] (Ms; Y7 |C,, = C,,) < nRs) always holds. To simplify notation, when we hencefortarres leakage

threshold values under whig®B)-(6d) are automatically satisfied, we write; — oo, j = 1,2.

Ill. L EAKAGE-CAPACITY RESULTS

This section states novel inner and outer bounds on(fhe L.)-leakage-capacity regio@(L, L;) of a BC
with privacy leakage constraints. These bounds match foBEB, BCs with a degraded message set and PD-BCs,

which characterizes the leakage-capacity regions forthie®e cases. We start with the inner bound.

Theorem 1 (Inner Bound) Let (Lq,Ls) € Ri and Ri(L4, Ls) be the closure of the union of rate triples

(Ro, R1, R2) € RY. satisfying:

Ry < I(Uy; Y1|Uo) — I(Ur; U2|Uo) — I(Uy; Ya|Uo, Uz) + Ly (8a)

Ro+ Ry < I(Uo, Ur; Y1) — I(Uy; U2|Uo) — I(Us; Ya|Uo, Ua) + Ly (8b)
Ro+ Ry < I(Uo, Ur; Y1) (8c)

Ry < I(Us; Ya|Up) — I(Uy; Ua|Uy) — I(Us; Y1 |Uo, Ur) + Lo (8d)

Ro + Ry < I(Uo, Uz; Ya) — I(Uy; U2|Ug) — I(Uz; Y1|Uo, Ur) + Lo (8e)
Ro + Rz < I(Uo, Uz; Y2) (8f)

Ro + Ri + Ry < I(Uy, Uy; Y1) + 1(Uz; Ya|Up) — 1(Ur; Ua|Uo) — 1(U; Ya|Uo, Uz) + Ly (89)
Ro + R1 + Re < I(Uy; Y1|Uo) + I(Uo, Uz; Y2) — 1(Ur; U2|Us) — 1(Uz; Y1|Uo, Ur) + Lo (8h)
Ro + Ri + Ry < I(Uy; Y1|Up) + I(Us; Y2|Uo) — 1(Uy; Ua|Up) + min {1(Uo; Y1), I(Uo; Y2) } (8i)
2Ry + Ri + R < I(Uo, Uy; Y1) + I(Uo, Ua; Y2) — 1(Uy; U2|Up) (87)

where the union is over all PMF8y, v, v, x Qy,,v,|x- The following inclusion holds:
Ri(L1, L) € C(L1, L2). 9)

The proof of Theorerfil1 is given in Sectibn VI-A and relies orakiage-adaptive Marton-like code construction.
Rate-splitting is first used to decompose each private rgestg, j = 1,2, into a public partM,; and a private
part M;;. A Marton code with an extra layer of bins is then construatéde treating(Mo, Mo, Mao) as a public
message and/;;, for j = 1,2, as private message The double-binning of the private message codebooks fermi
joint encoding (outer layer) and to control the total raikkege to the other user (inner layer). The leakage analysis
takes into account the rate leaked due to the decoding ofubkicpmessage by both users. Also, additional leakage

occurs due to the joint encoding process, which introducgeeation between the private message codewords.



Accounting for the latter is the main difficulty in the leakagnalysis; we treat this by relating the bin sizes in the

inner and outer coding layers.

Remark 2 The regionR;(L1, Lo) recovers Marton’s inner bound for BCs with a common messé&ge Theorem
5]. By taking L1, Ly — oo, the rate bounds ir@8d)(8H), (8d)-(8€) and (8g)-(8H) are redundant. The remaining
bounds coincide with those defining Marton’s region. A fidlcdssion on the special cases™®f(L1, L2) is given

in Sectior TV-D.

The following corollary states a sufficient condition on tleakage thresholdé; and L, to become inactive
in Ri(L1, L) from Theoren{ll withRy = 0 (i.e., when no common message is present), when evaluatist un
a certain input distributiorPy, v, .v,.x € P(Uo x Uy x Uy x X). To state the result, &R (L1, L2, Pvy.v,.U5.x)
denote the set of rate paif®:, R2) € R? satisfying [8) withRy = 0 and when the mutual information terms are

calculated with respect 6, v, v,,x Qv, v, x - Accordingly,

7éI(lelVJQ) é U kI(L17L27PU0.,U1.,U2,X) (10)

Pug.uy,us,x:
(Uo,U1,U2) =X —(Y1,Y2)

corresponds to the region obtained by settitg= 0 in R{(L1, Lo).

Corollary 2 (Inactive Leakage Constraints) Let (L, L2) € Ri and Py,.u, v,,x € P(Up x Uy x Uz x X). For
j =1,2 define
L5 (Puy,uy vz, x) = 1(Uo; Y;) + 1(Uy; Us, Y5|Uo), (11)

wherej = j + (—1)’*1. We have the following results:
1) If Ly > Li(Pyy.v,.0s,x) thenRi(Ly, Ly, Py, v, va.x) = Ri(00, La, Puy,v,.05.x)-
2) If Ly > L5(Pu, v,,05,x) thenRy(L1, Lo, Puy v 5, x) = Ri(L1,00, Puy tr,,05.)-
3) If Lj > L;(PU07U17U27)(), fij = 1,2, then7~€1(L1,LQ,PUOVUI_,U%X) = 7@1(00, OO,PU07U17U27)().

For the proof of Corollary]2 see Sectibn VI-B. According tethbove, if any of the leakage thresholfls,
j = 1,2 surpasses the critical value from[11), the correspondingri bound remains unchangedZif is further

increased, and is therefore equivalent to the region wheres co.

Remark 3 Corollary [2 specifies a condition fof; and/or L, being inactive for each input probability. Getting
a condition for the inactivity of the thresholds with respéz the entire regioriR;(L,, L;) from (@0) is a more
challenging task. ldentifying such a condition involvesntifying which input distributions achieve the boundafy o
ﬁI(Ll, L). Although, in some communication scenarios this identiboas possible (e.g., for the MIMO Gaussian
BC with or without secrecy requirements the boundary acdhgewdistributions are Gaussian vectors [32]=[36]),
but the structure of the optimizing distribution is unknoiwrgeneral.

The merit of Corollary R is reflected when explicitly caldirg 7@1(L1, L,) for a given BC. One can then identify

the optimizing distribution (e.g., by means of an analytidzaracterization or via an exhaustive search), and can,



in turn, calculate the maximum df*(Py, v, v, x) over those distributions. Denoting by; this maximal value,
if L; < L7 then increasingL; will further shrink the region. If, on the other hand,; > L7, then the region
remains unchanged even If; further grows. This notion is demonstrated in Secfidn V, rettvee calculate the

(L1, Lo)-leakage-capacity region of the Blackwell BC.
Next, we state an outer bound 6Ly, L2). A proof of TheoreniB is given in Sectidn VI}C.

Theorem 3 (Outer Bound) Let (Lq, L) € Ri and Ro (L1, L2) be the closure of the union of rate triples
(Ro, R1, R2) € R?. satisfying:

Ry < min {I(W;Y1),[(W;Y2)} (12a)

Ry < I({U;A W, V) = I(U; Y2 [W, V) + Ly (12b)

Ry < I(Usi|W) = I(U; Y2 |W) + Ly (12c)

Ro+ Ry < I(U; YA|W) + min {I(W; Y1), [(W; Y2) } (12d)

Ry < I(V;Y2[W,U) = I(V; YA[W,U) + Lo (12e)

Ry < (V3 Ya[W) = I(V; Y1 [W) + Lo (12f)

Ro + Ry < I(V; Yo|W) + min {I(W: Y1), [(W;Y2) } (129)

Ry + Ri + Ry < I(U; YA[W, V) + I(V; Yo W) + min {I(W; Y1), [(W; Y2) } (12h)
Ry + Ri + Ry < I({U; Y1[W) + I(V; Yo|W,U) + min { I(W; Y1), [(W;Y2) } (12i)

where the union is over all PMFBw, v, v Px|u,v Qy, vs|x- Ro(L1, L2) is convex. The following inclusion holds:
C(L1,L2) CRo(Ly, La). (13)

The derivation of the outer bound uses telescoping idesticf., e.g.,[[27, Egs. (9) and (11)]) that result in a

relatively concise proof.

Remark 4 The regionRo (L1, Lo) recovers the UVW-outer bound from 19, Bound 2], which isiegjent to the
New-Jersey outer boun@[R0]. This follows by setting Lo — oo into Ro (L1, La), which maked (12bJ-(IPc) and

(I28)-[12) inactive.

The inner and outer bounds in Theordms 1 &@hd 3 are tight foBEB-and give rise to the following theorem.

Theorem 4 (Leakage-Capacity for SD-BC)Let (L;,L;) € R2Z. The (Li,L:)-leakage-capacity region
Csp(L1, Ly) of a SD-BCly,—f(x)}@y,|x With privacy leakage constraints is the closure of the unidrrate

triples (Ro, R1, R2) € R3. satisfying:

Ry < HW W, V,Y2) + Ly (142)



Ro+ Ry < HYA W, V,Y2) + I(W3 Y1) + Ly (14b)

Ro+Ri < H(Y1) (14c)

Ry < I(V;Yo[W) = I(ViYA[W) + Lo (14d)

Ro+ Ro < I(W,V:Ya) = I(V; Y1|W) + Lo (14e)

Ro+ Ry < I(W,V;Y3) (14f)

Ro+ Ri+ Ro < HYA[W,V,Ya) + I(V; Ya[W) + I(W; Y1) + Ly (149)
Ro+ Ri 4+ Re < HW|W,V) 4+ I(V;Y3|W) + min {I(W;Yl),I(W;Yg)} (14h)
2Ry + R+ Ro < HWM W, V) + I(W,V;Y2) + I(W; Y1) (14i)

where the union is over all PMFBy vy, xQy, x for whichY; = f(X). Csp(L1, L2) is convex.

The direct part of Theoreid 4 follows from Theor&in 1 by taking= W, U; = Y; andU, = V, while Theorem
is used for the converse. See Secfion VI-D for the full detai

Remark 5 By takingL; = 0, the SD-BC with leakage constraints is reduced to the cpoading BC in which\/;

is secret. Similarly, settind.; — oo results in the problem without a secrecy constraintan. All four cases of

the SD-BC concerning secrecy (i.e., when neither, eithdyatih messages are secret) are solved and their solutions
are retrieved fromCsp (L1, L2) by inserting the appropriate values @f;, j = 1,2. This property ofCsp (L1, L2)

is discussed in Sectidn TVD.

The inner and outer bounds in Theordms 1 [ahd 3 also match vileeméssage set is degraded, i.e., when there
is only one private message. The leakage-capacity regitimed8C wherelM/; = 0 is defined only by the threshold

L, and is stated nekt.

Theorem 5 (Leakage-Capacity for BC with Degraded Message Helet L; € R,. The L,-leakage-capacity
regionCpm (L) of a BC with a degraded message set and a privacy leakageraorss the closure of the union

of rate pairs(Ry, R1) € R% satisfying:

Ro < I(W;Y2) (15a)
Ry < I(U; i |W) = I(U; Y2|W) + Ly (15b)
Ro+ Ry < I(W,U; Y1) = I(U; Y2|[W) + Ly (15c)
Ry + Ry < I(U; YA|W) 4 min {I(W; Y1), [(W;Y2) } (15d)

where the union is over all PMFByw, i Px |y Qy, v, x- Com(L1) is convex.

1Equivalently, one may consider the case whafg = 0
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Proof: The direct part follows by settinggs = 0, U; = U andU, = 0 in Theorenill. For the converse we show
that Ro (L1, L) C Cpm(Ly). Clearly, [15h),[(I18b) and_(Ibd) coincide with (12&), (120d [12d), respectively.
Inequality [I5t) follows by mergind (IRa) and (12c). [ |

Remark 6 The BC with a degraded message set and a privacy leakageaimmsaptures the BC with confidential
messages [3] and the BC with a degraded messagé set [25]ofimef is obtained by taking, = 0, whileL; — oo
recovers the latter. Settinfj; = 0 or L; — oo into Cpm(L1) recovers the capacity regions of these special cases

(see Section TVAE for more details).

Corollary 6 (Leakage-Capacity for PD-BC) The L,-leakage-capacity regiopp(L1) of a PD-BC without a
common message and transition probabiligy, | x Qy,|y, is the closure of the union over the same domain as
Cpm(Ly) of rate pairs(Ry, Ry) € R satisfying [15h)EI8b) and_(Ibd), while replacitt with R, and noting
that min {I(W; Y1), I(W;Y2)} = I(W;Y3) .

The proof of CorollaryB is similar to that of Theordrh 5 and imitted.

Remark 7 Bounds on the cardinality of the auxiliary random variablasTheorem§1113,14 arld 5 can be derived
using, e.g., the perturbation methdd [37, Appendix C] ohteques such as iri [19] and [38]. The computability

of the derived regions is not in the scope of this work.

IV. SPECIAL CASES
A. Marton’s Inner Bound

Theoren[]l generalizes Marton’s region to the case with pyileakage constraints, i.6R;(co, co0) recovers

Marton’s region. MoreoverR;(L1, L) is tight for every BC with a known capacity region.

B. UVW-Outer Bound

The New-Jersey outer bound was derived[inl [20] and shown tatdeast as good as the previously known
bounds. A simpler version of this outer bound was estahtishg19] and was named the UVW-outer bound. The

UVW-outer bound is given byRo (oo, 00).

C. Liu-Maric-Spasojew-Yates Inner Bound for BCs with Secrecy
In [4] an inner bound on the secrecy-capacity region of a B& wivo confidential messages (each destined
for one of the receivers and kept secret from the other) wasacherized as the set of rate paif3;, R;) € R?
satisfying:
Ry < I(Uy; Y1|Uo) — 1(Uy; U2|Up) — I(Uy; Y2|Us, Uz) (16a)

Ry < I(Us; Ya|Uo) — I(Uy; Us|Up) — 1(Us; Y1|Uo, Ur) (16Db)
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where the union is over all PME&;, v, v, Px|u, 0, @y, v2| x - This inner bound is tight for SD-BC5I[5] and MIMO
Gaussian BCS[11]. Setting, = 0 into R1(0,0) recovers[(16).

D. SD-BCs with and without Secrecy

The SD-BC without a common message, i.e., whHen = 0, is solved when both, either or neither private
messages are secret (see [5]-[7] dnd [24], respectived)ing L; = 0, for j = 1,2, reduces the SD-BC with
privacy leakage constraints to the problem wheie is secret. TakingL; — oo results in a SD-BC without
a secrecy constraint of/;. We use Theorerfi] 4 to obtain the leakage-capacity region efSth-BC without a

common message.

Corollary 7 (Leakage-Capacity for SD-BC without Common Mesage)Let (L,,L;) € R3. The (Ly, Ly)-
leakage-capacity regiofdy (L1, Ls) of a SD-BCl(y,—f(x)} @y, x With privacy leakage constraints and without

a common message is the closure of the union over the donzédsh Theoreril4 of rate pairfsR;, Rs) € Ri

satisfying:
Ry < HW W, V,Ys) + Ly (17a)
Ri < H(Y1) (17b)
Ry < I(V;Y2[W) = I(V; Y1 [W) + Lo (17¢)
Ry < I(W,V;Ya) (17d)
Ri+ Ry < HW W, V,Ya) + I(V; Yo W) + I(W; Y1) + Ly (17e)
Ry + Ry < H(YA|[W, V) + I(V; Ya|W) + min {I(W; V), [(W; Y2)}. (179)

1) Neither Message is Secrelf Ly, L, — oo, the SD-BC with leakage reduces to the classic case without

secrecy[[24], for which the capacity region is the closuréhef union of rate pair§R;, R.) € R% satisfying:

Ry < H(Y1) (18a)
Ry < I(V;Ya) (18b)
Ri+ Ry <HMW|V) + I(V;Y2) (18c)

where the union is over all PMEBy.y, x Qy,|x for whichY; = f(X). The region[(IB) coincides withZ, (oo, c0)

by first noting that the bound
Ri+ Ry < HY W, V) + I(V; V2| W) + I(W; Y1) (19)

is redundant because if for some PMFy,v,xQy, v, x (19) is active, then settingi’ = 0 andV = (W,V)
achieves a larger region. Removifigl(19) fréf}, (oo, 0o) and setting” = (W, V) recovers[(IB). This agrees with
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the discussion in Sectidn TVA since Marton’s inner boundight for the SD-BC.
2) Only M, is Secret: The SD-BC in whichM; is a secret is obtained by taking, = 0 and Ly — oo. The
secrecy-capacity region was derived [in [7, Corollary 4] &the closure of the union over the same domain as

(18) of rate pairg Ry, R2) € R? satisfying:

Ry < HM|V.Y2) (20a)
Ry < I(V;Ya). (20b)

C35(0,00) and [20) match by dropping
Ry + Ry < HY1 W, V,Y,) + I(V; Ya|[W) + I(W; Y1) (21)

based on arguments similar to those used to renfove (19) @ytro, oo), and settingl” = (W, V).

Remark 8 The optimal code for the SD-BC with a secret messiferelies on double-binning the codebook of
My, while M is transmitted at maximal rate and no binning of its codebisgberformed. Referring to the bounds
in Sectior.VI=A, inserting.; = 0 and L, — oo into our code construction results il (38a) arid (17b) becami
inactive since[{4@b) is the dominant constraint. Furtherd.; = 0 combined with[(33c) implies that the public
message consists of a portion &f; only. Keeping in mind that the public message is decoded by beotivers,
unlessRk;y = 0 (i.e., unless the public message contains no informatiauab/;) the secrecy constraint will be

violated.

3) Only M5 is Secret: The SD-BC in whichM; is secret is obtained by taking; — oo and L, = 0. The

secrecy-capacity region is the closure of the union of rafesgR;, R,) € R? satisfying:

Ry < H(Y1) (22a)
Ry < HWN W)+ I(W;Y3) (22b)
Ry < I(V; Yo|W) = I(V; Y1 W) (22c)

where the union is over all PMFBy,v,y, xQy,x for which Y = f(X) [6, Theorem 1]. Using Corollari]7,

C3p (00, 0) is the union over the same domain Bsl(22) of rate p@irs R.) € R? satisfying:

Ry < H(Y1) (23a)
Ry < I(V; Yo|W) = I(V; Y1 |[W) (23b)
Ry + Ry < HW W, V) + I(W,V;Y3). (23c)

The second bound of®; + Ry in C3p(c0,0) is redundant since it follows by adding(23a) afd (23b). Both
(22) and [(2B) describe the secrecy-capacity region of theBE8Dwith a secret messagkl,. In Appendix[A

we prove the equivalence by using bidirectional inclusioguanents. By symmetry of our code construction,
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the effect ofL; — oo andL, = 0 on the scheme in Sectifn VI}A is analogous to the one destiib8ectior IV-D2.

4) Both Messages are Secrefaking L; = Lo = 0 recovers the SD-BC where both messages are secret. The
secrecy-capacity region for this case was found’in [5, Téaeol] and is the closure of the union of rate pairs
(R1, R2) € R? satisfying:

Ry < HY1[W,V,Y2) (24a)

Ry < I(V; Y2 |W) = I(V; Y1 |W) (24b)

where the union is over all PMFByy,y Px |y Qy,|x for which Y1 = f(X). The region in [2#4) coincides with
C35(0,0). Restricting the union €3, (0, 0) to encompass only PMFs that satisfy the Markov relation- V — X
does not shrink the region. This is since in the proof of Teed3 we defineV, = (M., W,), and therefore,
X4 — Vy — W, forms a Markov chain for every € [1 : n]. The optimality of PMFs in whichX — V' — W is a

Markov chain follows.

Remark 9 The coding scheme that achievies| (24) uses double-binning€aodebooks of both private messages.
To preserve confidentiality, the rate bounds of each messmgéudes the penalty terd(Uy; Us|V) (without the

confidentiality constraints, Marton’s coding schemel[38huires only that the sum-rate has that penalty term).
This is evident from our scheme by settihg = L, = 0 in (@&0), [47b) and[(33c), which results in (38a) being

redundant.

E. BCs with One Private Message

Consider the BC with leakage constraints in whitlh = 0; its leakage-capacity regiofpy (L) is stated in
Theorenb. We show thalpy(L1) recovers the secrecy-capacity region the BC with confidentiessages [3]
and the capacity region of the BC with a degraded messageavithb(t secrecy)[25].

1) BCs with Confidential Message3he secrecy-capacity region of the BC with confidential rages was

derived in [3] and is the union over the same domain as in el of rate pair§Ry, R1) € R3 satisfying:

Ry < I(W; Y1) (25a)
Ry < I(W;Ya) (25b)
Ry < I({U; i |W) = I(U; Ya|W). (25¢)

Inserting L; = 0 into the result of Theoreml 5 yield%,y(0) which is the union over the same domain [ag (25) of
rate pairs(Ro, R1) € R% satisfying:
Ry < I(W;Y2) (26a)

Ry < I({U;i[W) — I(U; Y2|W) (26b)
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Fig. 2: Blackwell BC with privacy leakage constraints.

Ro+ Ry < I(W,U; Y1) — I(U; Ya|W). (26¢)

The regions[(25) and_(26) are equal and a proof of the equialiiven in AppendiX{_B. Inserting.; = 0 and
Us = 0 into the code construction in Sectibn VI-A reduces it to aesppsition code in which the outer codebook

(that is associated with the confidential message) is binned

Remark 10 The BC with confidential messages captures the WTC by sélting- 0. Thus, the WTC is also a

special case of the BC with privacy leakage constraints.

2) BCs with a Degraded Message Séft:L; — oo, we get the BC with a degraded message[sét [25]. Inserting
L; — oo into Cpm(L1) and setting/ = X recovers the capacity region which is the union of rate pdis R1) €

R% satisfying:

Ry < I(W:Y2) (27a)
Ro+ Ry < I(X;V1|W) + I(W;Y?) (27b)
Ro+ Ry < I(X; Y1) (27¢)

where the union is over all PMF8y xQy, vy, x- In fact, [2T) is an alternative characterization of the azafy

region of the BC with a degraded message set, as describd@,imMheorem 7] and [40, Eq. (8.1)].

V. EXAMPLE

Suppose the channel from the transmitter to receivers 1 @&th2 BWC without a common message as illustrated
in Fig.[2 [28], [29]. Using Corollary17, théL,, L,)-leakage-capacity region of a deterministic BC (DBC) is the

following.

Corollary 8 (Leakage-Capacity Region for DBC) The (L4, L»)-leakage-capacity regiofp (L1, L2) of the DBC
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—L=0 —L=0 —L=0

R [bits/use]
R, [bits/use]
Ry [bits/use]

L L L L ! L L L L 1 L L L L I
0 0.2 0.4 0.6 08 1 12 0 0.2 04 0.6 08 1 12 o 0.2 0.4 0.6 0.8 1 12

R, [bits/use] R, [bits/use] R, [bits/use]
(@ (b) (¢

Fig. 3: (L1, L2)-leakage-capacity region of the BWC for three casesfa} L and L, — oo; (b) L1 — oo and
Ly =1; (C)L1:L2=L.

with privacy leakage constraints and no common messageeisiition of rate pairg Ry, R2) € R? satisfying:

Rq < min {H(Yl) , H(Yllyvg) + Ll} (28a)
Ry <min {H(Yz), H(Y2|Y1) + L2} (28b)
Ry + Ry < H(Y1,Y>) (28¢)

where the union is over all input PMFBx .
The proof of Corollary B is relegated to Appendik C. We partarize the input PMRPx in Corollary[8 as

wherea, 3 € R, anda + 3 < 1. Using [29), the(L,, L»)-leakage-capacity regiofswc(L1, L2) of the BWC is

descried as the union of rate paitB:, R») € R? satisfying:

R gmin{Hb(ﬁ), (1 - a)H, (fa) +L1} (30a)
Ry < min{Hb(a), (1 - B)H, (1 fﬁ) + Lg} (30b)
Ry + Ry < Hy(a) + (1 —a)H, (1 fa> (30c)

where the union is over all, 5 € R, with a+ 5 < 1.

Fig. 3 illustratesCgwc (L1, L) for three cases. In Fidl 3(d); — oo while Ly € {0,0.05,0.1,0.4}. The blue
(inner) line corresponds td; = 0 and is the secrecy-capacity region of a BWC whéfe is secret[[7, Fig. 5].
The red (outer) line corresponds fq = 0.4 (which is sufficiently large and can be thought of las — o) and

depicts the capacity region of the classic BWC. Bs grows, the inner (blue) region converges to coincide with
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1.35 L L
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L [bits/use]

Fig. 4: The sum-rate capacity versus the allowed leakagé.for L, = L.

the outer (red) region. Fifl 3(b) considers the opposite,das., wherel.; — oo and Ly € {0,0.05,0.1,0.4}, and
is analogous to Fid.]3(a). In Fifl 3(c) we chodse= L, = L, whereL € {0,0.05,0.1,0.4}, and we demonstrate
the impact of two leakage constraints on the region. Whea 0, one obtains the secrecy-capacity region of the
BWC when both messages are confidential [5]. In each caseathecity region grows witli and saturates at the
red (outer) region, for which neither message is secret.

Focusing on the symmetric case in Hi§. 3(c), we note thatah&ation of the region at = 0.4 is not accidental
and is implied by Corollary]2. For the Blackwell BC with; = L, = L, and somey, 3 € R, with a + 3 < 1,
we denote byl *(«, 3) the threshold from{11), which reduces to

L*(a.) = 10 ¥a) = #(9) - (1 - ) (2 ). (31)
As explained in Remarkl3, for each leakage valueCorollary[2 (along with some numerical calculations) can
be used to tell whether a further increase lofwill induce a larger region or not. Accordingly, for eadh €
{0,0.05,0.1,0.4}, we have calculated the maximum 6f(«, 3) over the distributions that achieve the boundary
points of the capacity regiofzwc (L, L). Denoting the value of the maxim&l* that corresponds to the allowed

leakageL € {0,0.05,0.1,0.4} by L*(L), we have
L*(0) = L*(0.05) = 0.15897 ; L*(0.1) =0.20101 ; L*(0.4) = 0.38317. (32)

For L = 0.4, we see thaf.*(L) < L, and consequently, Corollafy 2 and Remiark 3 imply that frrthcreasingl
will not change the leakage-capacity region. Evider@lywc (L, L) saturates af. = 0.4. For L € {0,0.05,0.1},
however,L*(L) > L and consequentlfgwc (L', L") C Cpwe(L, L), for L, L’ € {0,0.05,0.1} with L' < L.

The variation of the sum of rateB; + R, as a function ofL is shown by the blue curve in Fi§] 4; the red
dashed vertical lines correspond to the valued. afonsidered in Fig.]3. Note that for< L < 0.09818, (30d) is
inactive, and therefore?; + R is bounded by the summation ¢f(30a) ahd {30b). Thus)fer L < 0.09818, the
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Hvw|Y:) Hyv)

Fig. 5: The pentagons/rectangles whose union producesatecity region of a BWC for different secrecy cases:
The outer pentagon corresponds to the case without sed¢heryed and blue rectangles correspond.io= 0 and
Lo, = 0, respectively; the inner rectangle is associated With= L, = 0.

sum of ratesR; + R» increases linearly witt.. For L > 0.09818, the bound in[(30c) is no longer redundant, and
because it is independent &f the sum rate saturates.

The regions in FiglI3 are a union of rectangles or pentagats) eorresponds to a different input PM¥. In
Fig.[3 we illustrate a typical structure of these rectangled pentagons for a fixeBx at the extreme values of
L, and L,. When bothl; and L, are sufficiently large, the leakage constraints degenenadethe classic BWC
is obtained. Its capacity region (the red (outer) line iy, eFig.[3(c)) is a union of the pentagons depicted in Fig.
[B. The secrecy-capacity region fadr, = 0 and Ly — oo (depicted by the blue line in Fif] 3(a)) is a union of the
red rectangles in Fid.5. Similarly, whef, = 0 and L; — oo the secrecy-capacity region is a union of the blue
rectangles in Fid.15. Finally, if.; = L, = 0 and both messages are secret, the secrecy-capacity réghe BWC
is the union of the dark rectangles in Fig. 5, i.e., the irgetion of the blue and the red regions. . 5 highlights
that asL; and/or L, decrease, the underlying pentagons/rectangles (the wifiarhich produces the admissible

rate region) shrink and results in a smaller region.

VI. PROOFS

A. Proof of Theorerhll

For simplicity, we assume that expressions of the fatfi, for someR € R, are integers. FiXLq, L) € R2,
a single-letter PMPy, 1, 1, x,v1.v2 = Pt ,02.x Qvy valx € P(Uo x U x Uy X X x Y1 x V) ande, &, & > 0.

Codebook B,,: Split each message:;, j = 1,2, into two sub-messages denoted (¥ o, m ;). The triple
m, = (mg, m1g, mao) is referred to as aublic messagavhile m;;, j = 1,2, serve aprivate messagg. The rates

associated withn ;o andm;;, j = 1,2, are denoted byz;o and R;;, while the corresponding alphabets avé;,
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and M ;, respectively. The partial ratds;, and R;;, j = 1,2, satisfy

R; = Rjo + Rjj (33a)
0< Rjo < R; (33b)
Rip < L. (330)

The random variabled/;, and )M;; are independent and uniform ovérl;, and M; ;. We use the notations
M, 2 (Mg, Mo, M2g), My, & Mg x Mg x Mo and R, = Ry + Ryg + Rao. Note thatM,, is uniformly
distributed overM,, and that|M,,| = 2"%». Moreover, let(W;, W>) be a pair of independent random variables,
whereW;, j = 1,2, is uniformly distributed ovetV; = |1 : Q"Rj] and independent of My, My, Ms) (which
implies their independence ¢, M1, Maz) as well).
All subsequent notations of codebooks and codewords omibtbcklengthn. Let By £ {Uo(mp)}mpeMp be
a random public message codebook that compt&és i.i.d. random vectordJy(m,), each distributed according
to P[} . A realization ofB, is denoted byB3, = {ug(m,, BO)}mpeMp'
Fix a public message codebookB,. For every m, € My, let  Bj(mg) £
{Uj(mp,mjj,z'j,wj)}(mjj,ihwj)eMMijij, where Z; 2 [1 : 2"%], be a random codebook of private
messages forj = 1,2, consisting of conditionally independent random vectoashe distributed according

© P} \ty—uo(m, 50 We further setB; = {B;(m,)} . A realization of B; is denoted byB; and

mpeM,
we also defineBy; = {Bo,B;}, for j = 1,2, and BG: {Bo,B1,B:}. For eachm, € M,, we use
Bj(my) £ {u;(my, my;,i;, wj,Bo7j)}(mjj7ij7wj)eM“ijij. Based on the above labeling, the codebsokn,, )
has au;-bin associated with every paff,;, w;) € M;; x W;, each containing”™ % u;-codewords.

Denote the set of all possible codebooks of the above steudty®B. The probability of drawing a codebook

B= {Bo,Bl,Bg} €9B is

P[B(B) = H Pg}o (uo(mp,Bo)) H H P;}ﬂUo (U.j (mz()j),mjj,ij,wj,BoJ) uo(mz()j),[)’o)).

mpEMy Jj=1.2 (m(pj),mjj,ij,wj)
EMPXijXIjXWj
(34)

For a fixed codebools € B we next describe its associated encoding funcyfé’ﬁ> and decoding functions
o\, for j=1,2.

Encoder féB): To transmit the message paitmng, mi,m2) the encoder transforms it into the triple
(mp,mll,mgg), and drawd/¥; uniformly overW;, j = 1,2. Then it searches for a pair of indic@s, i2) € Z; xZ
such that

(uo(mpa By), a1 (my, my, i1, w1, Bo1), uz(my, maz, ia, wa, 30,2)) € T."(Puy,u,,02) (35)

where w; denotes the realization ofi;. If the set of appropriate index pairs contains more than ehe
ement, the encoder chooses a pair uniformly over the sethdf det is empty, a pair is chosen uniformly

over 7; x Z,. The channel input sequence is then generate accordingete@adhditional product distribution
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X [Uo =0 (B0, Us =tz (1 it 101, Bo.1),Us —uaa (mpmas.ia,ws, Bo ) @Nd IS transmitted over the channel.
Decoder¢§8): Decoderj = 1,2, searches for a unique triplen,, m;;, w;) € M, x M;; x W; for which

there is an index; € Z; such that

(uO(mpoO)vuj(mpvmjjv%jijvBO-,j)ij) € T (Puy,u,.y;)- (36)

If such a unique triple is found set;(y;) = (7, (1hjo,772j;)), and otherwisep; = e.

The triple (féB), §B>, ;B>) defined with respect to a codebodke 9B constitutes ann, Ry, R, R2) code

C, € €, for the BC with privacy leakage constraints. We hencefonthitdhe blocklengthn writing C and €
instead ofC,, and¢,,, respectively. When a random codebddls used, we denote the corresponding random code

by C. Note thatC is distributed according to
Pe(0) = Pe (#2017, 047)) = Pa(B), vC e, (37)

where Py is specified in[(34). The PME: along with [3b) give rise to the PMF fromh_(3a) and to its inddice
probability measuré.

By standard error probability analysis (see Apperidix D)abdlity requires

Ry + Ry > I(Ur; U2|Uy) (38a)

Rii + R, + Ry < I(Uy; Y1|Up) (38b)
Ro+ Rao + Ry + Ry + Ry < I(Uy, Uy; Y1) (38c)
Ry + Ry + Ry < I(Uy; Ya|Uy) (38d)

Ro + Rig + Ra + Ry + Ry < I(Up, Us; Ya). (38e)

The leakage analysis requires two properties in additioeltability. Namely, for a fixedn; € M; (respectively,
mo € M) Decoder 2 (respectively, Decoder 1) should be able to detidd(respectivelyJi;) with an arbitrarily
low error probability based oiU,, U, Ys) (respectively(Uy, Uy, Y1)). For a fixed cod€ € € (specified by a
fixed codebook3 € B), denote by),,, (C) the probability that Decoder 1 or Decoder 2 fail to do so ugind\s
explained in Appendik PE),,, (C) = EX;(C) — 0 asn — oo, for everym; € My, if

Ry < I(Uy; Ya|Up, Us) (392)
Ry < I(Uy; Y1|Uy, Uy). (39b)
Leakage Analysis:We compute an upper bound @7, (C) and onEL,(C). By symmetry, only the analysis

for the expected rate-leakage f; to the 2nd receiver is presented. The corresponding demivédr M, follows

similar lines.

In all subsequent arguments, the random veddysU; andU, stand for theug-, u;- andus-codewords chosen
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by the encoder. Noting th&L,(C) = I(M;;Y2|C), we have
(a)
H(M,|Y2,C) > H(M;|Ugp, Uy, Y,,C)
= H(Mi,Y2|Up, Uy, C) — H(Y2|Ug, Uz, C)
= H(M;,U,Y2|Ug, Uy, C) — H(U;|M;,Ug, Us, Y, C) — H(Y2|Uy, Uy, C)

(b)
> H(U1|Ug, Uy, C) — H(U|M;,Uy, Uy, Y5, C) — H(Y2|Uy, Uy, C)
+ H(Y2|M;,U,,U,,U,,C)

© 1 (U, |Uy,C) — I(Uy; Us|Uy, ©) — H(Uy| My, Uy, Uy, Ya,C) — I(Uy; Y2 [Up, Uy, C) (40)

where (a) and (b) follow because conditioning cannot ineee@ntropy, while (c) follows sinceY, —

(Uy, Uy, Uy, C) — M, forms a Markov chain (this can be shown using functional dedpace graphs$ [41]).
We evaluate each term i (40) separately using the folloyéngmas.

Lemma 9 For any e, e2 > 0, there is a sufficiently large for which

I(Uy;U;2|Uo, C) < nl(Uy; Us|Up) + ner (41a)

I(Ul;Ygon,UQ,C) §nI(U1;Yg|Uo,U2)+n62. (41b)
Lemma 10 For any e3 > 0 there is a sufficiently large. for which
H(U;|My,Up, Uz, Y2, C) < nes. (42)

The proofs of Lemmds|9 and]10 are similar to those bf [4, Lemnaisd 3]. For completeness, we give the proofs

in AppendixX(E. Next, let/; denote the random variable that represents the choice dandesi; € Z; and observe

that
H(U1|Uy = uy,C) = H(M11,W1,1;,U|Ug = up,C) — H(My1, W1, 1]U1, Ug = 1y, C)
@ H (M1, Wi, 1,|Ug = uy, C) — H(Myy, Wi, 1,|Us, Up = ug, C)
(g H(My1, Wy, 11|Ug = ug, C) — ney
9 (Ruy + Ry + RY) — ney (43)
where:

(a) follows since conditioned oy = uy andC, Uj is defined by(M;,, Wy, Ih);
(b) follows from Fano’s inequality. Namely, by (38b) we habat the error probability in decoding\/y;, W1, I1)
from (ug, U;) is upper bounded by§4), which is arbitrarily small for sufficiently large. Fano’s inequality implies
that

H (M1, W1, 11|U1, Ug = g, C) < ney, (44)
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wheree, = = + s (Ri1 + Ry + RY);
(c) follows by the symmetry of the random codebook, which liegpthat conditioned oU, = uy, the triple

(Myy, Wy, I) attains2n(Ri+Ri+R1) values with equal probabilities.

Based on[(43) we have
H(U4|Uy,C) > n(R11 + Ry + R}) — nes. (45)

Inserting [45) into[(40) and using Lemmids 9 10 yields

H(M1|Y2,C) > n(Ry; + Ry + R, — ey — I(Uy; Us|Up) — €1 — €3 — I(Uy; Ya|Uy, Us) — €)
W (R, + Ry + R} — Ryo — I(Uy; Ya|Up, Us) — I(Uy; Us|Us) — €5)

(b)
> nRy — TL(Ll + 65)

where (a) follows by denoting; £ Zle ¢; and using[(33a) and (33c), while (b) follows by taking

Ry + R} — Ry > I(Uy; Ya|Uy, Uz) + I(Uy, Uz|Ug) — Ly (46a)

R} + L1 — Ryg > I(Uy; Uz |Up). (46b)

The bound in[(48b) insures that dby, > 0 that satisfies[(39a) an@ (46a) is feasible. Note thatan be made
arbitrarily small withn, which implies that there is an for which EL,(C) < L; + &;. A similar analysis of the

average rate leaked frodts to the 1st receiver shows thBiL»(C) < Ly + & for sufficiently largen if

Ro + Ry — Rog > I(Us; Y1|Uo, Uy) + I(Uy, Us|Up) — Ly (47a)

RS + Ly — Ryg > 1(Uy; Uz|Up) (47b)

By applying the Selection Lemma [42, Lemma 2.2] to the seqgeesf random variable:{(Cn}nGN and the
functions P., L, and Ly, we conclude that there exists anc N sulfficiently large and a realizatio@, of C,,
that satisfies[{6). Finally, we apply FME dn {38)439) ahd){{#&d) while using[(3B) and the non-negativity of the
involved terms, to eliminaté?;o, R, and R;, for j = 1,2. Since all the above linear inequalities have constant
coefficients, the FME can be performed by a computer progeaq, by the FME-IT software [26]. This shows
the sufficiency of[(B).

Remark 11 Applying FME on[(3B)E(39) and (46)-(#7) gives the rate basif@) as well as the inequality
I(Uy; Y1|Uo) + I(Uz; Y2|Up) — I(Ur; Uz|Up) > 0. (48)

However, if [4B) is active thePy, v, 1, is not a good choice for code design. Settitig = U, = 0 and

keeping the samé&, (a choice which always satisfiels {48)) achieves a largerarghan the one achieved by

Puy,uy,0,,xQvy va| x -
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B. Proof of Corollary[2

Fix (L1, L2) € RZ and Py, v, v,,x € P(Uo xUs xUs x X). The rate bounds describitiy (L1, L2, P, v, v, %)

are:

Ry < I(Uy; Y1|Uo) — I(Uy; U2|Ug) — 1(Uy; Ya|Uo, Us) + Ly (49a)
Ry < I(Uy,Uy; Y1) (49Db)
Ry < I(Us; Ya2|Uo) — I(Ur; U2|Uo) — I(Uz; Y1|Uo, Ur) + Lo (49c)
Ry < I(Ug, Ua; Ya) (49d)
Ry + Ry < I(Uo, Ur; Y1) + I(Uz; Y2|Uo) — I(Us; U2|Uo) — I(Us; Y2|Uo, U2) + Ly (49e)
Ry + Ry < I(Uo, Ur; Y1) + 1(Uz; Y2|Up) — 1(Us; Uz|Uo) (49f)
Ry + Ry < I(U1; Y1|Uo) + 1(Uo, Us; Y2) — I(Us; U2|Uo) — I(Uz; Y1|Uo, Ur) + Lo (499)
Ry + Ry < I(U1; Y1|Uo) + I(Uo, Uz; Y2) — 1(Uy; U2|Up). (49h)

To prove the first claim, assume that > L% (Py, v,.v,,x). Consequently, the RHS df(49a) satisfies

I(Uy; Y1 |Uo) — I(Uy; U |Ug) — I(Uy; Ya|Uo, Ua) + Ly = I(Uo, Ur; Y1) — I(Up = Y1) — I(Uy; Ua, Ya|Up, Ua) + Ly

> I(Uy, Uy; Y1), (50)

which makes [(49a) inactive due td_(49b). Similarly,_(49e) risdundant due to[(49f), and therefore,
Ro(L1, L2, Puy,vy,U,x) = Ro (00, L2, Puy,y U, x)-

An analogous argument with respect o proves the second claim (essentially by showing thal.if> L3
then [49F) and[(499) are inactive didie_(#9d) and49h), rélsedg. The third claim follows by combining both

preceding arguments.

C. Proof of Theorerh]3

We show that given aQL,, L»)-achievable rate tripl¢Ro, R1, R»), there is a PMFPw, v, v Px|u,v Qy;,vs| x» for
which (I2) holds. Due to the symmetric structure of the ratarils definingRo (L1, L2), we present only the
derivation of [12h)H{12d) and(IPh). The other inequaliiie (I2) are established by similar arguments.

Since (Ro, R1, R2) is (L1, Lo)-achievable, for every, &, > 0 there is a sufficiently largex and an
(n, Ro, R1, R2) codeC,, for which (8) holds. The conditioning of}, is omitted throughout this proof. Instead, we
note that subsequent entropy and information measuresatoelated with respect to the PMF frofa {3b) that is
specified byC,,.

Fix €,&1,&2 > 0 and a corresponding. By Fano’s inequality we have

H (Mo, M;|Y]") <1+ neR; £ nel). (51)
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Definee,, = max {6511), 6512)}. Next, by [Gb), we write

n(Ly +&1) > I(My;Yy")
= I(My; Mo, M2, Y5") — I(My; Mo, Mz|Y3'")
(g I(My;Yy" Mo, Ma) — H(Mo, Ma|Yy")
(_Q I(My; Y5 | Mo, Ma) — nep (52)

where (a) follows from the independenceldf and (M, M>) and the non-negativity of entropy, while (b) follows
from (&1). [52) implies
I(My; Yy Mo, M) < nly+n(&1 + €n). (53)

Similarly, we have

I(M;Y5 | Mo) < nLi+n(& + €,). (54)

The common message rakg satisfies

<Y I(Mo, YT Vi) 4 nen (55a)
i=1

() &

< Z I(W;; Y1) + ney (55Db)
=1

where (a) follows by[(31) and (b) follows by definifig; 2 (Mo, Y; ", Yy, ,). By reversing the roles of;" and

YJ* and repeating similar steps, we also have

nlg <

M=

I(Mo, Y5415 Y2,i) + nep (56a)
1

-
Il

<Ny I(Wi;Ya,) + ney. (56b)

-

Il
-

K2

For Ry, it follows that

an = H(MllMo, Mg)

—
N

< I(My; Y{"| Mo, My) — I(My; Y5 | Mo, M) + nLy + nd.”
( n

=

{I(Ml; Vi Yah | Mo, M) — T(My; Yy, Y3, | Mo, M2)} +nLy +ndY
1

3



|

@
Il
—

[I(Ml;Y17i|M2,W) [(My; Yo | M, W, )]—i—nLl + o

=
NgE

s
Il
-

[V a4l Wi, Vi) = I(U Yol Wi, Vi)| + Ly + o

where:

(a) follows from [51) and[{32), and by denotiﬂél) = 2¢, + &1;
(b) follows from a telescoping identity [27, Egs. (9) and )11
(c) follows by definingl; = (M, W;) andV; & (Mo, W;).

Ry is also upper bounded as
TLRl = H(M1|M0)

(a)
< I(My; Y| Mo) — I(My; Y3 | Mo) + nLy 4+ né(Y

IS
[

[I(Ml; ViV [Mo) — T(Ma; Y5, Y5}i|Mo)} + Ly +nod
1

.
Il

e
[

[1(UsY14W3) = T(U: Yo Wi) | + ny 4 no)
1

~.
Il

where:
(a) follows from [51) and[{34);
(b) follows from a telescoping identity;

(c) follows by the definition of W;, U;).
For the sumR, + R, we have

TL(R() + Rl) = H(Mo, Ml)

(a)
< I(Mo, M1;Y7") + ney,

:Z MO;M17}/11|Y )+n€n

S

(b)
S Z leUZayl’L +n€n
where (a) follows from[(81) and (b) follows by the definitioh @V;, U;). Moreover, consider

n(Ro + Rl) = H(M1|M0) + H(Mo)

—

a)

< I(My; YY" [Mo) + I(Mo; Y3") + nen

-

[I(M17Y27,3+1;Y17i|M07Yf_1) + I(MO;Y271'|Y27,11’+1)} + nen
1

3

I
[M]=

[I(Uz‘; Y14 Wi) + 1Yy 15 Ya,il Mo, Y7 1) 4 I(Mo; Yz,i|Y27fi+1)} + nep,
1

.
I
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(57)

(58)

(59)
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S
INgE

{I(Ui; Y17i|Wi) + I(Yffl; Y2,i|M07 YanJrl) + I(MO§ Y27i|Y27?i+1)} + nen

i=1

—
g}
N

-

103 Y4 W2) + T(Wis Ya) | + e (60)

=1

where (a) follows from[(51), (b) follows from Csiszar’s sudentity, while (c) follows by the definition ofiW;, U;).

To bound the sunf?y + R; + Rs, we start by writing

—~

a

H(M1|M0,M2) S I(Ml;Y1n|M0,M2) —I—nen

=

I(My; Y| Mo, M, Y{™Y) + ney,

|

N
Il
-

-

s
Il
-

I(My,Y3" 1 13 Y1,i| Mo, Ma, YY) + nen

IS
INgE

N
Il
-

103 Y41 W3, Vi) + TV 05 Yail Mo, Ma, Vi) | + e (61)

where (a) follows from[(51), while (b) follows by the defimti of (W;, U, V;). Moreover, we have

(a)
H(Mz|Mo) < I

—

Mo; YVinMo) —+ ney,

-

[1(Ma; Y35 Mo, Yi™1) = T(Mas Y5y | Mo, YY) | + e

=1

=
INgE

N
Il
-

{I(Mz; V3 | Mo, YY) 4 I(Vis Yau|[Wi) — I(Ma; Ya 5, Yy (1| Mo, Y1)

n I(Mz;ni|M0,Yf—1)} ¥ ney,

I
INgb

-
Il
—

[I(Vi; Yo i|Wi) — I(Vi; Y1 ,:|W5) + I(Mo; Y1 5| Mo, Yf*l)} + nep (62)

where:
(a) follows from [51);
(b) follows from a telescoping identity;

(c) follows from the mutual information chain rule and thdidigion of (V;,U;);

(d) follows by the mutual information chain rule.

Combining [61) and[{82) yields

n(Ry 4+ Rs) <

-

10 Y34 W2 Vi) + (Vi Yo | W2) = TV YialWa) + T(Ma, Y0 Vs Mo, Y1) + 206,
1

3

I

103 Y34 W2, Vi) + 1(Vi Yo [ Wa) + TVl Vs Mo, Y1) + 206, (63a)
1

K2
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By applying Csiszar's sum identity on the last term[in_(63e¢ have

n(Ri+Ry) =) [I(Ui; YiilWi, Vi) + I(Vi; Yo [ Wi) + I(Y{ Y Yo 4| Mo, Y{}Hl)} + 2ney,. (63b)
i=1

Combining [B5R) with[[63a) and (56a) with (63b) yields

n(Ro+ R+ Ro) < [T Y1,0lWi, Vi) + 1(Vis Y2l W) + I(Wis Yi,0)| + 3nes (64)
i=1
and
n(Ro + Ry + Ro) € [T Y1l Wi, Vi) + 1(Vis Yl W) + 1(Wis Ya,0) | + 3nen, (65)
i=1
respectively.

By repeating similar steps, we obtain bounds related to é¢heaining rate bounds if_{1L2):

I

@
Il
A

nRy <37 [1(Vii Yau Wi, Us) = 1(Vis YialWi, U)| + ny +no (66)

-

N
Il
-

nRy < [I(m; YoulWi) — I(Vi; YLZ-|WZ-)} 4 Lo + 16 67)

n(Ro + Ra) <

I

@
Il
A

I(W;,Vi; Ya ;) + ne, (68)

n(Ro + Rz) < 3 [1(Vii YaulWa) + I(Wis V)| + e (69)
i=1

n(Ro+ Ry + Ra) < 3 [1(U Y14 W) + 1(Vii YaulWi, U) + I(Wii Yi,0)] + 3ne, (70)
i=1

n(Ro+ Ry + Ry) <) (U Y14 Wa) + 1(Vis Yau| Wi, Us) + I(Wis Yw)} + 3ne, (71)

@
I
A

Whereé,(f) = 2¢, + &o.

The bounds are rewritten by introducing a time-sharing camdariable@ that is uniformly distributed over the

set[1 : n]. For instance, the bounB{57) is rewritten as

1 n
Ry < =3 (10U V1alWa, Vo) = 10 Ya Wy, V)] + L+ 60
qg=1

=> P(Q=q {I(UQ§Y1-,Q|WQ7VQ7Q =q) —1(Uq: Y2,0/Wq, Vo, Q = q)} + Ly + 60
i=q
< I(Uqg; Y1,|Wq, Vo, Q) — I(Uqg; Ya.0IWa. Vg, Q) + L1 + ndtl (72)

DenoteY; £ Y1 g, Ya 2 Ya o, W = (Wo,Q), U £ (Ug,Q) andV £ (Vg, Q). We thus have the bounds ¢f{12)
with small added terms such as ands'”. But for largen we can make these terms approach 0. The converse is

completed by noting that since the channel is memorylessadidut feedback, and becausg = (M, W,) and
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Vy = (M2, W,), the chain
(Yl,qv Y2,q) - Xq - (qu VI]) - Wq (73)

is Markov for everyg € [1 : n]. This implies that(Y7,Y2) — X — (U, V) — W is a Markov chain.

D. Proof of Theoreml4

To establish the direct part of Theoréh 4 we show ta$(L1, L2) € Ri(L1, L2), which follows by setting
Up=W,U; =Y, andUs =V in Theoren{lL.

For the converse we show th&o (L1, L2) € Csp(L1, L2). For every PMFPy vy, xQy, x for whichY; =
f(X), we have the following chains of inequalities. The rightttiside (RHS) of[(12b) is upper bounded by the
RHS of [144) since

— HOGW,V) = HYA[W, V,U) — I(U; Ya|W, V) + Ly

(@)
< HW W, V) = I(Y1; Yo [W, V,U) = I(U; Y| W, V) + Ly

(b)
< HM|W,V,Ys) + Ly (74)

where (a) follows by the non-negativity of entropy and (bljJdes because conditioning cannot increase entropy.
Repeating similar steps while combiniig (12a) wlth_(128lgs [14b), i.e., we have

Inequality [I28) implies[{I4c) since
Ro+ R < I(W,U; Y1) < H(Y1). (76)

The rate bound_(14d) coincides with (IL.2f), combining {12ah{L2Z]) implies [14k), while[(14f) follows fronj (129).
For the sum of rates| (1§tg) follows frof (32g) addl(74), wifildR) is implied by [IZh) since

L(U; YA |V, W) < H(YA|V,W). (77)
Finally, by combining[(I2a) and_(1Rh) while usidg177) we dav

2Ry + Ri + Ro < I(U; YA|W, V) + I(V; Ya|W) + 2min {I(W; Y1), [(W; Y2)}

< HWW,V) + (W, V3 Y2) + I(W; Y1),

which implies [I4i). Dropping the rest of the bounds fromJ))(ihly increases the region and shows that
Ro(L1,L2) € Csp(L1, L2) (note thatRo (L1, Lo) is described by a union over PMFs that satisfy the Markov
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relation X — (U, V) — W, while in Csp(L1, L) this restriction is dropped). This characterizks (L1, L2) as the
(L1, Lo)-leakage-capacity region of the SD-BC.

VII. SUMMARY AND CONCLUDING REMARKS

We considered the BC with privacy leakage constraints. Utlde model, all four scenarios concerning secrecy
(i.e., when both, either or neither of the private messagessacret) become special cases and are recovered by
properly setting the leakage thresholds. Novel inner artdrduounds on the leakage-capacity region were derived
and shown to be tight for SD and PD BCs, as well as for BCs withgratled message set. Furthermore, we derived
a condition on the allowed leakage values that differeasiathether a further increase of each leakage induces
a larger inner bound or not. The condition effectively leteednumerically) calculate privacy leakage threshold
values above which the inner bound saturates. The codiatpgir that achieved the inner bound relied on Marton’s
coding scheme with a common message, but with an extra ldy@noing. Each private message was split into a
public and a private part and the codebooks of the privatts peere double-binned. Taking into account that the
rate of the public parts is always leaked, the sizes of the birthe extra layer were chosen to satisfy the total
leakage constraints. The outer bound was derived by lewegdglescoping identities.

The results for the BC with leakage captures various pasksvdrarge leakage thresholds reduce our inner
and outer bounds to Marton’s inner bound|[18] and the UVWepbbund[[19], respectively. The leakage-capacity
region of the SD-BC without a common message recovers thacigregions where both 5], either! [6[.1[7], or
neither [24] private message is secret. The result for then@ a degraded message set and a privacy leakage
constraint captures the capacity regions for the BC withfidential message$1[3] and the BC with a degraded
message set (without secredy)|[25]. Furthermore, our codstaiction for the inner bound is leakage-adaptive and
recovers the best known codes for the aforementioned casBgckwell BC example visualizes the transition of
the leakage-capacity region from the capacity region withgecrecy to the secrecy-capacity regions for different

cases.
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APPENDIXA

EQUIVALENCE OF THE REGIONS IN (22) AND (23)

Denote the region in({22) by¢ and recall that the region if{23) is denoted 6%, (co,0). The inclusion
C C C3p (0, 0) follows since [23a)E(23b) coincide with {22&)-(22c), venfor (23¢) we have

(@)
HWM W, V) + I(W,V;Ys) = HYA[W) + I(W;Y2) + I(V; Y2 [W) = I(V; Vi [W) = Ri+ Re. (78)
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Here (a) is due td(22b)-(2Pc).
To see thatdy (0o, 0) C C, let (Ry, Rs) € C3p(c0,0) be a rate pair achieved KV, V, X'). We show that there
is a triple (W*, V*, X*) for which (R, Ry) € C. First, suppose thal (2Bb) holds with equality:

Ry = I(V; Yo|W) — I(V; Y1[W). (79)

By takingW* =W, V* =T and X* = X, (223) and[(22c) hold by (2Bd)-(23b), while (22b) is satibfince

HY W) + IW*Ya) W HY W) + IW; V) + I(V: Ya|W) — (V3 YA|W) — R,

=HWY W, V) +1(W,V;Y2) — Ry
(b)
> Ry, (80)

where (a) and (b) follow from{79) an@(23c), respectively.

Next, assume that a strict inequality holds[in_(23b), ileer¢ is a real numbey > 0, such that

Ry = (Vi Yo W) = I(V; Y1 |W) — 7. (81)

A

Define W* £ (©, W), where® is a binary random variable independent(&F, V, X) that takes values i) =
{61, 62} with probabilitiesA > 0 and1 — A, respectively, and

__ w, 0=>0
W= 82)

(VV,V), 6292

Furthermore, let
o IV Ye[W) — I(Vi Vi [W) —
I(ViYo[W) — I(V; YaW)

(83)

V* = (W,V)and X* = X. Note thatX* — VV* — W* forms a Markov chain and thdf{22a) follows from (23a).
To see that[(22c) holds consider:

LV Y3 W) = 1V Vi) © A1V [ W) = 1V W) | € 1V valw) — 1(vivi[w) =+ © Ry (84)
where (a) follows from the definition ofi¥’*, V*), while (b) and (c) follow from[(88) and(81), respectivelyeW
conclude the proof by showing th&t (22b) also holds. Thikved because

HW W) + IW*:Ya) L HW W) + IW*; Ya) + IV Ya|W*) — I(V* Y| W*) — Ry

=HMW|[W*, W*) + I(W*,V*;Ys) — Ry

Y HMIW, V) + I(W,V;Y) - Ry

(c)
> Ry (85)

where (a) follows from[{84), (b) follows sincE; — VV* — W* forms a Markov chain and’™* = (W, V'), while (c)
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follows from (23¢).

APPENDIXB

EQUIVALENCE OF THE REGIONS IN (Z5) AND (28)

Denote the region if(25) b§cx while the region in[(26) is denoted I8, (0). Since this proof mostly follows
by arguments akin to those presented in Appefidix A, we ommiesof the detail. FirstCox C Cpm(0) follows
since [25b){(25c) imply thaf (2bd)=(26b) holds, while (Pémlows by combining[[25a) and(Zbc).

For the opposite inclusiofipy(0) C Cox, let (Ro, R1) € Com(0) be a rate pair achieved by, U, X). We
construct a triplgW*, U*, X*) that satisfiedV* — U* — X* — (Y1, Y2) for which (Ry, R1) € Ccx. If (260) holds
with equality, i.e., if

Ry = I(U;i[W) = I(U; Y2|W), (86)

then we takéV* = W, U* = U and X* = X. With respect to this choicé (2bH)-(25c¢) follows from (P4aGH),
while (254) is satisfied by combininf(86) with (26c).
If, on the other hand, a strict inequality holds [n_(R6b),,ivee have

Ry = I{UsYA|W) — I(U3 YalW) — 4 (87)

where v is a real and positive number, then we defiig £ (@,W). Here © is a binary random variable

independent of W, U, X)) as in AppendiXZ, and

_ W, =0
W= (88)

U, 0=06,

Furthermore, set
\_ LUYW) — (U Y| W) — 5

I(U; Y1 |W) = I(U; Ya|[W) (89)

U* =U and X* = X. Note that(Y7, Y2) — X* — U* — W* forms a Markov chain and consider the following.

[(W*3Y2) = M(W; Ya) + (1= NI(U; Ya) & 1W:Ya) + (1= NIUsYa[W) > T3 Ya) 2 Ry (90)

where (a) follows from[{89) and (b) follows frori (26a). Thy&50) is satisfied. To see th&t (25c) holds consider:
" * « (a b c
HUSYAW*) = 05 W) L AT W) - 103 W)] 2 1031 (W) - 1031 W) -+ € Ry (91)

where (a) follows from the definition of W *, U*), while (b) and (c) follow from [(80) and(87), respectively. |
remains to show thaf (Zba) also holds. We begin by writing

‘ =

LU W) L AU Y| W) < I(U; Ya|W), (92)
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where (a) follows from the definition ofiV*, U*). Finally, (25&) follows because
W v1) Y 1U i |W™) — I(U* Ya|W*) + IW Y1) — R,
2 I, U - 10 W) - R
21w, ) - 05 W) — Ry

(@)
> Ro (93)

where (a) follows from[{91); (b) follows becaug& = U and by using[(92); (c) follows sinc&, — U — W* and
Y1 — U — W form Markov chains, which implies tha(W*,U; Y1) = I[(U;Y1) = I(W,U; Y1); (d) follows from
(289).

APPENDIXC

PROOF OFCOROLLARY[8
The regionCp(L1, L2) is obtained fromCl, (L1, L2) by settingWW = 0 and V = Y», which implies that
Cp(L1, Ly) C C&p (L1, Lo). For the converse, the RHS ¢f(17a) is upper bounded by
Ry < HW|W,V,Y5)+ Ly < H(Y1|Y2) + Ly. (94)
For (I7¢) and[(I74d), respectively, we have

IV Y2 [W) = I(Vi YA W) + Ly < I(V; Y1, Yo|W) = I(Vi YA[W) + Lo
= I(V;Ya|W, Y1) + Lo
< H(Ya|Y1) + Lo (95)

and
I(W.V3Ys) < H(Ya). (96)

Finally, (28¢) is implied by[(17f) since
Ry + Ry < HY1|W, V) + I(V; Ya|W) + min {I(W; Y1), I(W;Y2)}
<SHMW, V) +1(W,V;Ys)
<HWY, Y2[W, V) + I(W,V;Y1,Ys)

= H(Y1,Ya). (97)

To complete the proof we drop (17e), which can only incre@%(Ll,Lg).
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APPENDIXD

ERRORPROBABILITY ANALYSIS FOR THEPROOF OFTHEOREM[]]

By the symmetry of the codebook construction with respe¢ifg, M, M, W1, W) and due to their uniformity,
we may assume thab/y, My, Mo, W1, Wo) = (1,1, 1, 1, 1). Furthermore, because we are dealing with the expected
error probability over the ensemble of codebooks, the sylesa error events are defined with respect to a new PMF
I'e P(BxTIy x Iy x Y x Y3 that describes the random experiment of transmitting, M, Mo, Wy, Wa) =

(1,1,1,1,1) using a random codebook. Specifically, we have

r ({uo(mp)}mp, {ul(mz()l)’mll?ill’wl)}(m;”,mn,i/l,wl)’ {uz(mf?, mag, i, w2)}(m§)2> 31, Z'27Y1,YQ)

o/
JMiao,ih,w2)

= H P, (uO(mp)) H H P{Jlj|U0 (uj (m;gj)v Mjj, 2/77 w;)

My j=1.2

uo(ml()j)))
(m§ mj 1% w5)
x 1“(2'1, ig’uo(l), {w (11,7, 1)}, (11,1, 1)} )

3]

X 621;/1_’}/2|U0_’U1_’U2 (}’1aY2’u0(1), U.l(l, 1,41, 1)1 u2(17 1,9, 1))1 (98)

WhereF(il, 19

uo(1), {ui(1,1,4d5, 1)}, {ua(1,1, 4, 1)}1.,) chooseqiy, i) € Z; x Z, according to the encoding
1 2
rule described in Sectidn VIJA, and

Qv va|Uo,U1,U> (Y1, Y2 |u0, u1, uz) = Z Px vy, 0,0, (%|uo, w1, u2)Qy; vy x (Y1, Y2|).
reX

The probability measure induced lhyis denote byPr.

A. Encoding/Decoding Errors

Consider the following error events.

Encoding errors: An encoding error event is described as

= N {00010, 1), 001, 102, 1) & T (Poon.es) |- (99)

(i17i2)611 XZIa
Decoding errors: To account for decoding errors, define
Do = {(Uo(l),Ul(l, 1,1,1),Us(1,1, 15, 1), Yy) € zn(pUmUlm)} (100a)

and

Dj(myp, myj,ij,w;) = {(Uo(mp),Ul(mp,mjj,ij,wj),Yl) € 72"(PU0,U]-,Y]-)}7 (100b)

wherej = 1,2.
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By the union bound, the expected error probability is bodnae

EP,(C) <Pr|EUDSUD(1,1,11,1)° UDs(1,1,15,1)°

U U Diltwp,ma, Liin) p U U Daliy, g, I, @)
(Mp,mi1,%1)#(1,1,1) (Tp,M22,W2)#(1,1,1)

<Pr(&) +Pr(D5NE) + Y |Pr(Di(1,1,1;,1)°N Dy )
j=1,2

+ Pr U Dj(my, myj;, 1j, w;)

(Mp 15, 0;5)#(1,1,1)

gpp(5)+Pp(ng56)+Z Pp(Dj(1,1,1j,1)CmDO)+ STE)Pr [ | D0, 1,05,1)

——— — =
j=1,2 CTs mp#1
plY P Al 15 €L, »
! pl2l
J
+ Pr U Dj(1,myj,i5,w;) | +Pr U Dj (1, 1jj, 15, W;)
(7:’7’11'7}1)1)7&(1’1)7 (ﬁlpv"hjj;awj)#(lvlal)v
i ET; 1 €Z;
[3] [4]
P; P;

(101)

Note thatP(El] is the probability of an encoding error, whiRggQ] andPJ[k], for k € [1 : 4], correspond to decoding

errors by Decodej. We proceed with the following steps:

1) By the Multivariate Covering Lemma[40, Lemma 8.213[1] — 0 asn — oo if we have
Ry + Ry > 1(Uy; U2|Uy), (102)

while the Conditional Typicality Lemma [40, Section 2.5]pfies thatPg‘)] — 0 asn grows. Furthermore,
the definitions in[(Z00) clearly imply tha‘?j[” =0, for alln € N.



34
2) ForPJm, j=1,2, we have

pli < > P RAUCRALORLY

J
(m5,05)7#(1,1),
i;€L;

< 2”(R1j+R}+RJ)2*H(1(UﬁYj\UO)*QS])
_ 2”(Rjj+R}+Rj*1(Uj;Yj|U0)+5£3])
where (a) follows since for anym;;,w;) # (1,1) andi; € Z;, U;(1,7,;,1;,1;) is independent ofY

while both of them are drawn conditioned &y (1). Moreovers — 0 ase — 0. Hence, for the probability

Pj[?’] to vanish asi — oo, we take:

Ry + R+ R; < I(U; Y;|Up), j=1,2. (103)
3) ForPJW, j =1,2, consider
AY Y el
(Mp g, @5)7(1,1,1),
i, €L

< 2”(Rp+Rjj+R§+RJ‘)2*”(I(U0-,UJ‘;Yj)*fsf”)
_ 2n(RP+RM+R;+Rj—1(U0,Uj;Yj)+6L4])
where (a) follows since for angfi,, ;;, w;) # (1,1,1) andi; € Z;, Ug(1n,) and U (1, 115,17, 10;) are

correlated with one another but independentYof. As before,s) — 0 ase — 0, and therefore, we have

that Pj[4] —0asn — oo if
R, + Rjj + R, + R; < I(Uo,Uj;Y;), j=1,2. (104)

4) Forj = 1,2, similar steps as in the upper bounding Bf] show that the rate bound that ensures that
Pjp] — 0 asn — oo is redundant. This is since for every, # 1 andi; € Z;, the codeworddJ,(rn,) and

U, (r,, 1,1;,1) are independent oY ;. Hence, taking
R, <I1(Uo,Uj;Y;), j=1,2, (105)

. 2] . L . .
suffices forP;™ to vanish. However, the RHS df(Z05) coincides with the RHYI®H), while the left-hand
side (LHS) of [I0b) is with respect t&, only. Clearly, [10%) is the dominating constraint.

Summarizing the above results, while substitutig= R, + R10 + Rao, We find that the RHS of (101) decays

as the blocklengtin — oo if the conditions in[(3B) are met.
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B. Leakage Associated Errors
To satisfy the leakage constraints if_J(6b)}(6c) we accouot the error in decodingU; from
(Mi11,Uq(1),U5(1,1,13,1),Y5), wherej = 1,2 andj = j + (—1)7*!. Since M; = 1 is fixed andUy(1)

y 443, 7
andUj;(1,1,1

;,1) are given, the code design implies that decodingboils down to decodingV;. By repeating

similar arguments to those presented in the encoding/deg@dror analysis we have ti#e\; (C) — 0 asn — o
if (839 hold.

APPENDIXE

PrROOF OFLEMMAS[QAND [I0

A. Proof of Lemma&]9

We prove [(41) only. The proof of (4lLb) follows similar lind=or every(ug, ui, uz) € U™ x Uf* x Uy define

1, (ug,u,u T (Pu,,un,
T (106)
0, otherwise

which we abbreviate as. The multi-letter mutual information term in the LHS ¢f (3lia expanded as follows

I(Uy;Uz|Uy, C) < I(Uy,v; Us|U,, C)
= I(v; U3|Uy, C) 4 I(Uy; Uz|Ug, v, C)
1
= I(v;Ua|Uo,C) + Y _P(v = j)I(Uy; Ua|Ug, v = j,C). (107)
j=0
Note that
P(v = 1)I(U1; U2|Ug, v = 1,C) < P((Up, Uy, Uz) ¢ T (Puy,v,0,)) H(Uz|v = 1,C)
< nP((Uy, Uy, Uz) ¢ T (Puy,vy,0,)) log |Ue]
(a) 1)
< nntt log |Us]. (108)
Here (a) follows by the properties the random code constmicnd nél) decreases as™ “* for some constant

¢ > 0 [31, Lemma 5]. Furthermore, we have

]P)(V = O)I(Ul;U2|U0,V = O,(C) S I(Ul;U2|U0, V= O,(C)

= Z P(u07 uq, u2) lOg (P(51(|111110,)1;)2(|111120|)u0) )

(ao,ur,u2) €T (Pug,uy ,Us)
2771H(U1,U2|U0)(17€)

= Z P(u07u15u2) IOg (2—nH(U1|U0)(1+6)2—nH(U2|U0)(1+6))

(uo,ur,u2)€7(Puy,uy,uy)

< nI(Uy; Us|Up) + nn'® (109)
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wheren'® = 3eH (Uy, Us|Up). Inserting [Z0B)E(I09) intd (107) yields

(a)
I(Uy;Uy|Ug, C) < nn™M log |Us| + nI(Usr; Us|Up) +nn™® +1

© (UL Un|Us) + ey (110)

where (a) follows sincd (v; U;|Uy, C) < H(v) < 1, while (b) follows by setting:; = n" log |tho| + n{? + L

n

B. Proof of Lemm#&10

Recall that ), (C) denotes the error probabilty in decodingi(my,, mi1,i1,w1,Bo1) from
(uo(mp,BO),ug(mp,mQQ,iQ,wQ,Bo,g),yg) when M, = m; € M; is fixed and the cod&€ < € is used.

By the properties of the random co@ewe have
Elm, (C) < ¥, Vmy € My, (111)
wheren§3) decreases as 7" for some real numbey > 0. By Fano’s inequality, we have
H(U1|M; = m1,Up, Uz, Yo, C) < nes, (112)
wheree; = + + »®) Ry, which implies

H(Uy|My,Ug, Uy, Y5,C) = Y 27" H(U My = my, Uy, Uz, Ya,C) < nes. (113)
m1EM;
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