
Shortest Path for K Goals

Roni Stern
Ben Gurion University of the Negev

Be’er Sheva, Israel

Meir Goldenberg
The Jerusalem College of Technology

Jerusalem, Israel

Ariel Felner
Ben Gurion University of the Negev

Be’er Sheva, Israel

The k-goal problem is a generalization of the Shortest
Path Problem (SPP) in which the task is to solve k SPP prob-
lems, such that all the problems share the same start vertex.
kGP was introduced to the heuristic search community for
building an Incremental Roadmap Spanner technique (Dob-
son and Bekris 2014), which is a useful construct in motion
plannin for robotics. But kGP has many other applications,
e.g., when path planning for multiple drones flying from a
central dispatcher location to k target locations.

Problem Definition

Let G = (V,E,w) be a weighted directed graph, where V
is the set of states, E is the set of edges, and w is the edge
cost function. A kGP problem is defined by a tuple 〈G, s, g〉
where G is a graph s is state in G, and g = (g1, g2, . . . , gk)
is a vector of k states. A solution to the kGP problem is a
vector of k paths p = (p1, . . . pk) such that for every i ∈
[1, k] it holds that pi is a lowest-cost path from s to gi.
kGP is also known as a one-to-many shortest path query,

and has been addressed in domains in which the graph can
be stored in memory and processed upfront (Delling, Gold-
berg, and Werneck 2011). kGP is similar but different from
the problem of finding the k best solutions to the same
goals (Flerova, Marinescu, and Dechter 2016).

k Independent Searches vs. one k-Goal Search

A trivial algorithm for solving a kGP problem, which we
call k×A∗, is to run a SSP solver k times, one for each goal.
k×A∗ explores parts of the search space multiple times, in-
troducing potential redundancies. For example, consider the
kGP problem in Figure 1(a), where k×A∗ would generate
1 + 2 + 3 + · · · + (k + 1) = k(k+1)

2 states while it is easy
to see that generating k states is sufficient to solve this kGP
problem. To avoid some of these redundancies, we propose
kA∗, an alternative algorithm in which all the k goals are
searched together in a single pass. kA∗ is a generalization
of A∗ designed to search for k goals in a single pass of the
search space. There are several key aspects that differentiate
between kA∗ and A∗.

Maintaining the set of active goals When a goal is ex-
panded in A∗, the search halts. By contrast, in kA∗ the search
does not halt until a lowest-cost path to each of the k goals

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

has been found. To this end, kA∗ tracks the set of goals for
which the lowest-cost path has not been found. This set of
goals is referred to as the set of active goals, and the search
halts when it is empty.

Multiple heuristics per state. When a state n is
generated, kA∗ computes a k-ary vector h(n) =
(h1(n), . . . hk(n)), where hi(n) is the heuristic estimate of
the cost to get from n to goal gi. These k heuristic values
are used to form a k-ary vector f(n) = (f1(n), . . . fk(n)),
where fi(n) = g(n) + hi(n). We discuss later how the el-
ements of this k-ary vector of f values are aggregated to
a single value denoted F (n) – which is used to prioritize
OPEN. That is, in every iteration kA∗ selects from OPEN a
state with the lowest F value. Note that the computational
effort of generating a state in kA∗ is larger than that of reg-
ular A∗, as it requires computing up to k heuristics. In prac-
tice, fewer computations may be needed, since we only need
to compute the heuristics for the set of goals that are still ac-
tive.

Conditions for Optimality

kA∗ is complete, i..e, if it does not find a solution then
indeed no solution exists. The optimality of kA∗ depends
on how the F value of a state is computed. We assume
that h1, . . . , hk are all admissible heuristic functions, and
consider two options: Fmin(n) = mini∈[1,k] fi(n) and
Fmax(n) = maxi∈[1,k] fi(n). kA∗ that uses Fmin(n) as
the state evaluation function (F (n)) is referred to hereinafter
as kA∗

min, and similarly kA∗ that uses Fmax(n) is referred
to as kA∗

max. The following theorems state the relation be-
tween properties of the k heuristics and optimality. Proofs
are omitted due to space constraints.

S

A B

g1 g2

5 10

h(A)=(5,50)
Fmax(A)=55 50 10

505

h(B)=(10,30)
Fmax(B)=40

h(S)=(10,40)
Fmax(B)=40

h(g1)=(0,20)
Fmax(g1)=40

h(g2)=(20,0)
Fmax(g2)=80

S

g1

g2

g3

gk

(a) (b)

Figure 1: (a) k×A∗ inefficiency (b) kA∗
max suboptimal.

Proceedings of the Tenth International Symposium on Combinatorial Search (SoCS 2017)

167



0
10
20
30
40
50
60
70
80
90

100

0 1 2 4 8 16 32
Number of pivots.

nGoals = 128

0
1
2
3
4
5
6
7
8
9

10

0 1 2 4 8 16 32
Number of pivots.

nGoals = 32

0
1
2
3
4
5
6
7
8
9

10

0 1 2 4 8 16 32
Number of pivots.

nGoals = 4

0
1
2
3
4
5
6
7
8
9

10

0 1 2 4 8 16 32
Number of pivots.

nGoals = 8

0
1
2
3
4
5
6
7
8
9

10

0 1 2 4 8 16 32
Number of pivots.

nGoals = 16

0
1
2
3
4
5
6
7
8
9

10

0 1 2 4 8 16 32

Ti
m

e 
(m

s.
)

Number of pivots.

nGoals = 2

k x A*
UCS
Lazy kA*min

Figure 2: The runtime of Lazy kA∗
min, k×A∗, and UCS for different number of goals (the different plots) and difference number

of pivots using in the heuristic computation. With more pivots, the heuristic is more accurate but slower to compute.

Theorem 1 (kA∗
min is admissible). kA∗

min returns the
lowest-cost path to each of the k goals.

Running kA∗
max, however, may return a path πi from s

to gi that is not optimal. For an example, see Figure 1(b),
in which kA∗

max halts with the suboptimal path to g1 via
B. However, if h1, . . . , hk are consistent, we can show that
kA∗

max does returns optimal solutions. However, in our ex-
periments kA∗

max was almost always worse than kA∗
min, so

we focus the experimental results presented in this abstract
on kA∗

min.

Experimental Results

We report here a small subset of our experimental results,
focusing on grid path finding problems from the Dragon
Age: Origin video game (Sturtevant 2012). We compared
k×A∗, an optimized version of kA∗

min called Lazy kA∗
min,

and Uniform Cost Search (UCS, i.e., Dijkstra’s algorithm).
As a heuristic, we used differential heuristics (DH) (Gold-
berg and Harrelson 2005; Ng and Zhang 2002; Sturtevant
et al. 2009) instead of Octile distance, which is a sophisti-
cated memory-based heuristic for grid pathfinding. DH can
be tuned: adding more pivots to it results in a more accu-
rate and more costly to compute heuristic. Figure 2 plots the
average runtime in ms. as a function of the number of piv-
ots, for 4, 8, 16, 32, 64, and 128 goals. The results show
that the benefit over UCS diminishes as the number of goals
grow. Eventually, when solving for 128 goals, UCS domi-
nates both kA∗

min and k×A∗. This is reasonable To explain
this, consider the most extreme case, where every state is a
goal. In this case, clearly UCS will be the most effective, as
it will expand every state at most once and will never spend
any time on computing a heuristic value. By contrast, A∗
and kA∗ will compute at least one heuristic for every state,
and most likely will compute even more heuristics per state.
This heuristic computation time is not spent by UCS.

Next, consider the impact of adding pivots – i.e., using
a stronger but more costly heuristic. For k×A∗, we ob-
serve that adding pivots always helps reducing runtime. For
kA∗

min, however, adding pivots improves runtime only for
cases when the number of goals was not very large. For ex-
ample, when k = 32, using more than 4 pivots actually de-
grades the performance of kA∗

min. This highlights a limita-
tion in kA∗

min: it is sensitive the to cost of heuristic com-
putation. In our ongoing research we are currently study-
ing exactly how each operation in k×A∗ and kA∗

min affect

the overall runtime analysis, in an effort to provide useful
guidelines for choosing the appropriate algorithm for a given
problem.

This preliminary work is, to the best of our knowledge,
the first study of using heuristic search techniques to solve
kGP. There are several exciting directions for future work.
First, we only explored in this work how to avoid some of the
redundant computations done when performing k individual
searches. A different way to benefit from searching for mul-
tiple goals is to learn valuable information about the under-
lying graph while searching for one goal, and use this infor-
mation to to improve the search for the other goals. Another
approach is to utilize concepts from incremental search al-
gorithms such as Path-Adaptive A∗ (Hernández et al. 2015)
for kGP.

Acknowledgments. Financial support for this research
was in part provided by Israel Science Foundation (ISF)
grant #417/13 and by the Cyber Security Research Center
at Ben-Gurion University.

References
Delling, D.; Goldberg, A. V.; and Werneck, R. F. 2011. Faster
batched shortest paths in road networks. In OASIcs-OpenAccess
Series in Informatics, volume 20.
Dobson, A. J., and Bekris, K. E. 2014. Improved heuristic search
for sparse motion planning data structures. In the Annual Sympo-
sium on Combinatorial Search (SOCS).
Flerova, N.; Marinescu, R.; and Dechter, R. 2016. Searching for
the m best solutions in graphical models. Journal of Artificial In-
telligence Research 55:889–952.
Goldberg, A. V., and Harrelson, C. 2005. Computing the short-
est path: A search meets graph theory. In the annual ACM-SIAM
Symposium on Discrete algorithms (SODA, 156–165.
Hernández, C.; Uras, T.; Koenig, S.; Baier, J. A.; Sun, X.; and
Meseguer, P. 2015. Reusing cost-minimal paths for goal-directed
navigation in partially known terrains. Autonomous Agents and
Multi-Agent Systems 29(5):850–895.
Ng, T. E., and Zhang, H. 2002. Predicting internet network distance
with coordinates-based approaches. In The Joint Conference of
the IEEE Computer and Communications Societies (INFOCOM),
volume 1, 170–179. IEEE.
Sturtevant, N. R.; Felner, A.; Barer, M.; Schaeffer, J.; and Burch,
N. 2009. Memory-based heuristics for explicit state spaces. In
IJCAI, 609–614.
Sturtevant, N. 2012. Benchmarks for grid-based pathfinding.
Transactions on Computational Intelligence and AI in Games.

168


