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Abstract Desktops and laptops can be maliciously ex-
ploited to violate privacy. There are two main types
of attack scenarios: active and passive. In this paper,
we consider the passive scenario where the adversary
does not interact actively with the device, but he is
able to eavesdrop on the network traffic of the device
from the network side. Most of the Internet traffic is en-
crypted and thus passive attacks are challenging. Pre-
vious research has shown that information can be ex-
tracted from encrypted multimedia streams. This in-
cludes video title classification of non HTTP adaptive
streams (non-HAS). This paper presents an algorithm
for encrypted HTTP adaptive video streaming title clas-
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sification. We show that an external attacker can iden-
tify the video title from video HTTP adaptive streams
(HAS) sites such as YouTube. To the best of our knowl-
edge, this is the first work that shows this. We provide
a large data set of 10000 YouTube video streams of 100
popular video titles (each title downloaded 100 times)
as examples for this task. The dataset was collected
under real-world network conditions. We present sev-
eral machine algorithms for the task and run a through
set of experiments, which shows that our classification
accuracy is more than 95%. We also show that our al-
gorithms are able to classify video titles that are not in
the training set as unknown and some of the algorithms
are also able to eliminate false prediction of video ti-
tles and instead report unknown. Finally, we evaluate
our algorithms robustness to delays and packet losses
at test time and show that a solution that uses SVM
is the most robust against these changes given enough
training data. We provide the dataset and the crawler
for future research.

Keywords HTTP Adaptive Video Streaming,
HTTP2, Encrypted Traffic, Classification, YouTube

1 Introduction

Every day, hundreds of millions of Internet users view
videos online, whose numbers are clearly going to in-
crease [1,2]. By 2020, the share of video traffic is ex-
pected to increase to 82% of the total IP traffic, up from
70% in 2015. Google’s streaming service, YouTube, now
occupies a market share of over 17% of the total mobile
network bandwidth in North America [2,3].

Currently, most of the video streaming web sites
including YouTube are using HTTP Adaptive Stream-
ing (HAS). Dynamic Adaptive Streaming over HTTP
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Fig. 1: Total megabytes per segment of three downloads
over different Wi-Fi networks of the same video title, all
with the same quality representation. Due to network
conditions variability, there are differences between the
networks.

(DASH) [4] is the de facto standard method for HAS.
DASH is a Multi Bit Rate (MBR) streaming method
that was designed to improve viewer Quality of Expe-
rience (QoE) [5]. In DASH, each video is divided into
short segments, typically a few seconds long (2—16 sec-
onds), and each segment is encoded several times, each
time with a different quality representation. The user
(player) Adaptation Logic (AL) algorithm is respon-
sible for the automatic selection of the most suitable
quality representation for each segment, based on the
parameters such as client playout buffer and network
conditions. As a result, the quality representation in
DASH can change between segments.

In DASH, each quality representation is encoded in
variable bit rates (VBRs). VBR varies the amount of
output data per time segment and does not attempt to
control the output bit rate of the encoder, so that the
distortion will not vary significantly [6].

DASH often uses HTTP byte range mode. In this
mode, the byte range of each segment request can be
different. This depends on the client’s network condi-
tions and playout buffer levels. Fig. 1 shows an example
for three downloads of the same video title over different
Wi-Fi networks, all with the same quality representa-
tion. From the figure we can notice that due to networks
conditions variability, there are differences between the
networks.

YouTube analysis was conducted in many aspects
such as YouTube server location [7, 8], comparison be-
tween YouTube and other video sharing services [7],
PC vs. mobile user access patterns [9], QoE [10], traf-

fic characterization and its DASH implementation [11]
and network analysis [12-16].

YouTube has started to encrypt their video services
[17]. As a result, traditional Deep Packet Inspection
(DPI) methods for information retrieval in general and
video title classification in particular are not viable.

Many recent works have suggested methods for en-
crypted traffic classification and several surveys have
presented detailed descriptions of the state of the art
methods [18-32]. Several works have examined differ-
ent statistical features such as session duration [33-35],
number of packets in a session [34,36,37], different vari-
ance calculations of the minimum, maximum and av-
erage values of inter-arrival packet time [34, 36], pay-
load size information [36,38], bit rate [38,39], Round-
Trip Time (RTT) [39], packet direction [40] and server
sent bit rate [41]. All these features are not suitable
for video streaming classification as the payload size
in video streaming is often maximum size, delays in
the network are varied, and re-transmissions cause false
packet counts.

Recent works showed that video title classification
of encrypted video streams is possible [28-30]. These
works use features such as packet size and the appli-
cation layer information. Saponas et al. [28] uncovered
security issues with consumer electronic gadgets that
enable information retrieval such as video title classifi-
cation. Liu et al. [29] presented a method for video title
classification of RTP/UDP internet traffic. In [30] Liu
et al. presented an improved algorithm which is more
efficient and demonstrated excellent results on a bigger
data set with real network conditions. They used the
wavelet transform for constructing unique and robust
video signatures with different compactnesses.

Since these works [28-30] were conducted, there have
been several changes in video traffic over the internet:
(i) Adaptive byte range selection over HTTP; (ii) MBR,
adaptive streaming; (iii) HTTP version 2 [42]. This pa-
per’s main contributions are:

— This is the first work that shows that a passive at-
tacker, sniffing ISP or Wi-Fi open-system network
traffic, can identify video titles of encrypted YouTube
video streams over DASH. Inspired by other works
presented above, we exploit traffic patterns and Vari-
able Bit-Rate (VBR) encoding. We present new meth-
ods that are applicable also to current standards of
video streaming.

— We run through a set of experiments, which shows
that our classification accuracy is more than 95%.

— We show that our algorithms are able to classify
video titles that are not in the training as unknown
and some of the algorithms are also able to eliminate
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false prediction of video titles and instead report
unknown.

— We evaluate our algorithms robustness to delays and
packet losses at testing time and show that a solu-
tion that uses SVM is the most robust against these
changes given enough training data.

— We provide a comprehensive dataset that contains
10000 labeled YouTube streams of 100 video titles
(that is, 100 streams per video title). The streams
were downloaded from the Internet under real-world
network conditions. The dataset [43] and crawler
[44] are available for download.

The remainder of this paper is organized as follows.
In Section 2 we present our framework and our sug-
gested algorithms. In Section 3 we evaluate the perfor-
mance of all algorithms also under severe network con-
ditions on testing times. Finally, we conclude in Section
4.

2 Video Title Classification

The proposed solution architecture has three modules.
The first module (Section 2.1) removes non-YouTube
packets and audio packets. The next module combines
several YouTube packets into a peak. A peak is defined
as a section of traffic where there is silence before and
after. Features are extracted from these peaks (Section
2.2) and passed into a classification algorithm (Section
2.3). It is noteworthy that the input to all of our clas-
sification algorithms is only encrypted HTTP adaptive
video streaming traffic.

2.1 Preprocessing

First, we divide the traffic into flows based on a five-
tuple representation: {protocol (TCP/UDP), src IP, dst
IP, src port, dst port}. Then, we decide for each flow
whether it is a YouTube flow. This is done based on the
Service Name Indication (SNI) field in the Client Hello
message. If the “googlevideos.com” string is found in
the SNI, the flow is passed to the next module. Note
that the YouTube flows identification can also be done
using machine learning techniques [45,46].

Second, we optionally remove audio packets. In all
our training data, bursts that were smaller than 400kB,
while video traffic bursts were much larger. The audio
data and the video data can be found in the same 5-
tuple flow and in some cases we cannot distinguish be-
tween them.

Finally, we remove TCP re-transmissions using a
TCP stack [47] as re-transmissions are caused mostly
by network conditions.

2.2 Feature Extraction

The feature extraction is done on the preprocessed traf-
fic, where non-YouTube flows, audio packets, and TCP
re-transmissions have been removed. To better under-
stand encrypted YouTube streaming traffic properties,
we examined YouTube traffic under different browsers.
Fig. 2 depicts traffic download patterns of auto quality
representation using different browsers. In the figure we
can see that all flows contain peaks. Rao et al. [48] and
Ameigeiraset al. [49] showed the same characteristics
(coined in [48,49] as ?On/Off”). Therefore we decided
to encode every peak of the stream to a feature. This
feature is the Bit-Per-Peak (BPP); that is, total number
of bits in a peak.

2.3 Machine Learning

After the preprocessing and feature extraction, each
video stream (number j of video title ) is represented
by Sij;, a set of Bit-Per-Peak (BPP) features (no du-
plicates). Note that each BPP-set may have different
cardinality.

We adapt four machine learning algorithms. The
first is the nearest neighbor algorithm [50]. In this al-
gorithm, a testing stream title is determined as the
nearest neighbor stream title in the training data. The
second and third are the nearest neighbor to class al-
gorithm [51] and the nearest neighbor to class unique
algorithm.

These algorithms compute the similarity score be-
tween a test sample and all training samples of a class
(video title). In the unique version only features that
appear in all streams of a video title are used. The
fourth algorithm generalizes the second, by using simi-
larities as features [52] in an SVM algorithm [53]. Table
1 summarizes symbols used in this paper. Following are
detailed explanations of our adaptations of the machine
learning algorithms.

2.3.1 Nearest Neighbor (NN) Algorithm

The nearest neighbor similarity score between two BPP-
sets, S and &', is the cardinality of the intersection set:

sim(S,8’) = SN S| (1)

At test time, each video stream BPP-set, Siest, 18
classified as the video title 7, that has the maximum
similarity score to one of the title training stream BPP-
sets or as unknown if all similarities are zero:
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Fig. 2: Traffic flows of auto mode downloads of the same movie from different browsers. All flows have the same
characteristics: peaks (of packets) with silences before and after. Note that the differences between the flows may
be caused by: auto mode, network conditions, video container, video encoder, etc.

BPP | Bit-Per-Peak

i Video title number

i Stream number

n Number of video titles in the training dataset
m; Number of stream samples per title ¢ in the

training dataset
S, S BPP-sets
Sij A BPP-set of stream number j of title ¢
Stest | A test BPP-set
T A BPP-set which is a
¢ union of all training streams of video i (Eq. 4)
A BPP-set which is a
U; union of all training streams of video ¢
minus BPPs of other video titles (Eq. 7)

Table 1: List of Abbreviations

Vi1i<i<n, s;= nqnfif(sim(smst,&j) (2)
j=
argrrlnax s; if (mrzlmx si) #0
y(Stest) = i=1 i=1 (3)
unknown otherwise

2.3.2 Nearest Neighbor to Class (NNC) Algorithm

In the nearest neighbor to the class algorithm, each
video title ¢ in the training is represented by a single
BPP-set, 7;, which is a union of all its m; video stream
BPP-sets (no duplicates):

Ti = UiZ1Sij (4)

As in the nearest neighbor algorithm, the similarity
score is the cardinality of the intersection set. In this
case, the similarity is between a BPP-set of a single
stream and the BPP-set of all streams of a title:

sim(S, 7;) = |S N T; (5)

At test time, each video stream set, Siest, is classified
as the video title 7, that has the maximum similarity
score to one of the n video title BPP-sets or as unknown
if all similarities are zero:

y(stest) =
arg%axsim(&emﬂ) if (m%xsim(Stestﬂ;)) #0
i=1 i=
unknown otherwise

(6)

2.3.8 Nearest Neighbor to Class Unique (NNCU)
Algorithm

As in the nearest neighbor to class algorithm, in the
nearest neighbor to class unique algorithm, each video
title 4 in the training is represented by a single BPP-
set. In the nearest neighbor to class unique algorithm,
the set is a union of all its m; video stream BPP-sets
(no duplicates) minus BPP values that appear in sets
of other video titles:

U= T\ U o) -

As in the nearest neighbor to class algorithm, the
similarity score is the cardinality of the intersection set:

sim(S,U;) = |S N ;| (8)

At test time, each video stream set, Sgest, is classified
as the video title 7, that has the maximum similarity
score to one of the n video title BPP-sets or as unknown
if all similarities are zero:

y(stest) =
arginax sim(Stest, U;)  if (nfélx sim(SteSt,Z/l,-)) #0
i=1 i=

unknown otherwise
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9)

2.8.4 Similarities as Features Support Vector Machine
(SFSVM) Algorithm

In this algorithm, each video stream is represented by
a feature vector which is the video stream similarity to
all n video title sets (thus it is an n-dimensional vec-
tor). Where the similarity is the same as in the nearest
neighbor to class algorithm, Eq. 5:

2(S) = [sim(S, Ti), ..., sim(S, To)] (10)
Thus, the training set is an (3, m;) x n matrix

of all training stream feature vectors:

[ sim (811, 7T1) sim(S11, Tn)

sim(Slml 5 7-1) . sim(Slml 5 7;1)

sim(Sp1,T1) ... sim(Sp1, Trn)

_Sim(snmna /Tl) ce Sim(snmn s 7;L)_

We learn one vs. all support vector machines [53,54].
That is, we learn a classifier for each video title ¢ that
classifies whether it is this title or any of the other titles.
The classifiers are n-dimensional weight vectors and at
test time, each video stream set, Siest, is classified as the
video title 7, which maximizes the dot product between
the class weight vector and the features vector or as
unknown if all similarities are zero:

T (Shest) = [$IM(Stests T1), - - - » SIM(Stest, Tn )] (12)
Y(Stest) =
ar%%ax (w; - Z(Stest)) if (I?EIX sim(Stest, 7;)) #0
unknown otherwise
(13)

It is noteworthy that if we learn the following weight
vectors:

%

Vi1i<i<n, w;=10,...,1,...,0] (14)

This exactly models the nearest neighbor to the
class algorithm. Thus, this algorithm generalizes the
nearest neighbor to the class algorithm.

A summary of the algorithms’ training and testing
samples is in Table 2.

3 Performance Evaluation

In this section, we evaluate the proposed encrypted
HTTP adaptive video streaming title classification al-
gorithms. First, we describe the dataset in 3.1. Then
we report experimental results in Section 3.2.

3.1 Dataset

We collected a training set of encrypted video streams.
The dataset contains 10000 labeled YouTube streams of
100 video titles (that is, 100 stream downloads per video
title). The streams were downloaded from Youtube via
the Internet (thus, each downloaded stream had differ-
ent network conditions). The video titles used in this
study are popular YouTube videos from different cate-
gories such as news, sports, nature, video action trailers,
and GoPro videos. The dataset and crawler are avail-
able for download at [43].

In this study we decided to use the Chrome browser
since it is the most popular browser in the market and
its popularity is growing [55]. We used the default auto
mode of the YouTube player (the player decides which
quality representation to download based on estimation
of the client network conditions).

We used the Selenium web automation tool [56] with
ChromeDriver [57] for the crawler, so it will simulate
a user video download. We used Adblock Plus [58] to
eliminate advertisements.

3.2 Experimental Results

We recall that our classifiers have two type of predic-
tions: a video title 1 < ¢ < n and unknown. Unknown
means that the classifier predicts that the given stream
video title is not in the training set. We use the follow-
ing evaluation metrics:

Accuracy Number of times that the classifier predicted
video title ¢ and it was true, divided by the total
number of predictions.

False-Prediction-Error Number of times that the clas-
sifier predicted video title ¢ and it was false, divided
by the total number of predictions.

Unknown-True-Prediction Number of times that the
classifier predicted video title unknown and it is in-
deed not a video title from the training set, divided
by the total number of predictions.

Unknown-Prediction-Error Number of times that the
classifier predicted video title unknown while it was
a video title from the training set, divided by the
total number of predictions.
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Class Unique

Algorithm Training Sample Testing Sample
Nearest Neighbor Sij Stest

Nearest Neighbor to | T; Stest

Class

Nearest Neighbor to | U; Stest

tures Support Vector
Machine

Similarities as Fea- | Z(8Si;) = [sim(Sij, T1), - - . ,sim(S;;, Tn)]

E’(‘S‘test) = [Sim(stestyﬂ)’ e Sim(stest7 7;7.)]

Table 2: Algorithms’ training and testing samples

We first report results using variable training dataset
sizes. For all following experiments, we used 1000 streams
(10 streams per video title) as the testing set. For train-
ing, we used the other 9000 streams (90 streams per
video title), 6000 streams (60 streams per video ti-
tle), 3000 streams (30 streams per video title) and 500
streams (5 streams per video title). All the test video
streams were different from the ones that were used in
the training phase, because of network conditions while
streaming video from Youtube.

In these experiments, the testing set did not con-
tain streams of video titles that were not in the train-
ing data. So, the Unknown-True-Prediction was 0%. We
compared all algorithms with our features. We also ex-
perimented with and without the removal of audio fea-
tures. The results of these experiments are depicted in
Fig. 3.

There are several observations. First, all algorithms
were able to accurately identify the video title of an en-
crypted HTTP adaptive stream (HAS). Accuracy was
higher than 90% using 60 or more streams per video
title. Even using only 5 streams per video title, NN+A,
NNC+A and SFSVM+A accuracy was larger than 90%.
Using also BPPs of audio peaks the accuracy was higher
than 95% using 90 streams per video title, but the False-
Prediction-Error which is a more severe error than the
Unknown-Prediction-Error was also higher. The NNCU
algorithm accuracy was lower in comparison to the other
algorithms and moreover without the audio features.
But, the accuracy is still high and the False-Prediction-
Errors were almost eliminated.

We also experimented with 30 video titles that were
not in the training set. The True-Unknown-Prediction
rate (predicting unknown video title when it is not in
the training dataset) was 100% for all algorithms. That
is, all 30 video titles that were not in the training data
were classified correctly as unknown.

As network conditions vary, we also tested our algo-
rithms with additional LAN network delay and packet
loss on test time. That is, only the testing data is changed
and not training data. The additional delay and drop
affects the client player and causes it to select differ-

ent (lower) representations. The delays and packet loss
were added using the clumsy application [59].

The results of additional LAN network delay are
depicted in Fig. 4. We can see that using the largest
training dataset the SFSVM+A method outperformed
all other methods and achieved accuracy of more than
80% even under severe network delays of 600msec. We
conjecture that the learning phase and the usage of dis-
tance to class made this algorithm robust to changes
while downloading the video. We can see that NNC+A
accuracy was also high. Training with less streams, the
algorithms NNC+A and SFSVM+A are comparable
and both outperformed all other algorithms. Like pre-
vious results the NNCU algorithm and not using audio
features eliminated False-Prediction-Error. Out of all
algorithms with low False-Prediciton-Error, NNCU+A
accuracy was the best.

The results of additional packet loss are depicted
in Fig. 5. We can see that using the largest training
dataset the SEFSVM+A method slightly outperformed
all other methods and achieved accuracy of more than
70% even under severe packet loss of 6%. NNC+A,
NNCU+A, NN+A all also had good performance. Train-
ing with less streams, methods accuracy was gener-
ally reduced. Similar to previous results the NNCU
algorithm and not using audio features almost elim-
inated False-Prediction-Error. Again, out of all algo-
rithms with low False-Prediciton-Error, NNCU+A ac-
curacy was the best.

4 Conclusions

This paper showed that the video title of encrypted
HTTP adaptive streams such as YouTube can be iden-
tified with high accuracy, even under severe network
conditions. To the best of our knowledge this is the
first work to show this. We presented several algorithms
for this task and compared them on a large real-world
traffic dataset. Overall, having enough training data the
SFSVM+A algorithm achieved the best accuracy even
under severe network conditions. If False-Prediciton-
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Error (predicting the wrong title) is a severe error we
recommend to use the NNCU+A algorithm which in-
stead reports unknown on almost all of its errors and
still has relatively high accuracy. The dataset and the
crawler are provided for future research at [43].
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(c) 30 streams per video title in training (3000 streams (d) 5 streams per video title in training (500 streams
total) total)

[ Unknown-Prediction-Error: predict video title unknown while it is video title i from the training data
[ False-Prediction-Error: predict video title ¢z while it is video title 2’ # 4 from the training data
[0 Accuracy: predict the right video title

NN: Nearest Neighbor NNC: Nearest Neighbor to Class
NNCU: Nearest Neighbor to Class Unique | SFSVM: Similarities as Features Support Vector Machine
-A: without audio features +A: with audio features

Fig. 3: Accuracy, False-Prediction-Error and False-Unknown-Error (predicting unknown video title when it is in
the training dataset) results for different training data set sizes and different learning algorithms. We can see
that all algorithms were able to identify the video title of an encrypted HTTP adaptive stream (HAS) with very
high accuracy. Using 60 or more streams per video title in the training data set, all algorithms achieved accuracy
higher than 90% (as there are 100 classes a chance classifier accuracy is only 1% for this task). Even using only
5 streams per video title, NN+A, NNC+A and SFSVM+A achieved more than 90% accuracy. Adding audio
features increased accuracy. However, usually it also increased the False-Prediction-Error which is a more severe
error than the Unknown-Prediction-Error. The NNCU algorithm, especially without the audio features, achieved
lower accuracy as compared to the other algorithms. However, the accuracy was still high (89% or higher for 30
streams per video title or more, and 78.7% for 5 streams per video title) and the False-Prediction-Error was almost
eliminated.
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Fig. 4: Accuracy, False-Prediction-Error and False-Unknown-Error results for different training data set sizes,
different additional LAN network delay and different learning algorithms. Using the largest training dataset the
SFSVM-+A method outperformed all other methods and achieved accuracy of more than 80% even with severe
network delays of 600msec. We conjecture that the learning phase and the usage of distance to class made this
algorithm robust to changes in testing time. We can see that NNC+A accuracy was also high. Training with less
streams (see next page), NNC+A and SFSVM+A were comparable and both outperformed all other algorithms.
Like previous results the NNCU algorithm and not using audio features eliminated False-Prediction-Error. Out of
all algorithms with low False-Prediciton-Error, NNCU+A accuracy was the best.
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Fig. 5: Accuracy, False-Prediction-Error and False-Unknown-Error results for different training data set sizes,
different additional packet loss percentage and different learning algorithms. Using the largest training dataset
the SFSVM+A method slightly outperformed all other methods and achieved accuracy of more than 70% even
under severe packet loss of 6%. NNC+A, NNCU+A, NN+A accuracies were also good. Training with less streams
resulted in generally reduced method accuracy. Similar to previous results the NNCU algorithm and not using audio
features almost eliminated False-Prediction-Error. Again, out of all algorithms with low False-Prediciton-Error,
NNCU+A accuracy was the best.



