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Abstract

We study the trade-off between secret message (SM) and secret key (SK) rates, simultaneously achievable over

a state-dependent (SD) wiretap channel (WTC) with non-causal channel state information (CSI) at the encoder. This

model subsumes other instances of CSI availability as special cases, and calls for efficient utilization of the state

sequence for both reliability and security purposes. An inner bound on the semantic-security (SS) SM-SK capacity

region is derived based on a superposition coding scheme inspired by a past work of the authors. The region is

shown to attain capacity for a certain class of SD-WTCs. SS is established by virtue of two versions of the strong

soft-covering lemma. The derived region yields an improvement upon the previously best known SM-SK trade-off

result reported by Prabhakaran et al., and, to the best of our knowledge, upon all other existing lower bounds for

either SM or SK for this setup, even if the semantic security requirement is relaxed to weak secrecy. It is demonstrated

that our region can be strictly larger than those reported in the preceding works.

I. INTRODUCTION

A. Background

Physical layer security (PLS) [1]–[3], rooted in information-theoretic (IT) principles, is an approach to provably

secure communication that dates back to Wyner’s celebrated 1975 paper on the wiretap channel (WTC) [4]. By

harnessing randomness from the noisy communication channel and combining it with proper physical layer coding,

PLS guarantees protection against computationally-unlimited eavesdroppers, with no requirement that the legitimate

parties share a secret key (SK) in advance. Two fundamental questions in the field of PLS regard finding the best
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achievable transmission rate of a secret message (SM) over a noisy channel, and the highest attainable SK rate that

distributed parties can agree upon based on correlated observations.

The base model for SM transmission is Wyner’s WTC [4], where two legitimate parties communicate over a

noisy channel in the presence of an eavesdropper. The secrecy capacity of the degraded WTC was derived in [4],

and the result was extended to the general case by Csiszár and Körner [5]. The security analyses in both [4] and

[5] relied on evaluating particular conditional entropy terms, named equivocation. This technique has been widely

adopted in the IT community ever since.

Recently, distribution approximation arguments emerged as the tool of choice for proving security. This approach

relies on a soft-covering lemma (SCL) that originated in another 1975 paper by Wyner [6]. The SCL states that

the distribution induced by randomly selecting a codeword from an appropriately chosen codebook and passing it

through a memoryless channel will be asymptotically indistinguishable from the distribution of random noise. The

SCL was further developed over the years and stricter proximity measures between distributions were achieved

[7]–[10]. Based on these more advanced versions, one can make the channel output observed by the eavesdropper

in the WTC seem like noise and, in particular, be approximately independent of the confidential data. This, in turn,

implies IT security. Notably, [11] and [12] focused on tight soft-covering exponents with respect to relative entropy

and total variation, respectively.

The study of SK agreement was pioneered by Maurer [13], and, independently, by Ahlswede and Csiszár [14],

who studied the achievable SK rates based on correlated observations at the terminals that can communicate via

a noiseless and rate unlimited public link. The SK capacity when only one-way public communication is allowed

was characterized in [14]. This result was generalized in [15] to the case where the public link has finite capacity.

The optimal random coding scheme for these cases is a combination of superposition coding and Wyner-Ziv coding

[16]. If the encoder controls its source (rather than just observing it), this source becomes a channel input and the

setup evolves to a WTC. This is a special case of the SK channel-type model that was also studied in [14].

B. Model and Contributions

A more general framework to consider is the state-dependent (SD) WTC with non-causal encoder channel

state information (CSI). This model combines the WTC and the Gelfand and Pinsker (GP) channel [17], and

is therefore sometimes referred to as the GP-WTC. The dependence of the channel’s transition probability on the

state sequence accounts for the possible availability of correlated sources at the terminals. The similarity between

the SM transmission and the SK agreement tasks makes their integration in a single model natural. Adhering to

the most general framework, we study the SM-SK rate pairs that are simultaneously achievable over a SD-WTC

with non-causal encoder CSI.

The scenario where there is only a SM was studied in [18], where an achievable SM rate formula was established.

This result was improved in [19] based on a novel superposition coding scheme1. SK agreement over the GP-WTC

was the focus of [22], and, more recently, of [23] (see also references therein). The combined model was considered

1 The respective causal scenario was recently studied in [20], [21].
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Fig. 1. The state-dependent wiretap channel with non-casual encoder channel state information, exploited for simultaneous secret message
transmission and secret key generation.

by Prabhakaran et al. [24], who derived a benchmark inner bound on the SM-SK capacity region. The result from

[24] is optimal for several classes of SD-WTCs.

We propose a novel superposition coding scheme for the combined model that subsumes all the aforementioned

achievability results as special cases. Specifically, [18], [19], [22]–[24], as well as all the other existing inner bounds

(on SM transmission, SK agreement or both) that are known to the authors, are captured. Furthermore, our inner

bound is shown to achieve strictly higher rates than each of these previous results.

The coding scheme used herein is inspired by [19]. Namely, an over-populated superposition codebook that

encodes the entire confidential message in its outer layer is utilized. Using the redundancies in the inner and outer

layers, the transmission is correlated with the state sequence by means of the likelihood encoder [25]. Although

the redundancy indices are chosen as part of the encoding process, we show that their true distribution is close to

uniform. Consequently, as long as a certain redundancy index is kept secret (along with the confidential message),

it may be declared as a SK. The security analysis is based on constructing the inner codebook such that it is better

observable by the eavesdropper, making the inner layer index decodable by him/her. This enhances the secrecy

resources that the legitimate parties can extract from the outer layer, which they use to secure the SM and part of

the redundancy index of the outer layer. The latter is declared as the SK.

Our results are derived under the strict metric of semantic-security (SS). The SS criterion is a cryptographic

gold standard that was adapted to the WTC framework (of computationally unbounded adversaries with a noisy

observation) in [26]. As was shown in [26], SS is equivalent to negligible mutual information (MI) between the

confidential information (in our case, the SM-SK pair) and the eavesdropper’s observations, when maximized over

all possible message distributions. The proof of SS relies on the strong SCL for superposition [19, Lemma 1] and

the heterogeneous SCL [10, Lemma 1].

Since the past secrecy results from [18], [22]–[24] were derived under the weak secrecy metric (i.e., a vanishing

normalized MI with respect to a uniformly distributed message-key pair), our achievability outperforms those

schemes, not only in terms of the achievable rate pairs, but also in the upgraded sense of security.
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C. Organization

This paper is organized as follows. Section II establishes notation and definitions and sets up the SD-WTC

problem. Section III states our main result – an inner bound on the SM-SK optimal trade-off region. In Section IV

our inner bound is shown to be tight for a certain class of channels. In Section V we discuss past results captured

within the considered framework, and illustrate the improvement our result yields. The proof of the main result is

the content of Section VI. Finally, Section VII summarizes the main achievements and outlines the main insights

emerging from this work.

II. PRELIMINARIES AND PROBLEM SET-UP

A. Preliminaries

We use the following notations. As is customary, N is the set of natural numbers, while R are the reals. We

further define R+ = {x ∈ R|x ≥ 0}. Given two real numbers a, b, we denote by [a : b] the set of integers
{

n ∈ N
∣

∣a ≤ n ≤ b
}

. Calligraphic letters denote sets, e.g., X , while |X | stands for the cardinality of X . Xn

denotes the n-fold Cartesian product of X . An element of Xn is denoted by xn = (x1, x2, . . . , xn); whenever the

dimension n is clear from the context, vectors (or sequences) are denoted by boldface letters, e.g., x.

Let
(

Ω,F,P
)

be a probability space, where Ω is the sample space, F is the σ-algebra and P is the probability

measure. Random variables over
(

Ω,F,P
)

are denoted by uppercase letters, e.g., X , with conventions for random

vectors similar to those for deterministic sequences. The probability of an event A ∈ F is denoted by P(A), while

P(A
∣

∣B ) denotes the conditional probability of A given B. We use 1A to denote the indicator function of A ∈ F.

The set of all probability mass functions (PMFs) on a finite set X is denoted by P(X ), i.e.,

P(X ) =

{

p : X → [0, 1]

∣

∣

∣

∣

∑

x∈X

p(x) = 1

}

. (1)

PMFs are denoted by letters such as p or q, with a subscript that identifies the random variable and its possible

conditioning. For example, for two discrete correlated random variables X and Y over the same probability space,

we use pX , pX,Y and pX|Y to denote, respectively, the marginal PMF of X , the joint PMF of (X,Y ) and the

conditional PMF of X given Y . In particular, pX|Y : Y → P(X ) represents the stochastic matrix whose elements

are given by pX|Y (x|y) = P
(

X = x|Y = y
)

. Expressions such as pX,Y = pXpY |X are to be understood as

pX,Y (x, y) = pX(x)pY |X(y|x), for all (x, y) ∈ X × Y . Accordingly, when three random variables X , Y and Z

satisfy pX|Y,Z = pX|Y , they form a Markov chain, which is denoted by X −
− Y −
− Z .

Any PMF q ∈ P(X ) gives rise to a probability measure on (X , 2X )2, which we denote by Pq; accordingly,

Pq

(

A) =
∑

x∈A q(x) for every A ⊆ X . We use Eq to denote an expectation taken with respect to Pq . Similarly,

we use Hq and Iq to indicate that an entropy or a mutual information term are calculated with respect to the PMF

q. For a random vector Xn, if the entries of Xn are drawn in an independent and identically distributed (i.i.d.)

manner according to pX , then for every x ∈ Xn we have pXn(x) =
∏n

i=1 pX(xi) and we write pXn(x) = pnX(x).

2Here 2
X stands for the power set of X .
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Similarly, if for every (x,y) ∈ Xn×Yn we have pY n|Xn(y|x) =
∏n

i=1 pY |X(yi|xi), then we write pY n|Xn(y|x) =

pn
Y |X(y|x). The conditional product PMF pn

Y |X given a specific sequence x ∈ Xn is denoted by pn
Y |X=x.

The empirical PMF νx of a sequence x ∈ Xn is νx(x) ,
N(x|x)

n
, where N(x|x) =

∑n
i=1 1{xi=x}. We use

T n
ǫ (pX) to denote the set of letter-typical sequences of length n with respect to the PMF pX and the non-negative

number ǫ, i.e., we have

T n
ǫ (pX) =

{

x ∈ Xn
∣

∣

∣

∣

∣νx(x) − pX(x)
∣

∣ ≤ ǫpX(x), ∀x ∈ X
}

. (2)

Definition 1 (Total Variation) Let (Ω,F) be a measurable space and µ and ν be two probability measures on

that space. The total variation between µ and ν is

||µ− ν||TV = sup
A∈F

∣

∣µ(A)− ν(A)
∣

∣. (3a)

If the sample space Ω is countable, p, q ∈ P(Ω) and Pp and Pq are the probability measures induced by p and q,

respectively, then (3a) reduces to

||Pp − Pq||TV =
1

2

∑

x∈Ω

∣

∣p(x)− q(x)
∣

∣ , ||p− q||TV. (3b)

B. Problem Setup

We study the SD-WTC with non-causal encoder CSI, for which we establish a novel achievable region of

semantically secured message-key rate pairs.

Let S, X , Y and Z be finite sets. The
(

S,X ,Y,Z,WS ,WY,Z|S,X

)

discrete and memoryless (DM) SD-WTC

with non-causal encoder CSI is shown in Fig. 1. A state sequence s ∈ Sn is sampled in an i.i.d. manner according

to WS and revealed in a non-causal fashion to the sender. Independently of the observation of s, the sender chooses

a message m from the set
[

1 : 2nRM
]

and maps the pair (s,m) onto a channel input sequence x ∈ Xn and a

key index k ∈
[

1 : 2nRK
]

(the mapping may be random). The sequence x is transmitted over the SD-WTC with

transition probability WY,Z|S,X : S ×X → P(Y ×Z). The output sequences y ∈ Yn and z ∈ Zn are observed by

the receiver and the eavesdropper, respectively. Based on y, the receiver produces the pair (m̂, k̂), its estimates of

(m, k). The eavesdropper tries to glean whatever it can about the message-key pair from z.

Remark 1 (Most General Model) The considered model is the most general instance of a SD-WTC with non-

causal CSI known at some or all of the terminals. Seemingly, the broadest model one may consider is when the

SD-WTC WỸ,Z̃|St,Xt,Sr,Se
is driven by a triple of correlated state random variables (St, Sr, Se) ∼ WSt,Sr,Se

,

where St, Sr and Se are known to the transmitter, the receiver and the eavesdropper, respectively. However, setting

S = St, Y = (Ỹ, Sr), Z = (Z̃, Se) in a SD-WTC with non-causal encoder CSI and defining the channel’s transition

probability as

WY,Z|S,X =W(Ỹ,Sr),(Z̃,Se)|S,Xt
=WSr ,Se|St

WỸ,Z̃|S,Xt,Sr,Se
,
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one recovers the aforementioned SD-WTC from the model with non-causal CSI only at the encoder. Our model also

supports the existence of a public or a private bit-pipe (respectively, from the transmitter to the receiver and the

eavesdropper, or only to the receiver), in addition to, or instead of, the noisy channel.

Definition 2 (Code) An (n,RM , RK)-code cn for the SD-WTC with non-causal encoder CSI and a message set

Mn ,
[

1 : 2nRM
]

and a key set Kn ,
[

1 : 2nRK
]

is a pair of functions (fn, φn) such that

1) fn : Mn × Sn → P(Kn ×Xn) is a stochastic encoder.

2) φn : Yn → Mn ×Kn is the decoding function.

For any message distribution pM ∈ P(Mn) and any (n,RM , RK)-code cn, the induced joint PMF is

p(cn)(s,m, k,x,y, z, m̂, k̂)=Wn
S (s)PM (m)fn(k,x|m, s)W

n
Y,Z|S,X(y, z|x, s)1{

(m̂,k̂)=φn(y)
}. (4)

The probability measure induced by p(cn) is Pp(cn) . The performance of cn is evaluated in terms of its rate pair

(RM , RK), its maximal decoding error probability, the key uniformity and independence metric, and the SS-metric.

Definition 3 (Error Probability) The error probability of an (n,RM , RK)-code cn is

e(cn) , max
m∈Mn

em(cn), (5a)

where for any m ∈ Mn

em(cn) , Pp(cn)

(

(

M̂, K̂
)

6= (m,K)
∣

∣

∣
M = m

)

=
∑

(s,x)
∈Sn×Xn

Wn
S (s)fn(k,x|m, s)

∑

y∈Yn:
φn(y) 6=(m,k)

Wn
Y |S,X(y|x, s), (5b)

and subscript p(cn) denotes that the underlying PMF is (4).

Remark 2 (Operational Interpretation of the Error Probability) The error probability in (5a) is defined by

maximizing (5b) over the set of messages Mn. The maximization is only with respect to the message (rather

than with respect to the SM-SK pair) because, while the choice of M ∼ pM is independent of the code cn, the

distribution of the SK, K , and its estimate, K̂ , is induced by the code (see (4)). A similar logic applies for the

subsequent definition of the key uniformity and independence metric.

Definition 4 (Key Uniformity and Independence Metric) The key uniformity and independence (of the message)

metric under the (n,RM , RK)-code cn is

δ(cn) , max
m∈Mn

δm(cn), (6a)

where for any m ∈ Mn

δm(cn) ,
∣

∣

∣

∣p
(cn)
K|M=m

− p
(U)
Kn

∣

∣

∣

∣

TV
(6b)

and p
(U)
Kn

is the uniform PMF over Kn.
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Definition 5 (Information Leakage and SS Metric) The information leakage to the eavesdropper under the

(n,RM , RK)-code cn and the message PMF pM ∈ P(Mn) is ℓ(pM , cn) , Ip(cn)(M,K;Z), where Ip(cn) denotes

that the MI is taken with respect to (4). The SS metric with respect to cn is

ℓSem(cn) , max
pM∈P(Mn)

ℓ(pM , cn). (7)

Definition 6 (Achievability) A pair (RM , RK) ∈ R
2
+ is called an achievable SS message-key rate pair for the

SD-WTC with non-causal encoder CSI, if for every ǫ > 0 and sufficiently large n there exists an (n,RM , RK)-code

cn with

max
{

e(cn), δ(cn), ℓSem(cn)
}

≤ ǫ. (8)

Definition 7 (SS-Capacity) The SS message-key capacity region CSem of the SD-WTC with non-causal encoder

CSI is the convex closure of the set of all achievable SS message-key rate pairs.

III. MAIN RESULT

The main result of this work is a novel inner bound on the SS message-key capacity region of the SD-WTC

with non-causal encoder CSI. Our achievable region is at least as good as the best known achievability results for

the considered problem, and is strictly larger in some cases. To state our main result, let U and V be finite sets and

for any qU,V,X|S : S → P(U × V × X ) define

RA

(

qU,V,X|S

)

,



















(RM , RK) ∈ R
2
+

∣

∣

∣

∣

∣

∣

∣

∣

RM ≤ I(U, V ;Y )− I(U, V ;S),

RM +RK ≤ I(V ;Y |U)− I(V ;Z|U),

RM +RK ≤ I(U, V ;Y )− I(V ;Z|U)− I(U ;S)



















, (9)

where the MI terms are calculated with respect to the joint PMF WSqU,V,X|SWY,Z|S,X , under which (U, V ) −
−

(S,X)−
− (Y, Z) forms a Markov chain.

Theorem 1 (SS Message-Key Capacity Inner Bound) The following inclusion holds:

CSem ⊇ RA ,
⋃

qU,V,X|S

RA

(

qU,V,X|S

)

. (10)

The proof of Theorem 1 is given in Section VI, and is based on a secured superposition coding scheme. An

over-populated two-layered superposition codebook is constructed (independently of the state sequence), in which

the entire secret message is encoded in the outer layer. Thus, no data is carried by the inner layer. The likelihood

encoder [25] uses the redundancies in the inner and outer codebooks to correlate the transmitted codewords with

the observed state sequence. Upon doing so, part of the correlation index from the outer layer is declared by the

encoder as the key. The inner layer is designed to utilize the part of the channel which is better observable by

the eavesdropper. This saturates the eavesdropper with redundant information and leaves him/her with insufficient
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resources to extract any information on the SM-SK pair from the outer layer. The legitimate decoder, on the other

hand, decodes both layers of the codebook and declares the appropriate indices as the decoded message-key pair.

Remark 3 (Interpretation of Theorem 1) To get some intuitive understanding of the result of Theorem 1, we

examine RA(qU,V,X|S) from two different perspectives: when the joint PMF WSqU,V,X|SWY,Z|S,X is such that

I(U ;Y ) ≥ I(U ;S), and when the opposite inequality holds.

If I(U ;Y ) ≥ I(U ;S), the third rate bound in RA(qU,V,X|S) becomes redundant and the dominating bounds are

RM ≤ I(U, V ;Y )− I(U, V ;S), (11a)

RM +RK ≤ I(V ;Y |U)− I(V ;Z|U). (11b)

The right-hand side (RHS) of (11a) is the total rate of reliable (secured and unsecured) communication that our

superposition codebook supports. This clearly bounds the rate of the SM that may be transmitted. For (11b), the MI

difference on the RHS is the total rate of secrecy resources that are produced by the outer layer of the codebook.

Since the security of our SM-SK pair comes entirely from that outer layer, this MI difference is an upper bound on

the sum of rates.

For the opposite case, if I(U ;Y ) < I(U ;S), then the second inequality in RA is inactive and we are left with

RM ≤ I(U, V ;Y )− I(U, V ;S), (12a)

RM +RK ≤ I(V ;Y |U)− I(V ;Z|U)−
[

I(U ;S)− I(U ;Y )
]

. (12b)

While the interpretation of (12a) remains as before, to understand (12b) consider the following. Since I(U ;S) is

approximately the rate of the inner codebook, I(U ;Y ) < I(U ;S) means that looking solely at the inner layer,

the decoder lacks the resolution to decode it. However, the success of our communication protocol relies on the

decoder reliably decoding both layers. Therefore, in this case, some of the rate from the outer layer is allocated

to convey the inner layer index. Recalling that our security analysis is based on revealing the inner layer to the

eavesdropper, this rate allocation effectively results in a loss of I(U ;S)− I(U ;Y ) in the secrecy resources of the

outer layer, giving rise to the rate bound from (12b).

Remark 4 (Alternative Representations of RA) By defining Ṽ = (U, V ), we see that it suffices to restrict the

maximization in (10) to joint PMFs that satisfy the Markov chain U −
− V −
− (S,X) −
− (Y, Z). Furthermore,

rewriting the the bounds on RM +RK from (9) as

RM +RK ≤ I(U, V ;Y )− I(U, V ;Z)−max
{

I(U ;Y ), I(U ;S)
}

+ I(U ;Z), (13)

it is evident that maximizing only over joint PMFs satisfying I(U ;Z) ≥ max
{

I(U ;Y ), I(U ;S)
}

attains optimality.

Indeed, if the opposite inequality holds, one could always choose Ṽ = (U, V ) and Ũ = ∅ to achieve higher rates.
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Adapting Theorem 1 to the Rate-Equivocation Framework

A confidential transmission of a SM requires channel resources for both reliability and security. The lesser of

the two resources, therefore, limits the feasible transmission rates. The main focus of this paper is utilization of

the residual secrecy resources that the SD-WTC offers. However, if secrecy is the lesser resource, the superior

capability of the channel to support reliable communication may be utilized by considering a Rate-Equivocation

framework.

Theorem 1 naturally extends to an inner bound on the rate-equivocation region of the considered SD-WTC [5],

[27]. Equivocation represents the portion of the message that can be secured from the eavesdropper. Intuitively, it

answers the question of how much information does the eavesdropper lack for decoding the entire message. The

rate-equivocation framework enables communicating at rates higher than the secrecy capacity, as long as full secrecy

is forfeited. Since equivocation has added value over full secrecy only when the channel offers more resources for

reliable communication than for security, for simplicity we assume RK = 0.

Formally, the equivocation rate of an (n,R)-code cn is R
(cn)
E , 1

n
Hp(cn)(M̃ |Z), where p(cn) is given in (4) and

M̃ is a uniformly distributed message. The achievability of a rate-equivocation pair (R,RE) ∈ R
2
+ requires the

existence of a sequence of (n,R)-codes {cn}n∈N with a vanishing error probability and an equivocation rate R
(cn)
E

that satisfies R
(cn)
E ր RE as n→ ∞.

An adaptation of the arguments from the proof of Theorem 1 (see Section VI) shows that any rate-equivocation

pair (R,RE) ∈ R
2
+ satisfying

R ≤ I(U, V ;Y )− I(U, V ;S), (14a)

RE ≤ R, (14b)

RE ≤ I(V ;Y |U)− I(V ;Z|U), (14c)

RE ≤ I(U, V ;Y )− I(V ;Z|U)− I(U ;S), (14d)

for some PMF qU,V,X|S that induces a joint distribution WSqU,V,X|SWY,Z|S,X is achievable.

To prove this inner bound we follow the derivation from Section VI, while replacing the message M therein

with a pair of uniformly distributed messages M̃ , (M,M ′) of rates RE and R − RE , respectively; the total

rate of communication is R. To ensure that the distribution approximation arguments from Lemma 1 and the error

probability analysis hold, it suffices that Inequalities (36) and (41) all hold with R = RE +(R−RE) in the role of

RM . To satisfy the equivocation requirement, the security analysis is only carried out with respect to M . Therefore,

Inequality (54) is replaced by

R2 +R −RE > I(V ;Z|U). (15)

We conclude by noting that securing M implies the desired equivocation for M̃ :

1

n
H(M̃ |Zn) ≥

1

n
H(M |Zn) =

1

n
H(M)−

1

n
I(M ;Zn) ≥

1

n
H(M)− ǫ, (16)

where the multi-letter MI and entropy terms above are taken with respect to the distribution induced by the extracted
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Fig. 2. The SD less-noisy-eavesdropper WTC with a key.

(reliable and secure) sequence of codes. Applying Fourier-Motzkin elimination to remove R1 and R2 produces (14).

IV. TIGHT SECRECY CAPACITY RESULTS

An operationally appealing special case of the considered SD-WTC is the following. Assume that WY,Z|S,X is

such that the eavesdropper’s channel is less noisy than the main channel, but that the legitimate parties share a SK

L ∼Wn
L (independent of the state sequence S ∼Wn

S ), using which they secure the confidential data. The setup is

illustrated in Fig. 2.

Formally, let L, S, X , Y and Z be the alphabets of the key, the state, the channel input and the two channel

outputs, respectively. The considered instance is the
(

S̃,X , Ỹ,Z,WS̃ ,WỸ,Z|X,S̃

)

SD-WTC with S̃ = L × S,

Ỹ = L × Y , WS̃ =WL ×WS , S̃ = (L, S), Ỹ = (L′, Y ), and whose channel transition matrix factors as

WỸ,Z|X,S̃ =W(L′,Y ),Z|X,(L,S) = 1{L′=L}WY,Z|S,X , (17)

where WY,Z|S,X is such that Z is less noisy than Y . A less noisy Z means that I(U ;Y ) ≤ I(U ;Z) for any random

variable U for which U −
− (S,X) −
− (Y, Z) forms a Markov chain. We refer to this special case as the SD

less-noisy-eavesdropper WTC with a key.

Theorem 1 applies here since the above case is a certain instance of a SD-WTC with non-causal encoder CSI. As

subsequently shown, the obtained inner bound is tight, thus characterizing the SS SM-SK secrecy capacity region

of the SD less-noisy-eavesdropper WTC with a key. The following corollary states the result.

Corollary 1 (SM-SK Capacity Region) The SS SM-SK capacity region of the SD less-noisy-eavesdropper WTC

with a key is the set of all SM-SK rate pairs (RM , RK) ∈ R
2
+ satisfying

RM ≤ max
qU,X|S

[I(U ;Y )− I(U ;S)] , (18a)

RK +RM ≤ H(L), (18b)
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where the MI terms in (18a) are with respect to the joint PMF WSqU,X|SWY |S,X .

The proof of Corollary 1 is relegated to Appendix A. Note that while (18a) bounds the total communication rate as

a function only of the communication channel, (18b) bounds the total secrecy rate depending solely on the secret

source.

A direct consequence of Corollary 1 is that when no SK is to be established between the legitimate parties, i.e.,

RK = 0, the best attainable SM rate is

CSM = min

{

max
qU,X|S

[

I(U ;Y )− I(U ;S)
]

, H(L)

}

. (19)

A simple separation-based coding scheme achieves the secrecy capacity from (19). Namely, using a capacity

achieving error correction code, the channel is effectively converted into a reliable bit-pipe. Each of the legitimate

parties compresses L, which results in a uniform random variable. The latter is used to encrypt the SM via a

one-time pad. The encrypted message is then transmitted over the reliable bit-pipe. Therefore, The achievable SM

rate is equal to the minimum of the capacity of the channel maxqU,X|S

[

I(U ;Y )− I(U ;S)
]

and the rate of the key

H(L).

While this scheme may seem very natural, to the best of our knowledge, none of the past achievability results

for the SD-WTC with non-causal CSI prior to [19] attain its performance. In Section V-A1, a special case of this

setup is used to demonstrate the improvement of our result over the previous benchmark achievable SM-SK region

for the SD-WTC from [24].

V. PREVIOUS RESULTS AS SPECIAL CASES

We compare the result of Theorem 1 to those from related past works. The previously best known inner bound

on the SM-SK trade-off region attainable over the considered SD-WTC is [24, Theorem 1]. The next subsection

restates this inner bound and shows that Theorem 1 can strictly outperform it. Afterwards, we provide a comparison

to the best past achievability results for only SM transmission [19] or only SK agreement [23]. The achievability

result from [19] captures the previous lower bounds on the secrecy capacity of the SD-WTC from [18], [28], [29].

The SK achievability results from [23] subsume previous lower bounds on the SK generation rate, such as [22],

[30]. Relating to one another these three benchmarks that we use to evaluate the performance of Theorem 1, we

note that while [19] recovers [24] when there is only a SM (RK = 0), [23] and [24] do not imply one another.

Remark 5 Another result on SK generation over SD-WTCs with non-causal CSI is found in [31]. Theorem 1 therein,

which seemingly attains higher SK rates than both schemes from [23] and than our inner bound, is incorrect. The

region suggested in [31, Theorem 1] does not account for the secrecy-rate-loss when the inner layer codeword

cannot be decoded on its own by the legitimate decoder, i.e., when I(U ;S) > I(U ;Y ). (See the second case in

Remark 3 for a further explanation.) For this reason, we chose [23] as a benchmark for the SK generation problem.

Following the steps of the proof of [31, Theorem 1], it appears that another constraint was assumed without

being explicitly stated. Following the notations from [31], the missing constraint seems to be

Cp + I(W ; Y̌ ) > I(W ;S), (20)
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which would assure decodability of the inner code layer by the legitimate receiver without relying on the outer

layer. Taking the additional constraint into consideration, our inner bound from Theorem 1 recovers the amended

Theorem 1 from [31] as follows.

We use (Ũ, Ṽ, X̃, S̃, Ỹ, Z̃) to denote the inner layer, the outer layer, the channel input, the encoder CSI, and

the observations of the legitimate receiver and the eavesdropper, respectively, in Theorem 1 of [31]. These were

originally denoted, respectively, by W , U , X , S, Y̌ and Ž . To adjust our model to that of [31], we identify

X = (X̃,Φ), Y = (Ỹ,Φ), Z = (Z̃,Φ), S = S̃ in Theorem 1, where Φ is the random variable representing the

input (and the outputs) of the public communication link. In order to comply with the rate restriction on the public

link from [31], we restrict the distribution of Φ to have H(Φ) ≤ CP . Finally, we set:

1) RM = 0.

2) Φ independent of (Ũ, Ṽ, X̃, S̃, Ỹ, Z̃) with maximal entropy, i.e., such that H(Φ) = CP .

3) U = (Ũ,Φ), V = (Ũ, Ṽ,Φ).

With respect to the above, substituting (U, V,X, Y, Z, S) into (9) and maximizing only over distributions that satisfy

I(U ;Y )− I(U ;S) > 0 produces the amended version of [31, Theorem 1].

To conclude the discussion of [31, Theorem 1] (in its original form), Appendix B provides a specific example

that shows the rates from that achievability formula to be exceeding the SK capacity.

A. SM-SK Trade-off Region

The result of Theorem 1 recovers the previously best known achievable SM-SK trade-off region over the SD-WTC

with non-causal encoder CSI [24]. In [24, Theorem 1] the following region was established:

RPER ,
⋃

qU qV,X|U,S

RPER

(

qUqV,X|U,S

)

, (21a)

where, for any qU ∈ P(U) and qV,X|U,S : U × S → P(V × X ),

RPER

(

qU × qV,X|U,S

)

,







(RM , RK) ∈ R
2
+

∣

∣

∣

∣

∣

RM ≤ I(U, V ;Y )− I(U, V ;S),

RM +RK ≤ I(V ;Y |U)− I(V ;Z|U)







, (21b)

and the MI terms are taken with respect to WSqUqV,X|U,SWY,Z|S,X , i.e., U and S are independent and (U, V )−


− (S,X)−
− (Y, Z) forms a Markov chain.

First note that Theorem 1 recovers RPER by restricting U to be independent of S in RA. This is since for an

independent pair (U, S), we have I(U ;S) = 0, while I(U, V ;Y ) ≥ I(V ;Y |U) always holds. Consequently, the

third rate bound in RA becomes redundant and RPER is recovered.

The result from [24] was derived under the weak secrecy metric (i.e., a vanishing normalized MI 1
n
I(M,K;Z)

between the SM-SK pair and the eavesdropper’s observation sequence, where the message is assumed to be uniform).

Our achievability, on the other hand, ensures SS. Theorem 1, therefore, improves upon [24, Theorem 1] both in the

rates it achieves and in the sense of security it provides.
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1) Achieving Strictly Higher Rates: Since [24, Theorem 1] allows only inner layer coding random variables U

that are independent of the state, Gelfand-Pinsker coding [17], which generally requires correlating U with S, is

not supported in the inner layer. Instead, only Shannon’s Strategies coding [32], which operates with independent

U and S is allowed. The latter is optimal if the encoder observes the state causally, but is generally sub-optimal

when non-causal encoder CSI is available. To demonstrate the improvement of Theorem 1 over [24] we exploit the

aforementioned limitation of the scheme therein, along with the observation that it is beneficial to exploit any part

of a considered SD-WTC that is better observable by the eavesdropper to transmit the inner layer of the code.

Let X = G = L = E = {0, 1}, S = {0, 1, 2}, Y = {0, 1, ?}, where ? /∈ {0, 1} and Z = X × S. Consider the

SD less-noisy-eavesdropper WTC with a key (defined in Section IV) shown in Fig. 3, whose transition probability

WY,Z|S,X , key L ∼WL and state S ∼WS are defined by the three parameters λ, ǫ, σ ∈ (0, 0.5) as follows:

• L, S and E are independent random variables with L ∼ Ber(λ), E ∼ Ber(ǫ) and

WS(0) =WS(1) =
σ

2
; WS(2) = 1− σ. (22)

The joint distribution of (L, S,E) is denoted by WL,S,E =WLWSWE .

• The Memory with Stuck-at-Faults (MSAF) [33] is a deterministic SD channel, driven by a ternary state S. The

binary input and output symbols X and G, respectively, are related through the function g : S ×X → G given

by

g(s, x) =











s, s ∈ {0, 1}

x, s = 2

. (23)

• The output of the MSAF channel is fed into a Binary Erasure Channel with erasure probability ǫ (abbreviated

as a BEC(ǫ)). The input G and the ternary output Y of the BEC(ǫ) are related by means of the erasure random
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variable E through the function y : E × G → Y , where

y(e, g) =











g, e = 0

?, e = 1

. (24)

• Z = (S,X), i.e., the eavesdropper noiselessly observes the transmitted symbol X and the state random variable

S.

With respect to the above definitions, the transition matrix of the SD less-noisy-eavesdropper with channel

WY,Z|S,X is

WY,Z|S,X(y′, z|x, s) =
∑

g′∈{0,1}

∑

e∈{0,1}

WE(e)WG,Y,Z|S,X,E(g
′, y′, z|s, x, e), (25a)

where

WG,Y,Z|S,X,E = 1{G=g(S,X)}∩{Y=y(E,G)}∩{Z=(S,X)}. (25b)

A possible interpretation of this communication scenario is when the legitimate parties communicate through a

public database that has memory faults known to the transmitter, but not to the receiver. The database and the faults

are assumed to be known in full to the eavesdropper. To secure the communication the legitimate parties share a

SK.

For any λ, ǫ, σ ∈ (0, 0.5), we denote the secrecy-capacity of the corresponding channel by C(λ, ǫ, σ). Furthermore,

let RA(λ, ǫ, σ) and RPER(λ, ǫ, σ) denote the maximal achievable secrecy rates attained by (10) from Theorem 1

and (21b) from [24, Theorem 1], respectively. By virtue of Corollary 1 (and, more specifically, (19)), we have that

Theorem 1 is tight for the considered channel, i.e.,

C(λ, ǫ, σ) = RA(λ, ǫ, σ), ∀λ, ǫ, σ ∈ (0, 0.5). (26)

As stated in the following proposition, RPER(λ, ǫ, σ) is strictly below capacity.

Proposition 1 There exist λ, ǫ, σ ∈ (0, 0.5) such that RA(λ, ǫ, σ) > RPER(λ, ǫ, σ).

Proposition 1 is proven in Appendix C. The proof relies on the observation that for RPER(λ, ǫ, σ), a full utilization

of the key L implies that RM is upper bounded by the capacity of the considered channel with causal CSI. In

turn, this capacity is further upper bounded by the capacity of the MSAF with causal CSI. Choosing the parameters

λ, ǫ, σ so that the secrecy-capacity of the channel is strictly above the causal MSAF capacity, the superiority of our

scheme compared to [24, Theorem 1] is established.

Remark 6 This example actually demonstrates that [19, Theorem 1] (which is a special case of Theorem 1, when

RK = 0) achieves strictly higher SM rates than [24, Theorem 1].
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B. SM Transmission over SD-WTCs

In [19, Theorem 1] a lower bound was established on the SS-capacity of a SM transmission (i.e., when RK = 0)

over the considered SD-WTC. The SS-capacity C
(SM)
Sem of a SM transmission was lower bounded by

C
(SM)
Sem ≥ RGCP , max

qU,V,X|S

RGCP

(

qU,V,X|S

)

, (27a)

where, for any qU,V,X|S : S → P(U × V × X ),

RGCP

(

qU,V,X|S

)

, min



















I(U, V ;Y )− I(U, V ;S),

I(V ;Y |U)− I(V ;Z|U),

I(U, V ;Y )− I(V ;Z|U)− I(U ;S)



















, (27b)

and the MI terms are taken with respect to WSqU,V,X|SWY,Z|S,X .

RGCP is the projection in the (RM , RK)-plane of RA from Theorem 1 to the RM axis when RK = 0. The main

difference between the coding scheme from [19] and our superposition code is the additional index k ∈ Kn in the

outer layer of the codebook (that also encodes the SM m ∈ Mn). Along with the other redundancy indices, k is used

to correlate the transmission with the observed state sequence via the likelihood encoder [25]. Based on distribution

approximation arguments we show that K is approximately independent of the message M and approximately

uniform. The pair (M,K) is known to the transmitter and is reliably decoded by the receiver. Finally, by securing

K along with M in our analysis, it is established as a SK.

The intuition behind the SK construction is that, unlike the message, the key does not have to be independent of

the state sequence, nor is it chosen by the user. Therefore, the padding that ensures the correlation with the state

sequence is a valid key, as long as it is secured.

Observing that any portion of the SM can be allocated in favor of a SK implies that (27b) is also an achievable

SM-SK trade-off region, when RM above is replaced with RM +RK . RA outperforms RGCP, e.g., in settings where

an external random source L ∼ Wn
L is observed by both legitimate parties but not by the eavesdropper, while the

capacity of the communication channel is zero (say, Y = Z = 0). For such a setup, the legitimate parties may

use the random source to generate a SK of rate H(L). While Theorem 1 supports this strategy, RGCP nullifies in

this case. To see this, let S̃ , L and Ỹ , (L, Y ) = (L, 0) be the state and the channel output observed by the

legitimate receiver, respectively. Inserting S̃ and Ỹ into the first term inside the minimum from (27b) produces

I(U, V ; Ỹ )− I(U, V ; S̃) = I(U, V ;Y ;L)− I(U, V ;L) = 0, for any qU,V,X|S̃ .

C. SK Agreement over SD-WTCs

In [23] two achievable schemes were proposed for SK agreement over a WTC when the terminals have access

to correlated sources. The results from [23] do not imply one another. The difference between them is that [23,

Theorem 2] is based on source and channel separation, while [23, Theorem 3] relies on joint coding.

The setup in [23] consists of three correlated sources Sx, Sy and Sz that are observed by the encoder, the decoder

and the eavesdropper, respectively, and a SD-WTC in which the triple (Sx, Sy, Sz) plays the role of the state. Our
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general framework is defined through the state distribution WS and the SD-WTC WỸ,Z̃|S,X . Setting S = Sx,

Ỹ = (Sy, Y ) and Z̃ = (Sz, Z) recovers the model from [23] (see Remark 1).

The first scheme from [23, Theorem 2] operates under the assumption that the SD-WTC decomposes as

W(Sy,Y ),(Sz,Z)|Sx,X = WSy,Sz|Sx
WY,Z|X into a product of two WTCs, one being independent of the state (given

the input), while the other one depends only on it. Thus, the legitimate receiver (respectively, the eavesdropper)

observes not only the output Y (respectively, Z) of the WTC WY,Z|X , but also Sy (respectively, Sz) - a noisy

version of the state sequence drawn according to the corresponding conditional marginal of WSy ,Sz|Sx
. This scheme

shows that the SK capacity CSK is lower bounded by

CSK ≥ R
(Separate)
BPS , max

[

I(T ;Y |Q)− I(T ;Z|Q) + I(Ṽ ;Sy|Ũ)− I(Ṽ ;Sz|Ũ)
]

, (28)

where the maximization is over all qṼ |Sx
qŨ|Ṽ : Sx → P(Ṽ × Ũ) and qQ,T qX|T ∈ P(Q×T ×X ) that give rise to a

joint PMF WSx,Sy,Sz
qṼ |Sx

qŨ|Ṽ ×qQ,T qX|TWY,Z|X satisfying I(Ũ ;Sx|Sy) ≤ I(Q;Y ) and I(Ṽ ;Sx|Sy) ≤ I(T ;Y ).

With respect to this distribution, (Sy, Sz)−
− Sx −
− V −
− U and Q−
− T −
−X −
− (Y, Z) form Markov chains

and (Sy, Sz, Sx, V, U) are independent of (Q, T,X, Y, Z). This independence is the essence of separation that uses

the channel for two purposes: carrying communication for SK agreement based on the sources, and securing part

of this communication using wiretap coding.

Setting RM = 0, U = (Q, Ũ), V = (T, Ṽ ) in Theorem 1, and limiting the union to joint PMFs that satisfy

I(U ;Sy, Y ) ≥ I(U ;Sx), while keeping the above distribution X , recovers (28).

The joint coding scheme from [23, Theorem 3] does rely on the aforementioned decomposition of the SD-WTC

W(Sy,Y ),(Sz,Z)|S,Xx
. It lower bounds CSK as

CSK ≥ R
(Joint)
BPS , max

[

I(Ṽ ;Sy, Y |Ũ)− I(Ṽ ;Sz, Z|Ũ)
]

, (29)

where the maximization is over all qṼ,X|Sx
qŨ|Ṽ : Sx → P(Ṽ × X × Ũ) that give rise to a joint PMF

WSx
qṼ,X|Sx

qŨ|ṼW(Sy,Y ),(Sz,Z)|Sx,X satisfying I(Ũ ;Sx) ≤ I(Ũ ;Sy, Y ) and I(Ṽ ;Sx|Ũ) ≤ I(Ṽ ;Sy, Y |Ũ). Setting

RM = 0 and (U, V ) = (Ũ, Ṽ ) in Theorem 1, where (Ũ, Ṽ ) is a valid auxiliary pair for R
(Joint)
BPS , recovers (29).

It was shown in [23] that, in some cases, the separation-based scheme achieves strictly higher rates than the joint

coding scheme, i.e., that R
(Separate)
BPS > R

(Joint)
BPS . As Theorem 1 captures both these results, it unifies the two schemes

from [23], and, in particular, it outperforms R
(Joint)
BPS . Furthermore, since the results from [23] were derived under

the weak secrecy metric, Theorem 1 also upgrades them to SS.

VI. PROOF OF THEOREM 1

The subsequently presented proof follows lines similar to those from the proof of [19, Theorem 1]. Several claims

herein are recovered from corresponding assertions in [19] by identifying the index j in [19] with the pair (j, k)

in our scheme. The proofs of such claims are omitted, and the reader is referred to [19].

Fix ǫ > 0 and a conditional PMF qU,V,X|S : S → P(U×V×X ). For any n ∈ N, let pM ∈ P(Mn) be the message

distribution. We first show that for any (RM , RK) ∈ RA

(

qU,V,X|S

)

there exists a SS sequence of (n,RM , RK)-

codes with a key distribution that is approximately uniform conditioned on any message, and a vanishing average
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error probability. We then use the expurgation technique [34, Theorem 7.7.1] to ensure a vanishing maximal error

probability. This is done without harming the SS and the statistical properties of the key, since they hold for each

message in the original message set.

Codebook Cn: We use a superposition codebook where the outer layer carries both the SM and the SK. The

codebook is constructed independently of S, but has sufficient redundancy to enable correlating the transmission

with it.

Define the index sets In ,
[

1 : 2nR1
]

and Jn ,
[

1 : 2nR2
]

. Let B
(n)
U ,

{

U(i)
}

i∈In
be a random inner layer

codebook, which is a set of random vectors of length n that are i.i.d. according to qnU . An outcome of B
(n)
U is

denoted by B
(n)
U ,

{

u(i)
}

i∈In
.

To describe the outer layer codebook, fix B
(n)
U and, for every i ∈ In let B

(n)
V (i) ,

{

V(i, j, k,m)
}

(j,k,m)∈Jn×Kn×Mn
be a collection of i.i.d. random vectors of length n with distribution qn

V |U=u(i).

For each i ∈ In, an outcome of B
(n)
V (i) given B

(n)
U is denoted by B

(n)
V (i) ,

{

v(i, j, k,m)
}

(j,k,m)∈Jn×Kn×Mn
.

We also set BV =
{

BV (i)
}

i∈In
and denote its realizations by BV . Finally, a random superposition codebook is

given by Bn =
{

B
(n)
U ,B

(n)
V

}

, while Bn =
{

B
(n)
U ,B

(n)
V

}

denotes a fixed codebook.

Let Bn be the set of all possible outcomes of Bn. The above codebook construction induces a PMF µ ∈ P(Bn)

over the codebook ensemble. For every Bn ∈ Bn, we have

µ(Bn) =
∏

i∈Ib

qnU
(

u(i)
)

∏

(

î,j,k,m

)

∈In×Jn×Kn×Mm

qnV |U

(

v
(

î, j, k,m
)

∣

∣

∣
u(̂i)

)

. (30)

The encoder and decoder are described next for any superposition codebook Bn ∈ Bn.

Encoder f
(Bn)
n : The encoding function is based on the likelihood-encoder [25], which, in turn, allows us to

approximate the induced joint distribution by a simple distribution that we use for the analysis. Given m ∈ Mn

and s ∈ Sn, the encoder randomly chooses (i, j, k) ∈ In × Jn ×Kn according to

p
(Bn)
LE (i, j, k|m, s) =

qn
S|U,V

(

s
∣

∣u(i),v(i, j, k,m)
)

∑

(i′,j′,k′)
∈In×Jn×Kn

qn
S|U,V

(

s
∣

∣u(i′),v(i′, j′, k′,m)
) , (31)

where qS|U,V is the conditional marginal of qS,U,V defined by qS,U,V (s, u, v) =
∑

x∈X WS(s)qU,V,X|S(u, v, x|s),

for every (s, u, v) ∈ S × U × V . The encoder declares the chosen index k ∈ Kn as the key. The channel input

sequence is generated by feeding the chosen u- and v-codewords along with the state sequence into the DM channel

qn
X|U,V,S

, i.e., it is sampled from the random vector X ∼ qn
X|U=u(i),V=v(i,j,k,m),S=s.

Accordingly, the (stochastic) encoding function fn : Mn × Sn → P(Kn ×Xn) is given by

f (Bn)
n (k,x|m, s) =

∑

(i,j)∈In×Jn

p
(Bn)
LE (i, j, k|m, s)qnX|U,V,S

(

x
∣

∣u(i),v(i, j, k,m), s
)

. (32)

Decoder φ
(Bn)
n : Upon observing y ∈ Yn, the decoder searches for a unique tuple (̂i, ĵ, k̂, m̂) ∈ In×Jn×Kn×

Mn such that
(

u(̂i),v(̂i, ĵ, k̂, m̂),y
)

∈ T n
ǫ (qU,V,Y ). (33)
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If such a unique quadruple is found, then set φ
(Bn)
n (y) =

(

m̂, k̂
)

; otherwise, φ
(Bn)
n (y) = (1, 1).

The quadruple (Mn,Kn, f
(Bn)
n , φ

(Bn)
n ) defined with respect to the codebook Bn is an (n,RM , RK)-code cn.

For any message distribution pM ∈ P(Mn) and codebook Bn ∈ Bn, the induced joint distribution p(Bn) over

Mn × Sn × In × Jn ×Kn × Un × Vn ×Xn × Yn ×Zn × M̂n × K̂n is

p(Bn)(m, s, i, j, k,u,v,x,y, z, m̂, k̂) =pM (m)Wn
S (s)p

(Bn)
LE (i, j, k|m, s)

× 1{
u=u(i)

}

∩
{

v=v(i,j,k,m)
}qnX|U,V,S(x|u,v, s)

×Wn
Y,Z|S,X(y, z|x, s)1{

(m̂,k̂)=φ
(Bn)
n (y)

}. (34)

If pM = p
(U)
Mn

, i.e., the message distribution is uniform, we write p̄(Bn) instead of p(Bn).

Approximating Distribution: We now show that with high probability p(Bn) is close in total variation to another

distribution π(Bn), which lends itself for simpler reliability and security analyses. For any pM ∈ P(Mn) and

Bn ∈ Bn, π(Bn) is

π(Bn)(m, i, j, k,u,v, s,x,y, z, m̂, k̂) = pM (m)
1

|In||Jn||Kn|
1{

u=u(i),v=v(i,j,k,m)
}

× qnS|U,V (s|u,v)q
n
X|U,V,S(x|u,v, s)W

n
Y,Z|S,X(y, z|x, s)1{

(m̂,k̂)=φ
(Bn)
n (y)

}. (35)

As before, π̄(Bn) stands for π(Bn) when pM = p
(U)
Mn

.

The following lemma states sufficient conditions for π(Bn) to be a good approximation (in total variation) of

p(Bn) with double-exponential certainty.

Lemma 1 (Sufficient Conditions for Approximation) If

R1 > I(U ;S), (36a)

R1 +R2 +RK > I(U, V ;S), (36b)

then there exist α1, α2 > 0, such that for any n large enough

Pµ

(

max
pM∈P(Mn)

∣

∣

∣

∣

∣

∣
p
(Bn)

M,S,I,J,K,U,V,X,Y,Z,M̂,K̂
− π

(Bn)

M,S,I,J,K,U,V,X,Y,Z,M̂,K̂

∣

∣

∣

∣

∣

∣

TV
> e−nα1

)

≤ e−enα2
. (37)

In particular, for any such n it also holds that

Eµ

∣

∣

∣

∣

∣

∣
p̄
(Bn)

M,S,I,J,K,U,V,X,Y,Z,M̂,K̂
− π̄

(Bn)

M,S,I,J,K,U,V,X,Y,Z,M̂,K̂

∣

∣

∣

∣

∣

∣

TV
≤ e−nα1 + n log

(

1

ξS

)

e−enα2
, (38)

where ξS = mins∈supp(WS)WS(s) > 0. The subscript µ in Pµ and Eµ indicates that the probability measure and

the expectation are taken with respect to the random codebook Bn ∼ µ.

Lemma 1 essentially restates [19, Lemma 7] with the index j therein replaced here with the pair (j, k). The

proof of Lemma 1 relies on the strong SCL for superposition codes and some basic properties of total variation.

Due to the similarity to [19, Lemma 7] we omit the proof and the reader is referred to [19].
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Lemma 1 is key for analyzing the performance of the proposed code. The reliability analysis that is presented

next exploits the convergence of the expected value from (38) to show that the average error probability can be

made arbitrarily small. The expurgation method [34, Theorem 7.7.1] is used in a later stage of this proof to upgrade

to a vanishing maximal error probability.

Average Error Probability Analysis: The average error probability3 ē(Bn) associated with a codebook Bn is

ē(Bn) ,
1

|Mn|

∑

m∈Mn

em(Bn) = PP̄ (Bn)

((

M̂, K̂
)

6= (M,K)
)

. (39)

Our next step is to establish that the expected value of ē(Bn) over the codebook ensemble is approximately the

same under p̄ and π̄. Then, the expected average error probability under π̄ is analyzed and shown to converge to

zero as n→ ∞. Due to the simple structure of π̄, this analysis requires nothing but standard typicality arguments.

To do so we use the two following lemmas.

Lemma 2 (Average Error Probability Under p̄ and π̄) The following relation holds:

∣

∣

∣
EµPp̄(Bn)

((

M̂, K̂
)

6= (M,K)
)

−EµPπ̄(Bn)

((

M̂, K̂
)

6= (M,K)
)
∣

∣

∣

≤ Eµ

∣

∣

∣

∣p̄(Bn) − π̄(Bn)
∣

∣

∣

∣

TV
, (40)

where Eµ

∣

∣

∣

∣p̄(Bn) − π̄(Bn)
∣

∣

∣

∣

TV
is a shorthand for Eµ

∣

∣

∣

∣

∣

∣
p̄
(Bn)

M,S,I,J,K,U,V,X,Y,Z,M̂
− π̄

(Bn)

M,S,I,J,K,U,V,X,Y,Z,M̂

∣

∣

∣

∣

∣

∣

TV
.

Lemma 3 (Average Error Probability Under π̄) If the rate tuple (RM , RK , R1, R2) satisfies

RM +RK +R2 < I(V ;Y |U), (41a)

RM +RK +R1 + R2 < I(U, V ;Y ), (41b)

then

EµPπ̄(Bn)

((

M̂, K̂
)

6= (M,K)
)

−−−−→
n→∞

0. (42)

The proof of Lemma 2 is found in the Average Error Probability Analysis part of Section VI-B in [19]. Lemma

3 is also proven in the same reference by standard typicality decoding arguments. We stress that the conditions in

(41) ensure reliable decoding of the four indices (i, j, k,m), and, in particular, of the SM-SK pair (m, k).

Combining the claims of Lemmas 2-3 with (38) from Lemma 1, we have that as long as (41) and (36) are

satisfied

Eµē(Bn) −−−−→
n→∞

0. (43)

Key Analysis: The structure of π(Bn) from (35) implies that for any Bn ∈ Bn and m ∈ Mn we have π
(Bn)
K|M=m

=

p
(U)
Kn

. Adopting the same abuse of notation we used for the reliability analysis, we use Lemma 1 to upper bound

3We slightly abuse notation here because ē and em are actually functions of the code cn rather than the codebook Bn. However, since Bn

uniquely defines cn we prefer this presentation for the sake of simplicity.
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the probability that δ(Bn) does not decay exponentially fast to zero as n grows. Therefore, assuming (36) holds,

we have that there exists η1, η2 > such that

Pµ

(

δ(Bn) > e−nη1

)

= Pµ

(

max
m∈Mn

∣

∣

∣

∣

∣

∣
p
(Bn)
K|M=m

− p
(U)
Kn

∣

∣

∣

∣

∣

∣

TV
> e−nη1

)

= Pµ

(

max
m∈Mn

∣

∣

∣

∣

∣

∣
p
(Bn)
K|M=m

− π
(Bn)
K|M=m

∣

∣

∣

∣

∣

∣

TV
> e−nη1

)

≤ Pµ

(

max
pM∈P(Mn)

∣

∣

∣

∣

∣

∣
p
(Bn)
M,K − π

(Bn)
M,K

∣

∣

∣

∣

∣

∣

TV
> e−nη1

)

(a)

≤ e−enη2
, (44)

where (a) is by (37) from Lemma 1. We proceed with the security analysis.

Security Analysis: This part mainly deals with analyzing the SS metric under the distribution π(Bn). The following

lemma explains the reason for doing so. It states that if SS is attained for a codebook Bn ∈ Bn under π(Bn) then

it is also attained under p(Bn).

Lemma 4 (SS for Induced vs. Approximating Distribution) Let Bn ∈ Bn and β1 > 0, such that for all pM ∈

P(Mn) and n sufficiently large (independent of pM )

∣

∣

∣

∣

∣

∣
pMp

(Bn)
K,Z|M − pMπ

(Bn)
K,Z|M

∣

∣

∣

∣

∣

∣

TV
≤ e−nβ1 . (45)

Then, there exist β2 > 0 such that for all pM ∈ P(Mn) and large enough values of n (independent of pM ), we

have
∣

∣

∣
Ip(Bn)(M,K;Z)− Iπ(Bn)(M,K;Z)

∣

∣

∣
≤ e−nβ2, (46)

where the subscripts p(Bn) and π(Bn) indicate that a mutual information term is calculated with respect to the

corresponding PMF.

The proof of Lemma 4 extends that of [19, Lemma 8], and is provided in Appendix D.

The hypothesis from (45) essentially follows from Lemma 1. Thus, if (36) holds, then so does (46), on account

of which we have

ℓSem(Bn) , max
PM∈P(Mn)

Ip(Bn)(M,K;Z) ≤ max
PM∈P(Mn)

Iπ(Bn)(M,K;Z) + e−nβ2. (47)

This implies that any codebook for which the RHS of (47) is small is SS.

Fix Bn and pM ∈ P(Mn), and consider

Iπ(Bn)(M,K;Z) ≤ Iπ(Bn)(M,K; I,U,Z)

= D

(

π
(Bn)
M,K,Z,I,U

∣

∣

∣

∣

∣

∣
π
(Bn)
M,Kπ

(Bn)
Z,I,U

)

(a)
= D

(

π
(Bn)
M,Kπ

(Bn)
I,U π

(Bn)
Z|M,K,I,U

∣

∣

∣

∣

∣

∣
π
(Bn)
M,Kπ

(Bn)
I,U π

(Bn)
Z|I,U

)

(b)
= D

(

π
(Bn)
Z|M,K,I,U

∣

∣

∣

∣

∣

∣
π
(Bn)
Z|I,U

∣

∣

∣
π
(Bn)
M,Kπ

(Bn)
I,U

)
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(c)

≤ D

(

π
(Bn)
Z|M,K,I,U

∣

∣

∣

∣

∣

∣
qnZ|U

∣

∣

∣
π
(Bn)
M,Kπ

(Bn)
I,U

)

, (48)

where (a) is because π
(Bn)
M,K,I,U = π

(Bn)
M,Kπ

(Bn)
I,U (see (35)), (b) is by the relative entropy chain rule, while (c) follows

from

D

(

π
(Bn)
Z|M,K,I,U

∣

∣

∣

∣

∣

∣
π
(Bn)
Z|I,U

∣

∣

∣
π
(Bn)
M,Kπ

(Bn)
I,U

)

= D

(

π
(Bn)
Z|M,K,I,U

∣

∣

∣

∣

∣

∣
qnZ|U

∣

∣

∣
π
(Bn)
M,Kπ

(Bn)
I,U

)

− D

(

π
(Bn)
Z|I,U

∣

∣

∣

∣

∣

∣
qnZ|U

∣

∣

∣
π
(Bn)
M,Kπ

(Bn)
I,U

)

(49)

and the non-negativity of relative entropy. Here, qZ|U is the conditional marginal of the single-letter distribution

WSqU,V,X|SWY,Z|X,S .

Maximizing both sides of (48) over all message distributions pM ∈ P(Mn), we further have

max
pM∈P(Mn)

Iπ(M,K;Z)

≤ max
pM∈P(Mn)

D

(

π
(Bn)
Z|M,K,I,U

∣

∣

∣

∣

∣

∣
qnZ|U

∣

∣

∣
π
(Bn)
M,Kπ

(Bn)
I,U

)

= max
pM∈P(Mn)

∑

(m,k)∈Mn×Kn

π
(Bn)
M,K(m, k)D

(

π
(Bn)
Z|M=m,K=k,I,U

∣

∣

∣

∣

∣

∣
qnZ|U

∣

∣

∣
π
(Bn)
I,U

)

≤ max
pM∈P(Mn)

∑

(m,k)∈Mn×Kn

π
(Bn)
M,K(m, k) max

(m̃,k̃)∈M×Kn

D

(

π
(Bn)

Z|M=m̃,K=k̃,I,U

∣

∣

∣

∣

∣

∣
qnZ|U

∣

∣

∣
π
(Bn)
I,U

)

= max
(m,k)∈Mn×Kn

D

(

π
(Bn)
Z|M=m,K=k,I,U

∣

∣

∣

∣

∣

∣
qnZ|U

∣

∣

∣
π
(Bn)
I,U

)

. (50)

Inserting (50) into (47), we have that if (36) holds, then

ℓSem(Bn) ≤ max
(m,k)∈Mn×Kn

D

(

π
(Bn)
Z|M=m,K=k,I,U

∣

∣

∣

∣

∣

∣
qnZ|U

∣

∣

∣
π
(Bn)
I,U

)

+ e−nβ2 . (51)

The two following lemmas state conditions under which the probability that the RHS of (51) vanishes

exponentially quickly with n is double-exponentially close to 1.

Lemma 5 (Total Variation Dominates Relative Entropy) Let X and Y be finite sets, and for any n ∈ N let

pX ∈ P(Xn), pY|X : Xn → P(Yn) and qY |X : X → P(Y). If pY|X=x ≪ qn
Y |X=x, for all x ∈ Xn, i.e., pY|X=x

is absolutely continuous with respect to qn
Y |X=x, then

D
(

pY|X

∣

∣

∣

∣qnY |X

∣

∣pX
)

≤
∣

∣

∣

∣pXpY|X−pXq
n
Y |X

∣

∣

∣

∣

TV

(

n log |Y|+ log
1

∣

∣

∣

∣pXpY|X − pXqnY |X

∣

∣

∣

∣

TV

+ n log ξY |X

)

, (52)

where ξY |X = min(x,y)∈X×Y:
qY |X(y|x)>0

qY |X(y|x).

Lemma 5 is [19, Lemma 9] and its proof is omitted. It is readily verified that π
(Bn)
Z|M=m,K=k,I=i,U=u ≪ qn

Z|U=u,

for each (m, i, k,u) ∈ Mn×In×Kn×Un. Combining Lemma 5 and (51), we see that if Bn ∈ Bn is a codebook

with rates satisfying (36), and there exists ζ1 > 0 such that

max
(m,k)∈Mn×Kn

∣

∣

∣

∣

∣

∣
π
(Bn)
I,U π

(Bn)
Z|M=m,K=k,I,U − π

(Bn)
I,U qnZ|U

∣

∣

∣

∣

∣

∣

TV
≤ e−nζ1 , (53a)
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for any sufficiently large n, then there exists ζ2 > 0 for which

ℓSem(Bn) ≤ e−nζ2 (53b)

as n grows.

Lemma 6 (Sufficient Conditions for SS) If the rate tuple (RM , RK , R1, R2) ∈ R
4
+ satisfies (36a) and

R2 > I(V ;Z|U), (54)

then there exist γ1, γ2 > 0, such that for n sufficiently large

Pµ

(

max
(m,k)∈Mn×Kn

∣

∣

∣

∣

∣

∣
π
(Bn)
I,U π

(Bn)
Z|M=m,K=k,I,U − π

(Bn)
I,U qnZ|U

∣

∣

∣

∣

∣

∣

TV
> e−nγ1

)

≤ e−enγ2
. (55)

Lemma 6 follows by the security analysis from [19] with (M,K) = (m, k) in the role of M = m therein.

Combining the lemma with (53), we deduce that there exist τ1, τ2 > 0 such that

Pµ

(

ℓSem(Bn) > e−nτ1
)

≤ e−enτ2
, (56)

for any sufficiently large n.

Code Extraction: The above derivation shows that if (36), (41) and (54) are simultaneously satisfied, then

EBn
ē(Bn) −−−−→

n→∞
0, (57a)

and for sufficiently large n, we also have

Pµ

(

δ(Bn) > e−nη1

)

≤ e−enη2
, (57b)

Pµ

(

ℓSem(Bn) > e−nτ1
)

≤ e−enτ2
. (57c)

The Selection Lemma from [9, Lemma 5] implies the existence of a sequence of superposition codebooks
{

Bn

}

n∈N
(an outcome of the random codebook sequence

{

Bn

}

n∈N
), for which

ē(Bn) −−−−→
n→∞

0, (58a)

1{
δ(Bn)>e−nη1

} −−−−→
n→∞

0, (58b)

1{
ℓSem(Bn)>e−nτ1

} −−−−→
n→∞

0. (58c)

Since the indicator functions in (58b)-(58c) take only the values 0 and 1, we have that for any n large enough

δ(Bn) ≤ e−nη1 , (59a)

ℓSem(Bn) ≤ e−nτ1 . (59b)
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On account of (57a) and (59), we have that {Bn}n∈N is SS, satisfies the target key statistics, and is reliable with

respect to the average error probability.

Our last step is to upgrade {Bn}n∈N to have a small maximal error probability. This is a standard step that uses

the expurgation technique (see, e.g., [34, Theorem 7.7.1]). Namely, pushing the average error probability below ǫ
2 ,

at least half of the messages in Mn result in a probability of error that is at most ǫ. Throwing away the rest of the

messages ensures a maximal error probability that is at most ǫ, while inflicting a negligible rate loss. Discarding

those messages does not harm the SS or the key uniformity and independence metric, thus producing a new sequence

of codes that satisfies (8). Applying the Fourier-Motzkin Elimination on (36), (41) and (54) shows that any SM-SK

rate pair (RM , RK) ∈ RA

(

qU,V,X|S

)

is achievable, which concludes the proof.

VII. SUMMARY AND CONCLUDING REMARKS

We studied the trade-off between the SM and SK rates that are simultaneously achievable over a SD-WTC with

non-causal encoder CSI. This model subsumes all other instances of CSI availability as special cases. An inner

bound on the SS message-key capacity region was derived based on a superposition coding scheme, the likelihood

encoder and soft-covering arguments inspired by [19].

We presented a class of SD-WTCs for which our inner bound achieves capacity, and demonstrated that for

this class, the previously best known SM-SK trade-off region by Prabhakaran et al. [24] is strictly sub-optimal.

Furthermore, we showed that the inner bound derived here recovers the best lower bounds on either the SM [19] or

the SK [23] rate achievable over the considered SD-WTC. Our derivations ensure SS, thus upgrading the security

standard from most of the past results, which were derived under the weak secrecy metric.

As the message-key capacity region for this setup remains an open problem, finding good outer bounds is of

particular interest. Extensions to multiple terminals, action dependent states [35], and source reconstruction models

should be examined as well.

APPENDIX A

PROOF OF COROLLARY 1

Recall that the SD less-noisy-eavesdropper WTC with a key is the
(

S̃,X , Ỹ,Z,WS̃ ,WỸ,Z|X,S̃

)

SD-WTC, where

S̃ = L × S, Ỹ = L × Y , WS̃ = WL ×WS , S̃ = (L, S), Ỹ = (L′, Y ), whose transition matrix satisfies (17) and

the less-noisy condition.

A qU,X|S,L induces a joint distribution over L × S × U × X × Y × Z that is given by

qL,S,U,X,Y,Z ,WLWSqU,X|S,LWY,Z|S,X . (60)

We now proceed with the direct and the converse proofs.

Direct: Fix qU,X|S such that (U,X)−
− S −
−L. The structure of (60) further implies that (S,U,X, Y, Z) ⊥ L.

Evaluating the bounds from Theorem 1 with respect to (60), while setting V = (L,U) and using S̃ = (L, S) and

Ỹ = (L, Y ), we have

RM ≤ I(U, V ; Ỹ )− I(U, V ; S̃)
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= I(L,U ;L, Y )− I(L,U ;L, S)

= I(U ;Y |L)− I(U ;S|L)

(a)
= I(U ;Y )− I(U ;S), (61a)

where (a) is because (S,U, Y ) are independent of L. Combining the two bounds on the sum RM +RK in one, we

further have

RK +RM ≤ I(V ; Ỹ |U)− I(V ;Z|U)−
[

I(U ; S̃)− I(U ; Ỹ )
]+

= I(L;L, Y |U)− I(L;Z|U)−
[

I(U ;L, S)− I(U ;L, Y )
]+

(a)
= H(L)−

[

I(U ;S)− I(U ;Y )
]+
, (61b)

where, similarly to the above, (a) is implied by the independence of (S,U, Y, Z) and L. Finally, due to (61a),

any joint distribution that produces a non-zero achievable region satisfies I(U ;Y )− I(U ;S) ≥ 0; hence, the term
[

I(U ;S)− I(U ;Y )
]+

from (61b) is zero. Maximizing over all qU,X|S concludes the proof.

Converse: To get (18a), notice that the secret communication rate of the setup cannot exceed the total reliable

communication rate. Therefore, an upper bound on the secrecy capacity is given by the GP channel capacity formula

[17]:

max
qU,X|S̃

[

I(U ; Ỹ )− I(U ; S̃)
]

, (62)

where, for each qU,X|S̃ , the underlying joint PMF is qU,X|S̃WỸ |X,S̃ , with S̃ = (L, S) and Ỹ = (L, Y ). We thus

have

RM ≤ max
qU,X|L,S

[

I(U ;L, Y )− I(U ;L, S)
]

= max
qU,X|L,S

[

I(U ;Y |L)− I(U ;S|L)
]

(a)
= max

qU,X|L,S

[

I(U ;Y |L)− I(L,U ;S)
]

≤ max
qU,X|L,S

[

I(L,U ;Y )− I(L,U ;S)
]

≤ max
qL,U,X|S

[

I(L,U ;Y )− I(L,U ;S)
]

(b)
= max

qU,X|S

[

I(U ;Y )− I(U ;S)
]

, (63)

where (a) follows because L and S are independent (see (60)), while (b) follows by recasting (L,U) as U .

For the bound on RM + RK from (18b), we enhance the channel by allowing the encoder to control both the

state S and the secret source L, yet constraining it to the original statistics WS ×WL. The obtained channel is

equivalent to a WTC WỸ,Z̃|X̃ with input X̃ = (L, S,X) and outputs Ỹ = (L, Y ) and Z̃ = Z at the legitimate

receiver and the eavesdropper, respectively. Therefore, the channel secrecy capacity [5] is an upper bound on the
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sum of rates4; thus,

RM +RK ≤ max
qU,X̃

[

I(U ; Ỹ )− I(U ; Z̃)
]

. (64)

Now, note that for any qU,X̃ = qU,(L,S,X) we have

I(U ; Ỹ )− I(U ; Z̃) = I(U ;L, Y )− I(U ;Z)

= I(U ;L|Y ) + I(U ;Y )− I(U ;Z)

(a)

≤ I(U ;L|Y )

≤ H(L), (65)

where (a) is because the less-noisy property of the channel implies (U ;Y ) < I(U ;Z). This concludes the converse

proof.

APPENDIX B

DEMONSTRATION OF INCORRECTNESS IN [31, THEOREM 1]

We first restate [31, Theorem 1] through the notations of this work. This theorem stipulates the following lower

bound on the SK capacity CSK of the SD-WTC with non-causal encoder CSI5:

CSK ≥ RZib , max
[

I(V ;Y |U)− I(V ;Z|U)
]

, (66a)

where the maximization is over all conditional PMFs qU|V : V → P(U) and qV,X|S : S → P(V × X ) satisfying

I(V ;Y ) ≥ I(V ;S). (66b)

All the above MI terms are taken with respect to the appropriate marginals of WSqU|V qV,X|SWY,Z|S,X , where

U −
− V −
− (S,X)−
− (Y, Z) forms a Markov chain.

Now consider the following setup.

• Let A, B and Q be three i.i.d. Ber(12 ) random variables. Also, set An, Bn and Qn as three n-fold random

vectors whose coordinates are i.i.d. copies of A, B and Q, respectively.

• For each i ∈ [1 : n], let Ti = t(Ai, Bi, Qi), where t : {0, 1}3 → {0, 1} is the deterministic function

t(a, b, q) =











a, q = 0

b, q = 1

. (67)

T n represents the output sequence of the deterministic and memoryless channel T = t(A,B,Q), when it is

fed by An, Bn and Qn.

4 For the WTC without state, no additional secrecy may be extracted in the form of a key. [14, Channel Model]

5 [31, Theorem 1] also incorporates a public communication link into the setup. We restate the theorem assuming that the public communication
rate is zero.
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• Let fn be the stochastic encoder and Ψn be the sequence that fn produces and transmits over a private binary

bit-pipe to the legitimate receiver.

• The encoder observes (An, Bn) non-causally and determines the binary bit-pipe transmission Ψn.

• The decoder observes (Qn, T n,Ψn).

• The eavesdropper observes An⊕nB
n, where ⊕n stands for bit-wise addition modulo 2. (At each time instance

the eavesdropper observes Ai +Bi (mod 2).)

Thus, at each channel use i ∈ [1 : n], the encoder observes two fair coin tosses, Ai and Bi. The decoder observes

only one of them, namely Ti, chosen at random (using a third fair coin Qi). The decoder knows which coin it

observes, but the encoder does not. There is a private bit-pipe from the encoder to the decoder, which enables the

transmission of a single noiseless bit each time the coins are flipped. The legitimate parties wish to agree upon a

key that is kept secret from the eavesdropper (who observes only the modulo 2 addition of the two coins, Ai⊕Bi,

each time they are flipped).

Denoting the SK generated by the legitimate parties by Kn, the induced joint PMF of the system is

qAn,Bn,Qn,Tn,Ψn,Kn
(an, bn, qn, tn, ψn, kn) = fn(kn, ψ

n|an, bn)
n
∏

i=1

[

WA(ai)WB(bi)WQ(qi)1{Ti=t(ai,bi,qi)}

]

.

(68)

To comply with our notations, we identify S = (A,B), X = Ψ, Y = (T,Q,Ψ) and Z = A ⊕ B, while also

denoting by Ỹ , (T,Q) the output-CSI pair observed by the decoder.

A valid choice of random variables for (66) is

1) Ψ ∼ Ber(12 ) independent of (A,B,Q),

2) U = Z = A⊕B,

3) V = (A,B,Ψ),

which achieves RZib = 2. Hence, by showing that the SK capacity of the proposed setup is strictly less than 2, we

contradict the achievability of RZib from [31, Theorem 1] as the SK rate for this setup. We do so by showing that

the vanishing average error probability and the weak secrecy of the SK, used in the definition of achievability in

[31], cannot coexist in this setup while a SK rate of 2 is attained.

Consider a sequence of codes {cn}n∈N achieving RZib = 2 for the above setup. We have that there exists a

sequence {ǫn}, with limn→∞ ǫn = 0, such that

H(Kn) ≥ 2n− nǫn, (69a)

H(Ψn) ≤ n, (69b)

H(Kn|Ψ
n, Ỹ n) ≤ nǫn, (69c)

I(Kn; Ψ
n, Zn) ≤ nǫn, (69d)

where:
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(69a) follows by the definition of SK rate achievability6.

(69b) is because the alphabet of Ψn is of size 2n and since a uniform distribution maximizes discrete entropy.

(69c) is Fano’s inequality, following the requirement of vanishing decoding error.

(69d) is the weak secrecy requirement.

Lemma 7 For the considered setup, the SK capacity is upper bounded by 2 bits per channel use,

CSK ≤ 2. (70)

Lemma 7 follows because the considered setup, but without an eavesdropper (i.e., when Z = 0), falls within the

framework of the common randomness (CR) problem in Model i from [36].

Proof: Theorem 4.1 in [36] shows that the CR capacity is upper bounded by

CCR ≤ R+ I(S; Ỹ ), (71)

where R is the rate of the communication link between the transmitter and the receiver. Evaluating the RHS of (71)

with respect to the considered setup shows that it equals 2 (CR bits per channel use). This upper bound remains

valid when a security requirement is introduced, since it can only reduce the admissible rates.

Lemma 7 guarantees the existence of a sequence {ǫ′n}, with limn→∞ ǫ′n = 0, such that the following condition

may be added to the set (69):

H(Kn) ≤ 2n+ nǫ′n. (72)

Another technical lemma we need is stated next. Its proof is relegated to Appendix E.

Lemma 8 If (69a)-(69c) hold, then

H(An, Bn|Kn) ≤ 4nǫn. (73)

Now, combining (72) and (73), we have

H(Kn|A
n, Bn) = H(Kn)−H(An, Bn)+H(An, Bn|Kn) ≤ 2n+nǫ′n−2n+H(An, Bn|Kn) ≤ (4ǫn+ǫ

′
n)n. (74)

Using (74) we can finally lower bound the conditional information leakage term I(Kn; Ψ
n, Zn). To do so, first

consider

H(Kn|Z
n) ≤ H(Kn, A

n, Bn|Zn)

= H(An, Bn|Zn) +H(Kn|A
n, Bn, Zn)

≤ H(An, Bn|Zn) +H(Kn|A
n, Bn)

(a)

≤ H(An, Bn|Zn) + (4ǫn + ǫ′n)n

(b)
= H(An, Bn)−H(Zn) + (4ǫn + ǫ′n)n

6In fact, apparently in [31] a strong requirement was used, not including the vanishing term.
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(c)
= (1 + 4ǫn + ǫ′n)n, (75)

where (a) uses (74), (b) follows by the chain rule and because Zn is deterministically defined by (An, Bn) and(c)

is since An, Bn and Zn = An ⊕n B
n are all i.i.d. Ber

(

1
2

)

sequences, and because An and Bn are independent.

Having (75), we conclude with

I(Kn;Z
n,Ψn) ≥ I(Kn;Z

n) = H(Kn)−H(Kn|Z
n)

(a)

≥ 2n− nǫn − (1 + 4ǫn + ǫ′n)n ≥ (1 − 5ǫn − ǫ′n)n, (76)

where (a) uses (69a) and (75). Evidently, (76) contradicts (69d).

APPENDIX C

PROOF OF PROPOSITION 1

Fix σ ∈ (0, 0.5) and set

ǫ =
1

2

[

h
(σ

2

)

− σ
]

, (77a)

λ = h−1(1− σ − ǫ), (77b)

where h : [0, 1] → [0, 1] and h−1 : [0, 1] → [0, 0.5] are the binary entropy function and the inverse of its restriction

to [0, 0.5], respectively. It is readily verified that ǫ, λ ∈ (0, 0.5). By virtue of (26), the inner bound from Theorem

1 attains the SM capacity, which is given by (see (19))

CSM = min
{

CGP(WY |S,X), H(L)
}

, (78)

where CGP(WY |S,X) = maxqU,X|S

[

I(U ;Y ) − I(U ;S)
]

is the GP capacity of the SD channel WY |S,X with state

distribution WS . By the corollary to Theorem 2 from [37] we find that CGP(WY |S,X) = (1 − σ)(1 − ǫ). As

H(L) = 1− σ − ǫ < (1− σ)(1 − ǫ), we obtain

CSM = H(L) = 1− σ − ǫ = 1−
1

2

[

σ + h
(σ

2

)]

, (79)

and, therefore,

RA(λ, ǫ, σ) = 1− σ − ǫ = 1−
1

2

[

σ + h
(σ

2

)]

. (80)

The achievability of (80) may also be verified directly from Theorem 1 by substituting U = G, V = (U,L) and

X ∼ Ber
(

1
2

)

independent of (S,L) into (9).

We now show that RPER(λ, ǫ, σ) < 1− 1
2

[

σ + h
(

σ
2

)]

. Fix a joint distribution to evaluate the region from (21b)

with RK = 0, and S and Y replaced with S̃ = (L, S), Ỹ = (L, Y ). This distribution factors as

qL,S,U,V,X,W,E,Y,Z ,WLWSqUqV,X|U,S,L1{G=g(S,X)}WE1{Y=y(E,G)}1{Z=(S,X)}

× 1{S̃=(L,S)}∩{Ỹ=(L,Y )}. (81)

Note that the independence of (L, S) and U is a restriction on the feasible joint distributions in (21a).
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Now, assume in contradiction that evaluating (21b) with respect to q produces a rate that is at least as high as

(80). Specifically, assume that

I(U, V ; Ỹ )− I(U, V ; S̃) ≥ H(L) (82a)

and

I(V ; Ỹ |U)− I(V ; Z̃|U) ≥ H(L). (82b)

Consider the following upper bound on (82b).

I(V ; Ỹ |U)− I(V ; Z̃|U) = I(V ;L, Y |U)− I(V ;S,X |U)

= I(V ;Y |U) + I(V ;L|U, Y )− I(V ;S,X |U)

= I(V ;U, Y ) + I(V ;L|U, Y )− I(V ;U, S,X)

(a)
= I(V ;L|U, Y ) + I(V ;U, Y )− I(V ;U, S,X, Y )

= I(V ;L|U, Y )− I(V ;S,X |U, Y )

= H(L|U, Y )−H(L|U, V, Y )− I(V ;S,X |U, Y )

≤ H(L), (83)

where (a) uses the Markov relation V −
− (S,U,X)−
− Y , which follows because Y = y
(

E, g(S,X)
)

and E is

independent of (S,U, V,X) under the distribution from (81).

On account of (82b), the single inequality from (83) must hold with equality. For this to happen, the following

argument must hold.

1) The conditioning is removed from the first (positive) term, i.e.,

H(L) = H(L|U, Y ). (84)

This implies that L is independent of (U, Y ).

2) The second (negative) term is zero, i.e.,

0 = H(L|U, V, Y )
(a)
= H(L|U, V, Y, E)

= (1− ǫ) ·H(L|U, V, Y, E = 0) + ǫ ·H(L|U, V, Y, E = 1), (85)

where (a) is because E is deterministically defined by Y . Now, since ǫ > 0, we have that H(L|U, V, Y, E =

1) = 0. Observing that conditioned on {E = 1}, Y =? is a constant, we further deduce

H(L|U, V, Y, E = 1) = H(L|U, V,E = 1)
(a)
= H(L|U, V ) = 0, (86)

where (a) relies on the independence of E and (L,U, V ). The last equality in (86) implies that there exists

a (deterministic) function ℓ : U × V → L such that L = ℓ(U, V ).
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3) Expanding the third (negative) term with respect to E in a similar manner to that presented in the above 2nd

point, we obtain

I(V ;S,X |U, Y,E = 1) = I(V ;S,X |U,E = 1) = I(V ;S,X |U) = 0, (87)

which establishes V −
− U −
− (S,X) as a Markov chain.

Since S and U are independent under q from (81), the Markov relation from point 3) further implies that S

is independent of the pair (U, V ). Observe that this effectively means that the inability of the scheme from [24,

Theorem 1] to support GP coding in the inner layer implies that GP coding is not supported at all.

We proceed to analyze (82a) under the above deductions. Consider

I(U, V ; Ỹ )− I(U, V ; S̃) = I(U, V ;L, Y )− I(U, V ;L, S)

= I(U, V ;Y |L)− I(U, V ;S|L)

≤ I(U, V, L;Y )

(a)

≤ I(U, V, L;G)

(b)
= I(U, V ;G), (88)

where (a) follows by the Data Processing Inequality (see, e.g., [34, Section 2.8]) and since (L,U, V )−
−G−
− Y

forms a Markov chain, while (b) is because L = ℓ(U, V ).

Define T = (U, V ) and observe that T is independent of S (since the pair (U, V ) is) and that T −
− (S,X)−
−G

forms a Markov chain (since G = g(S,X)). We further upper bound the RHS of (88) with T = (U, V ) by

maximizing it over all conditional distributions that satisfy qT,X|S = qT qX|S,T . We thus have

I(U, V ; Ỹ )− I(U, V ; S̃) ≤ I(T ;G) ≤ max
qT qX|S,T

I(T ;G). (89)

The expression on the RHS of (89) is the capacity of the MSAF with causal encoder knowledge of the state

sequence (cf., e.g., [38, p.5469]). However, the causal CSI is useless for the MSAF encoder, as demonstrated in

Section V-A of [38]. Omitting the availability of any CSI from the MSAF encoder, the channel is equivalent to a

binary symmetric channel with flip probability σ
2 (see (23)), whose capacity equals 1− h

(

σ
2

)

.

We conclude with

I(U, V ; Ỹ )− I(U, V ; S̃) ≤ max
qT qX|TS

I(T ;G)

= 1− h
(σ

2

)

(a)
< 1−

1

2

[

σ + h
(σ

2

)]

= H(L), (90)

where (a) is because σ < h(σ2 ) for any σ ∈ (0, 0.5). This is a contradiction to (82a).
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APPENDIX D

PROOF OF LEMMA 4

Fix pM ∈ P(Mn) and, for simplicity of notation, abbreviate p(Bn) and π(Bn) as p and π, respectively. Consider:

∣

∣Ip(M,K;Z)− Iπ(M,K;Z)
∣

∣ =
∣

∣Hp(M,K) +Hp(Z)−Hp(M,K,Z)−Hπ(M,K)−Hπ(Z) +Hπ(M,K,Z)
∣

∣

(a)

≤
∣

∣Hp(M,K)−Hπ(M,K)
∣

∣+
∣

∣Hp(Z) −Hπ(Z)
∣

∣+
∣

∣Hp(M,K,Z)−Hπ(M,K,Z)
∣

∣

(b)

≤
∣

∣

∣

∣pM,K − πM,K

∣

∣

∣

∣

TV
log

|Mn| · |Kn|
∣

∣

∣

∣pM,K − πM,K

∣

∣

∣

∣

TV

+
∣

∣

∣

∣pZ − πZ
∣

∣

∣

∣

TV
log

|Zn|
∣

∣

∣

∣pZ − πZ
∣

∣

∣

∣

TV

+
∣

∣

∣

∣pM,K,Z − πM,K,Z

∣

∣

∣

∣

TV
log

|Mn| · |Kn| · |Zn|
∣

∣

∣

∣pM,K,Z − πM,K,Z

∣

∣

∣

∣

TV

(c)

≤ e−nβ1

[

n(RM +RK) + n log |Z|+ n (RM +RK + log |Z|)
]

−
∣

∣

∣

∣pM,K − πM,K

∣

∣

∣

∣

TV
log
∣

∣

∣

∣pM,K − πM,K

∣

∣

∣

∣

TV

−
∣

∣

∣

∣pZ − πZ
∣

∣

∣

∣

TV
log
∣

∣

∣

∣pZ − πZ
∣

∣

∣

∣

TV

−
∣

∣

∣

∣pM,K,Z − πM,K,Z

∣

∣

∣

∣

TV
log
∣

∣

∣

∣pM,K,Z − πM,K,Z

∣

∣

∣

∣

TV
, (91)

where (a) is due to the Triangle Inequality, (b) uses [34, Theorem 17.3.3], while (c) follows from the assumption

in (45).

Note that the function x 7→ −x log x is monotone increasing for x ∈
[

0, 2−
1

ln 2

]

and that there exists an

ñ1 ∈ N such that e−nβ1 ∈
[

0, 2−
1

ln 2

]

, for all n > ñ1. Finally, since
∣

∣

∣

∣pM,K − πM,K

∣

∣

∣

∣

TV
and

∣

∣

∣

∣pZ − πZ
∣

∣

∣

∣

TV
and

∣

∣

∣

∣pM,K,Z − πM,K,Z

∣

∣

∣

∣

TV
are all upper bounded by e−nβ1 , we have that for all n > ñ1

−
∣

∣

∣

∣pM,K − πM,K

∣

∣

∣

∣

TV
log
∣

∣

∣

∣pM,K − πM,K

∣

∣

∣

∣

TV
−
∣

∣

∣

∣pZ − πZ
∣

∣

∣

∣

TV
log
∣

∣

∣

∣pZ − πZ
∣

∣

∣

∣

TV

−
∣

∣

∣

∣pM,K,Z − πM,K,Z

∣

∣

∣

∣

TV
log
∣

∣

∣

∣pM,K,Z − πM,K,Z

∣

∣

∣

∣

TV

≤ −3e−nβ1 log e−nβ1. (92)

Plugging (92) into (91) gives

∣

∣Ip(M ;Z)− Iπ(M ;Z)
∣

∣ ≤ ne−nβ1

(

2
[

log |Z|+RM +RK

]

+ 3β1
1

ln 2

)

. (93)

The bound on the RHS of (93) is uniform in pM ∈ P(Mn) and decays exponentially fast to zero as n grows. The

result of Lemma 4 follows by maximizing both sides on (93) over all message distributions.

APPENDIX E

PROOF OF LEMMA 8

Using (69a)-(69c) and some basic information identities, we have

n+ nǫn ≥ H(Ψn) +H(Kn|Ψ
n, Ỹ n)
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≥ I(Kn; Ψ
n|Ỹ n) +H(Kn|Ψ

n, Ỹ n)

= H(Kn|Ỹ
n)

= H(Kn)− I(Kn; Ỹ
n)

≥ 2n− nǫn − I(Kn; Ỹ
n), (94)

which produces

I(Kn; Ỹ
n) ≥ (1− 2ǫn)n. (95)

We next show that

I(Kn; Ỹ
n) ≤ n−

1

2
H(An, Bn|Kn), (96)

which, when combined with (95) gives

n− 2nǫn ≤ I(Kn; Ỹ
n) ≤ n−

1

2
H(An, Bn|Kn). (97)

This further implies (73), as required. Thus, to complete the proof of Lemma 8 it suffices to show that (96) holds.

Consider the following steps:

I(Kn; Ỹ
n) =

n
∑

i=1

I(Kn; Ỹi|Ỹ
i−1)

=

n
∑

i=1

I(Kn;Ti, Qi|Ỹ
i−1)

=
n
∑

i=1

[

I(Kn;Ti|Qi, Ỹ
i−1) + I(Kn;Qi|Ỹ

i−1)
]

(a)
=

n
∑

i=1

I(Kn;Ti|Qi, Ỹ
i−1)

=
1

2

n
∑

i=1

[

I(Kn;Ti|Qi = 0, Ỹ i−1) + I(Kn;Ti|Qi = 1, Ỹ i−1)
]

=
1

2

n
∑

i=1

[

I(Kn;Ai|Qi = 0, Ỹ i−1) + I(Kn;Bi|Qi = 1, Ỹ i−1)
]

(b)
=

1

2

n
∑

i=1

[

I(Kn;Ai|Ỹ
i−1) + I(Kn;Bi|Ỹ

i−1)
]

=
1

2

n
∑

i=1

[

H(Ai|Ỹ
i−1)−H(Ai|Kn, Ỹ

i−1) +H(Bi|Ỹ
i−1)−H(Bi|Kn, Ỹ

i−1)
]

≤
1

2

n
∑

i=1

[

H(Ai) +H(Bi)−H(Ai|Kn, Ỹ
i−1)−H(Bi|Kn, Ỹ

i−1)
]

(c)
= n−

1

2

n
∑

i=1

[

H(Ai|Kn, Ỹ
i−1) +H(Bi|Kn, Ỹ

i−1)
]

≤ n−
1

2

n
∑

i=1

H(Ai, Bi|Kn, Ỹ
i−1)
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≤ n−
1

2

n
∑

i=1

H(Ai, Bi|Kn, Q
n, Ai−1, Bi−1, Ỹ i−1)

(d)
= n−

1

2

n
∑

i=1

H(Ai, Bi|Kn, Q
n, Ai−1, Bi−1)

= n−
1

2
H(An, Bn|Kn, Q

n)

(e)
= n−

1

2
H(An, Bn|Kn), (98)

where (a) and (b) follow since Qi is independent of (Kn, Ai, Bi, Ỹ
i−1), for every i ∈ [1 : n], as evident from (68),

(c) is because Ai, Bi ∼ Ber
(

1
2

)

, (d) follows since Ỹ i−1 is a deterministic function of (Qi−1, Ai−1, Bi−1) and (e)

uses the independence of Qn and (Kn, A
n, Bn) (see (68)).
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