
Partially Observable Contingent Planning for Penetration Testing

Dorin Shmaryahu and Guy Shani

Information Systems Engineering
Ben Gurion University, Israel

Joerg Hoffmann and Marcel Steinmetz

Department of Computer Science
Saarland University, Germany

Abstract
Penetration Testing (pentesting), where network admin-
istrators automatically attack their own network to iden-
tify and fix vulnerabilities, has recently received atten-
tion from the AI community. Smart algorithms that can
identify robust and efficient attack plans may imitate
human hackers better than simple protocols. Classical
planning methods for pentesting model poorly the real
world, where the attacker has only partial information
concerning the network. On the other hand POMDP-
based approaches provide a strong model, but fail to
scale up to reasonable model sizes. In this paper we of-
fer a middle ground, allowing for partial observability
and non-deterministic action effects, by modeling pen-
testing as a partially observable contingent problem. We
experiment with a real network of a large organization,
showing our solver to scale to realistic problem sizes.
We also experiment with sub-sampled networks, com-
paring the expected reward of a contingent plan graph
to that of a POMDP policy.

1 Introduction
Penetration testing (pentesting) is a popular technique for
identifying vulnerabilities in networks, by launching con-
trolled attacks (Burns et al. 2007). A successful, or even
a partially successful attack reveals weaknesses in the net-
work, and allows the network administrators to remedy these
weaknesses. Such attacks typically begin at one entrance
point, and advance from one machine to another, through the
network connections. For each attacked machine a series of
known exploits is attempted, based on the machine configu-
ration, until a successful exploit occurs. Then, this machine
is controlled by the attacker, who can launch new attacks on
connected machines. The attack continues until a machine
inside the secure network is controlled, at which point the
attacker can access data stored inside the secured network,
or damage the network.

In automated planning the goal of an agent is to produce
a plan to achieve specific goals, typically minimizing some
performance metric such as overall cost. There are many
variants of single agent automated planning problems, rang-
ing from fully observable, deterministic domains, to par-
tially observable, non-deterministic or stochastic domains.
Automated planning was previously suggested as a tool for
conducting pentesting, exploring the two extreme cases — a

classical planning approach, where all actions are determin-
istic, and the entire network structure and machine configu-
ration are known, and a POMDP approach, where machine
configuration are unknown, but can be noisily sensed, and
action outcomes are stochastic.

The classical planning approach scales well for large net-
works, and has therefore been used in practice for pen-
testing. However, the simplifying assumptions of complete
knowledge and fully deterministic outcomes results in an
overly optimistic attacker point-of-view. It may well be that
a classical-planning attack has a significantly lower cost than
a real attack, identifying vulnerabilities that are unlikely to
be found and exploited by actual attackers. MDPs(Durkota
et al. 2015; Hoffmann 2015) provide a slightly more realis-
tic description of the problem, allowing for actions to fail.
Still, like classical planning, MDPs do not measure the par-
tial information that an attacker may have, and the sensing
actions that may be needed.

The POMDP approach on the other hand (Sarraute et al.
2011), models the problem better, and can be argued to be
a valid representation of the real world. One can model
the prior probabilities of various configurations for each
machine as a probability distribution over possible states,
known as a belief. Probing actions, designed to reveal con-
figuration properties of machines are modeled as sensing ac-
tions, and a probability distribution can be defined for the
possible failure in probing a machine. The success or failure
of attempting an exploit over a machine can be modeled as
a stochastic effect of actions.

This approach, however, has two major weaknesses —
first, POMDP solvers do not scale to the required network
size and possible configurations. Second, a POMDP requires
accurate probability distributions for initial belief, sensing
accuracy, and action outcomes. In pentesting, as in many
other applications, it is unclear how the agent can reliably
obtain these distributions. In particular, identifying an ac-
curate probability distribution over the possible OS for the
machines in the network. Prior work (Sarraute et al.) has
devised only a first over-simplifying model of ”software up-
dates”.

In this paper we suggest an intermediate model between
classical planning and POMDPs. We replace the POMDP
definition with partially observable contingent planning, a
qualitative model where probability distributions are re-

placed with sets of possible configurations or action effects
(Albore et al. 2009; Muise et al. 2014; Komarnitsky and
Shani 2014). Solvers for this type of models scale better than
POMDP solvers, and can be used for more practical net-
works. As these models require no probabilities, we avoid
the guesswork inherent in their specification.

Contingent planners attempt to find a plan tree (or graph),
where nodes are labeled by actions, and edges are labeled by
observations. This plan tree is a solution to the problem if all
leaves represent goal states.

We experiment with a network of a large organization,
with the real vulnerabilities that were found in a scan of that
network, showing that our contingent planner computes a
plan graph for this network. In addition, we compare plan
graphs to POMDP policies for much smaller networks that
were sub-sampled from the real network data that we col-
lected.

2 Networks and Pentesting
We begin by providing a short background on pentesting.

We can model networks as directed graphs whose vertices
are a setM of machines, and edges representing connections
between pairs of m ∈ M . Like previous work in the area,
we assume below that the attacker knows the structure of the
network. But this assumption can be easily removed in our
approach. We can add sensing actions that test the outgoing
edges from a controlled host to identify its immediate neigh-
bors. From an optimization prespective, though, not know-
ing anything about the network structure, makes it difficult
to create smart attacks, and the attacker is forced to blindly
tread into the network. It might well be that some partial in-
formation concerning the network structure is known to the
attacker, while additional information must be sensed. We
leave discussion of interesting forms of partial knowledge to
future work.

Each machine in the network can have a different configu-
ration representing its hardware, operating system, installed
updates and service packs, installed software, and so forth.
The network configuration is the set of all machine configu-
rations in the network.

Machine configuration may be revealed using sensing
techniques. For example, if a certain series of 4 TCP re-
quests are sent at exact time intervals to a target machine,
the responses of the target machine vary between different
versions of Windows (Lyon 2009). In many cases several
different such methods must be combined to identify the op-
erating system. Sending such seemingly innocent requests
to a machine to identify its configuration is known as fin-
gerprinting. Not all the properties of a target machine can
be identified. For example, one may determine that a certain
machine runs Windows XP, but not which security update is
installed.

Many configurations have vulnerabilities that can be ex-
ploited to gain control over the machine, but these vulnera-
bilities vary between configurations. Thus, to control a ma-
chine, one first probes it to identify some configuration prop-
erties, and based on these properties attempts several appro-
priate exploits. As the attacker cannot fully observe the con-
figuration, these exploits may succeed, giving the attacker

full control of the target machine, or fail as some unde-
tectable configuration property made this exploit useless.

The objective of penetration testing (pentesting) is to gain
control over certain machines that possess critical content
in the network. We say that a machine m is controlled if it
has already been hacked into, and the attacker can use it to
fingerprint and attack other machines. A reached machinem
is connected to a controlled machine. All other machines are
not reached. We assume that the attacker starts controlling
the internet, and all machines that are directly connected to
the internet are reached.

We will use the following (small but real-life) situation as
an illustrative example (Sarraute et al.):
Example 2.1. The attacker has already hacked into a ma-
chine m′, and now wishes to attack a reached machine m.
The attacker may try one of two exploits: SA, the “Syman-
tec Rtvscan buffer overflow exploit”; and CAU, the “CA
Unicenter message queuing exploit”. SA targets a particu-
lar version of “Symantec Antivirus”, that usually listens on
port 2967. CAU targets a particular version of “CA Unicen-
ter”, that usually listens on port 6668. Both work only if
a protection mechanism called DEP (“Data Execution Pre-
vention”) is disabled. The attacker cannot directly observe
whether DEP is enabled or not.

If SA fails, then it is likely that CAU will fail as well
because DEP is enabled. Hence, upon observing the result
of the SA exploit, the attacker learns whether DEP is en-
abled. The attacker is then better off trying other exploits
else. Achieving such behavior requires the attack plan to
observe the outcomes of actions, and to react accordingly.
Classical planning which assumes perfect world knowledge
at planning time cannot model such behaviors.

2.1 POMDPs for Pentesting
Partially observable Markov decision proccesses (POMDPs)
(Sondik 1978) were previously suggested as a strong mod-
eling tool for pentesting (Sarraute et al.).

A POMDP is a tuple 〈S,A,Ω, tr, O,R, b0〉, where S is a
set of states,A is a set of actions, Ω is a set of possible obser-
vations, tr(s, a, s′) is the probability of transitioning from a
state s to a state s′ using action a,O(a, s′, o) is the probabil-
ity of observing o ∈ Ω after executing action a, arriving at
state s′, R(s, a, s′) is the reward (or cost) for executing ac-
tion a in state s arriving at state s′, and b0 is the initial belief
— a probability distribution over the possible initial states.

Sarraute et al. model pentesting using a POMDP where
the states are the possible configuration of the network. That
is, a state defines for each machine in the network its operat-
ing system (OS), open ports, running software, and vulnera-
bilities. The initial belief is hence a probability distribution
over the possible network configurations.

There are sensing actions, that do not change the state
of the world, that is, tr(s, asense, s) = 1, but provide
information about certain machine properties, such as its
OS, through the observations distribution. The states change
when using exploit actions, resulting in a new state where
an attacked machine becomes controlled by the attacker. In
addition, there is a special terminate action, that moves the
POMDP to a terminal state.

Sarraute et al. set costs to all actions, a reward when tak-
ing control of any machine, and a larger reward when taking
control of some important machines. They experiment with
deterministic POMDPs, where actions have deterministic ef-
fects, and observations are also deterministic, but POMDPs
can also be used to model sensing noise, and stochastic suc-
cess of exploits.

Sarraute et al. show that the constructed POMDPs can be
solved by a POMDP solver (Kurniawati et al. 2008) only for
small problems.

3 Contingent Planning Model and Language
A contingent planning problem is a tuple <
P,Aact, Asense, φI , G >, where P is a set of proposi-
tions, Aact is a set of actuation actions, and Asense is a
set of sensing actions. An actuation action is defined by a
set of preconditions — propositions that must hold prior
to executing the actions, and effects — propositions that
hold after executing the action. A sensing action asense
has preconditions, but no effects. Instead, asense reveals
the value of a proposition. φI is a propositional formula
describing the set of initially possible states. G ⊂ P is a set
of goal propositions.

In our pentesting application, P contains propositions de-
scribing machine configuration, such as OS(mi, winxp),
denoting that machine mi runs the OS Windows XP. Sim-
ilarly, SW (mi, IIS) represents the existence of the soft-
ware IIS on machine mi. In addition, the proposition
controlling(mi) denotes that the attacker currently controls
mi, and the proposition hacl(mi,mj) denotes that machine
mi is directly connected to machine mj .

The set Asense in our pentesting model represents the
set of possible queries that one machine can launch on
another, directly connected machine, probing it for vari-
ous properties, such as its OS, software that runs on it,
and so forth. Each such sensing action requires as pre-
condition only that the machines will be connected, and
reveals the value of a specific property. In some cases
there are certain “groups” of operating systems, such as
Windows XP with varying service packs and updates in-
stalled. In this case we can allow one property for the group
(OS(mi, winxp)) and another property for the version, such
as (OSV ersion(mi, winxpsp1)) which may not be observ-
able by the attacker.

The set Aact in our pentesting model contains all the
possible exploits. We create an action ae,msource,mtarget

for each exploit e and a pair of directly connected ma-
chines msource, mtarget. If an exploit e is applicable only to
machines running Windows XP, then OS(mtarget, winxp)
would appear in the preconditions. Another precondition is
controlling(msource) denoting that the attacker must con-
trol msource before launching attacks from it. The effect of
the action can be controlling(mtarget), but we further al-
low the effect to depend on some hidden property p that
cannot be sensed. This is modeled by a conditional effect
〈p, controlling(mtarget)〉 denoting that if property p exists
on mtarget than following the action the attacker controls
mtarget.

Belief states in contingent planning are sets of pos-
sible states, and can often be compactly represented
by logic formulas. The initial belief formula φI rep-
resents the knowledge of the attacker over the pos-
sible configurations of each machine. For example
oneof(OS(mi, winxp), OS(mi, winnt4), OS(mi, win7))
states that the possible operating systems for machine mi

are Windows XP, Windows NT4, and Windows 7.
Like Sarraute et al., we assume no non-determinism, i.e.,

if all properties of a configuration are known, then we can
predict deterministically whether an exploit will succeed.
We do allow for non-observable properties, such as the ser-
vice pack installed for the specific operating system. We sup-
port actions for sensing whether an exploit has succeeded.
Hence, observing the result of an exploit action reveals in-
formation concerning these hidden properties.

Example 3.1. We illustrate the above ideas using a very
small example, written in a PDDL-like language for describ-
ing contingent problems (Albore et al. 2009).

We use propositions to describe the various properties of
the machines and the network. For example, the predicate
(hacl ?m1 ?m2) specifies whether machinem1 is connected
to machine m2, and the predicate (HostOS ?m ?o) specifies
whether machinem runs OS o. While in this simple example
we observe the specific OS, we could separate OS type and
edition (say, Windows NT4 is the type, while Server or En-
terprise is the edition). We can then allow different sensing
actions for type and edition, or allow only sensing of type
while edition cannot be directly sensed.

We define actions for probing certain properties. For ex-
ample, the probe-os action:

(: a c t i o n ping−os
: p a r a m e t e r s (? s r c − h o s t ? t a r g e t − h o s t ? o − os)
: p r e c o n d i t i o n (and (h a c l ? s r c ? t a r g e t)

(c o n t r o l l i n g ? s r c)
(n o t (c o n t r o l l i n g ? t a r g e t))

: o b s e r v e (HostOS ? t a r g e t ? o)
)

allows an attacker that controls host s connected to an un-
controlled host t, to probe it to identify whether it’s OS is o.
We allow for a similar probe action for installed software.

The exploit action attempts to attack a machine exploiting
a specific vulnerability:

(: a c t i o n e x p l o i t
: p a r a m e t e r s (? s r c − h o s t ? t a r g e t − h o s t ? o − os ?sw − sw

? v − vu ln)
: p r e c o n d i t i o n (and (h a c l ? s r c ? t a r g e t)

(c o n t r o l l i n g ? s r c)
(n o t (c o n t r o l l i n g ? t a r g e t))
(HostOS ? t a r g e t ? o)
(HostSW ? t a r g e t ?sw)
(Match ? o ?sw ? v))

: e f f e c t (when (E x i s t V u l n ? v ? t a r g e t) (c o n t r o l l i n g ? t a r g e t))
)

The preconditions specify that the machines must be con-
nected, that the OS is o and the software sw is installed, and
that the vulnerability v which we intend to exploit matches
the specific OS and software.

The success of the exploit depends on whether the vul-
nerability exists on the target machine, which manifests
in the conditional effect. The attacker cannot directly ob-
serve whether a specific vulnerability exists, but can use the
CheckControl action to check whether the exploit has suc-
ceeded:

(: a c t i o n CheckCon t ro l
: p a r a m e t e r s (? s r c − h o s t ? t a r g e t − h o s t)
: p r e c o n d i t i o n (and (h a c l ? s r c ? t a r g e t ? p)

(c o n t r o l l i n g ? s r c))
: o b s e r v e (c o n t r o l l i n g ? t a r g e t)

)

The initial state of the problem describes the knowledge
of the attacker prior to launching an attack:

(: i n i t
1 : (c o n t r o l l i n g i n t e r n e t)
2 : (h a c l i n t e r n e t h o s t 0)

(h a c l i n t e r n e t h o s t 1)
(h a c l h o s t 1 h o s t 2)
(h a c l h o s t 0 h o s t 2)
. . .

3 : (oneof (HostOS h o s t 0 winNT4ser) (HostOS h o s t 0 winNT4ent))
(oneof (HostOS h o s t 1 win7en t) (HostOS h o s t 1 winNT4ent))
. . .

4 : (oneof (HostSW h o s t 0 I I S 4) (HostSW h o s t 1 I I S 4))
. . .

5 : (Match winNT4ser I I S 4 CVE−X−Y)
. . .

6 : (o r (E x i s t V u l n CVE−X−Y h o s t 0) (E x i s t V u l n CVE−Z−W h o s t 0))
. . .

)

We state that initially the attacker controls the “internet”
only (part 1). In this case the structure of the network is
known, described by the hacl statements (part 2). Then, we
describe which operating systems are possible for each of
the hosts (part 3). Below, we specify that either host0 or
host1 are running the software IIS (part 4). We describe
which vulnerability is relevant to a certain OS-software pair
(part 5), and then describe which vulnerabilities exit on the
various hosts (part 6).

The above specification may allow for a configuration
where no vulnerability exists on a host (machine) that
matches the host OS and software. Hence, none of the ex-
ploits will work for that specific host.

4 Contingent Plan Trees for Pentesting
A solution to a contingent planning problem is a plan tree,
where nodes are labeled by actions. A node labeled by an
actuation action will have only a single child, and a node
labeled by a sensing action has two children, and each out-
going edge to a child is labeled by a possible observation.

An action a is applicable in belief state b, if for all s ∈ b,
s |= pre(a). The belief state b′ resulting from the execu-
tion of a in b is denoted a(b). We denote the execution of
a sequence of actions an1 =< a1, a2, ..., an > starting from
belief state b by an1 (b). Such an execution is valid if for all i,
ai is applicable in ai−11 (b).

Plan trees can often be represented more compactly as
plan graphs (Komarnitsky and Shani 2014; Muise et al.

2014), where certain branches are unified. This can lead to
a much more compact representation, and to scaling up to
larger domains. Still, for ease of exposition, we discuss be-
low plan trees rather than graphs.

In general contingent planning, a plan tree is a solution, if
every branch in the tree from the root to a leaf, labeled by ac-
tions an1 , an1 (bI) |= G. In pentesting, however, it may not be
possible to reach the goal in all cases, because there may be
network configurations from which the target machine sim-
ply cannot be reached. To cater for this, we need to permit
plan trees that contain dead-ends. We define a dead-end to
be a state from which there is no path to the goal, given any
future sequence of observations. That is, any plan tree start-
ing from a dead-end state would not reach the goal in any
of its branches. For example, a dead-end state arises if no
exploit is applicable for the goal machine. It is clearly advis-
able to stop the plan (the attack) at such states. On the other
hand, if a state is not a dead-end, then there still is a chance
to reach the target so the plan/attack should continue.

There is hence need to define contingent plans where
some of the branches may end in dead-ends. A simple so-
lution, customary in probabilistic models, is to introduce a
give-up action which allows to achieve the goal from any
state. Setting the cost of that action (its negative reward)
controls the extent to which the attacker will be persistent,
through the mechanism of expected cost/expected reward.

In a qualitative model like ours, it is not as clear what the
cost of giving up (effectively, of flagging a state as ”dead-
end” and disregarding it) should be. It may be possible to set
this cost high enough to force the plan to give up only on
dead-ends as defined above. But then, the contingent plan-
ner would effectively need to search all contingent plans not
giving up, before being able to give up even once.

We therefore employ here a different approach, allowing
the planner to give-up on s iff it can prove that s is a dead-
end. Such proofs can be lead by classical-planning dead-
end detection methods, like relaxation/abstraction heuristics,
adapted to our context by determinizing the sensing actions,
allowing the dead-end detector to choose the outcome. In
other words, we employ a sufficient criterion to detect dead-
end states, and we make the give-up action applicable only
on such states. As, beneath all dead-ends, eventually the pen-
test will run out of applicable actions, eventually every dead-
end will be detected and the give-up enabled.

In general, this definition would not be enough because
the planner could willfully choose to move into a dead-end,
thereby ”solving” the task by earning the right to give up.
This cannot happen, however, in the pentesting application,
as all dead-ends are unavoidable, in the following sense. Say
N is a node in our plan tree T , and denote by [N] those
initial states from which the execution of T will reach N . If
N is a dead-end, then every I ∈ [N] is unsolvable, i.e., there
does not exist any sequence of Aact actions leading from I
to the goal. In other words, any dead-end the contingent plan
may encounter is, in the pentesting application, inherent in
the initial state.

5 Network Data Acquisition
To test our approach we created realistic models using data
obtained from scanning the network of a large organization,
containing several subnets. Using the machine configura-
tions and existing exploits discovered using the scan, we can
create real world models that allow us to provide an empiri-
cal evaluation of our approach. We now provide some expla-
nations of the model and the network, unfortunately omitting
many details due to confidentiality restrictions.

To collect the needed information for our models, we be-
gan by running a scan of the various subnets using the Nes-
sus scanner1. Nessus starts its scan from a given computer,
and identifies all reachable hosts from that computer, includ-
ing desktops, gateways, switches, and more.

As Nessus does not actually launches attacks to control
a host, a Nessus scan identifies only hosts that are directly
logically reachable from the source machine where the scan
is running, possibly through several switches and gateways.
We hence executed several such scans, each from a differ-
ent subnet within the organization, as well as one scan from
outside the organization network.

The resulting scans contain the set of machines that are
visible from each source machine. The machines inside a
subnet are all visible to each other. Hence, we assume that
all machines within a subnet can directly access the ma-
chines that the representative source machine can access.
Only a part of the machines outside the subnet are visible
from within the subnet, due, e.g., to firewall restrictions. We
model the accessibility of machines identified through the
scans as direct edges in the network graph. That is, machine
m1 is connected in our model to machine m2, if m2 is visi-
ble from m1 or vice versa.

In addition, Nessus reveals for each identified host its op-
erating system. The network contained hosts running Win-
dows and Linux (with a few versions of each operating sys-
tem). Nessus also identifies softwares with potential vulner-
abilities that run on the machines. Our model contains about
50 such software, including well known applications such as
openssh, tomcat, pcanywhere, ftp services, and many more.

Nessus identifies potential vulnerabilities in the scanned
machines. These vulnerabilities may not actually exist, but
the only way to know is by performing an exploit for that
vulnerability, which of course we did not do. As we explain
above, we model the uncertainty about the existence of the
vulnerability directly in our model. The agent must attempt
an exploit and check afterwards whether the exploit was suc-
cessful, and hence, whether the vulnerability actually exists.

Nessus finds vulnerabilities of varying importance. For
the purpose of this experiment we ignored all the lesser vul-
nerabilities, which do not allow an attacker control of the
system. We remain with about 60 serious types of vulnera-
bilities that exist in the network. We remove from the net-
work all hosts that do not run any software for which a seri-
ous vulnerability exists, remaining with about 35 hosts.

For constructing our pnetesting goal, we took two random
hosts from the innermost subnet, and set them as the target

1https://www.tenable.com/products/
nessus-vulnerability-scanner

hosts. The problem goal is to gain control over one of these
two hosts. To add uncertainty into the model, we specify in
the initial belief for each host, aside from the true operating
system and the real applications running on it, one more po-
tential operating system, and 3 more possible applications.

5.1 POMDP Model

We use the above data to create a POMDP formulation of the
network, following the overall guidelines set by Sarraute et
al (), by differing on some details to be more compatible with
our contingent planning modeling. We follow Sarraute et al,
defining a state for each possible configuration of all net-
work machines. We use deterministic vulnerability exploit
actions that take control of a given machine. These action
result also in a deterministic success or failure observation.

Our sensing actions support only binary observations.
Hence, we replace Sarraute’s ProbeOS(host) sensing action
with a set of sensing actions ProbeOS(host,os) sensing ac-
tions. The Nessus output relates a vulnerability to a soft-
ware, rather than a port. We hence do not use ProbePort
actions, but rather ProbeSW(host,software) actions. We ig-
nore ports in our problem formalization, but open ports can
also be taken into account using a slightly more complex de-
scription. The network connectivity structure is embedded
into the transition and observation probabilities. Probing a
machine that has no controlled neighbor results always in a
false observation. Attempting an exploit on a machine that
has no controlled neighbor does not change the state, even if
the exploited vulnerability exists on the host.

Our reward structure is substantially different than sug-
gested before. First, the Nessus output contains costs for the
exploits that were identified (Lai and Hsia 2007). We use
these costs for the exploit actions in our model. Probing a
host for its operating system can be done by only listening
to the network traffic from that host (Yarochkin et al. 2009).
We hence set a very low cost (0.1) for ProbeOS(host,os)
actions. Probing for running software is more costly, be-
cause it requires sending requests to that software awaiting
responses. We hence set the cost of software probing to be
equal to the least costly exploit (1 in our data).

Finally, we focus on modeling a goal directed approach,
where the attacker goal is to take control over some target
machine, perhaps containing some important information.
We model this by rewarding the attacker only when termi-
nating (using the terminate action), when one of the target
machine is controlled, using a large reward (1000). There
can be deadend states from which the target machine cannot
be controlled (for example, when it has no vulnerabilities).
The agent receives no penalty when terminating at a dead-
end state. We add, however, a substantial penalty (-1000) for
terminating when no target machine is controlled, in a state
which is not a deadend. We consider these rewards to be
the weakest part of our modeling approach, because they are
not supported by the data, but induced by us to motivate the
agent towards a desirable behavior. A deeper investigation
into setting such rewards is left for future work.

6 Empirical Study
We now provide an empirical study of the contingent plan-
ning approach to modeling penetration testing.

To obtain a plan tree (graph) for the pentesting contingent
problems we use a modification of the offline planner CPOR
(Komarnitsky and Shani 2014), which constructs an efficient
plan graph by identifying states for which a solution was al-
ready computed. CPOR uses an online solver as a heuristic.
We replace this component by a domain-specific heuristic.

Our heuristic analyzes the network graph, and identifies
the next accessible host closest to the target machines. Then,
the heuristic probes that host attempting to discover its oper-
ating system and running software. Finally, the heuristic at-
tempts possible exploits for the identified operating system
and software. Once the host is controlled, or if all exploits
have failed, the heuristic chooses the next host to attack.

We augment CPOR with a simple deadend detection
mechanism. If all paths from the set of controlled hosts to
the target machines contain a host for which all possible ex-
ploits have failed, then there is no possible path to the target
machines, and an unavoidable deadend is declared.

6.1 Real Network
When running the contingent planner, we avoid traversing
branches that correspond to these additions, and cannot be
reached in reality. For example, if the true operating system
of host m1 is Windows 7, we may add Windows NT as a sec-
ond operating system. The planner then uses a ping action
to sense the operating system. For instance, the planner may
choose to probe for Windows NT first. In reality, the host
was running Windows 7, and hence, the attacker will receive
a false observation for this action. We allow the planner to
execute the probe action, but then traverse only the branch
where the observation conformed to the true one. That is, in
this example we will only traverse the false child, ignoring
the true child. This better simulates the attacks of a real at-
tacker over this real network, ignoring impossible branches.
As such, although the plan s contain many ping actions, our
plan tree branches only on the success or failure of exploits.

We ran our contingent planner over the resulting problem.
The planner computed a plan graph in 116 seconds, con-
taining 1453 nodes. The equivalent POMDP with 35 hosts,
2 operating system, 50 software, and 60 vulnerabilities, as-
suming 25 software for each operating system, and 5 aver-
age vulnerabilities per software, has a state space of about
235×2×25×5 = 28750, which is far beyond the capabilities of
POMDP solvers. Even factored POMDP solvers (Shani et
al. 2008; Veiga et al. 2014) do not scale up to these sizes.

6.2 Performance over Smaller Networks
While our planner scales well to large network, the quality
of the policy computed by the planner is also important. This
can be done by comparing the expected reward from execut-
ing the policy to the expected reward of a POMDP policy.

As POMDP solvers cannot scale up to the real network,
we create a set of tiny networks that can be handled by the
SARSOP solver (Kurniawati et al. 2008), using the data
gathered by our network scan. First, we sample a set of n

POMDP Contingent
n m k |S| |A| Time E(R) Time E(R)

2 4 6 203 22 0.75 291.271 0.009 256.143
2 5 7 493 25 5.1 265.753 0.009 247.434
3 2 2 125 19 0.25 393.337 0.12 315.614
3 2 4 4913 24 587 269.729 0.18 244.834
3 4 6 8323 32 3349 139.232 0.19 114.514
3 5 7 20,213 38 N/A N/A 0.3 104.446

Table 1: Comparing expected discounted reward and time
(secs), over small networks sampled from the real network
distributions. n, k,m are the number of machines, software,
and vulnerabilities, respectively. |S| and |A| are the number
of states and actions in the POMDP problem.

connected machines from the various subnets of the net-
work. We sample a set ofm software for each machine, from
its real set of running software, following the frequency of
the software given an operating system in our scan. We then
sample k vulnerabilities for each software, again following
the frequency of vulnerabilities in our data. Each software
and vulnerability can either exist on a machine or not. This
process provides a set of configurations, and we assume that
each machine can have any of these possible configurations.

We compute the probabilities of a configuration following
the distribution of operating systems, software, and vulner-
abilities in our scan. The probability of a machine running
operating system o, software s, and vulnerability v, is com-
puted using pr(o)× pr(s|o)× pr(v|s), where the probabil-
ities are the maximum likelihood estimators from the data,
normalized to the reduced sample in the particular instance.

Table 1 compares the expected discounted reward of our
plan graph to that of the SARSOP policy for the equivalent
POMDP model. As can be seen, the expected reward of the
contingent planning solution is lower than the expected re-
ward of POMDP solution. This can be attributed in part to
the heuristic in our planner, that intentionally ignores costs
and probabilities. Adding these factors to the heuristic selec-
tion of actions is left for future research.

On the other hand, the POMDP solver fails even on very
small networks, with only 3 machines, 4 software, and 6 vul-
nerabilities. This is clearly far below acceptable model sizes.

7 Conclusion and Future Work
We suggest contingent planning as an alternative for mod-
eling pentesting. This model allows for partial observabil-
ity of various properties, such as a machine operating sys-
tem and installed software, that can be sensed by probe
actions. Thus, contingent planning offers a richer model
than classical planning, while being able to scale up better
than POMDP-based approaches. We show that our approach
scales to real network sizes far beyond the capabilities of
current POMDP solvers, and compare its expected reward
to that of a POMDP over smaller sub-sampled networks.

In the future we intend to create smarter heuristics for or-
dering actions given states, to achieve better expected re-
wards. In addition, we intend to experiment with a factored
representation of the POMDP problem, to try scaling up to

more reasonable problem sizes.

References
Alexandre Albore, Héctor Palacios, and Hector Geffner. A
translation-based approach to contingent planning. In IJCAI
2009, Proceedings of the 21st International Joint Confer-
ence on Artificial Intelligence, Pasadena, California, USA,
July 11-17, 2009, pages 1623–1628, 2009.
Burns et al. Security Power Tools. O’Reilly Media, 2007.
Karel Durkota, Viliam Lisý, Branislav Bosanský, and
Christopher Kiekintveld. Optimal network security harden-
ing using attack graph games. In Proceedings of the Twenty-
Fourth International Joint Conference on Artificial Intelli-
gence, IJCAI 2015, Buenos Aires, Argentina, July 25-31,
2015, pages 526–532, 2015.
Jörg Hoffmann. Simulated penetration testing: From ”di-
jkstra” to ”turing test++”. In Proceedings of the Twenty-
Fifth International Conference on Automated Planning and
Scheduling, ICAPS 2015, Jerusalem, Israel, June 7-11,
2015., pages 364–372, 2015.
Radimir Komarnitsky and Guy Shani. Computing contin-
gent plans using online replanning. In Proceedings of the
Twenty-Eighth AAAI Conference on Artificial Intelligence,
July 27 -31, 2014, Québec City, Québec, Canada., pages
2322–2329, 2014.
Hanna Kurniawati, David Hsu, and Wee Sun Lee. SARSOP:
efficient point-based POMDP planning by approximating
optimally reachable belief spaces. In Robotics: Science and
Systems IV, Eidgenössische Technische Hochschule Zürich,
Zurich, Switzerland, June 25-28, 2008, 2008.
Yeu-Pong Lai and Po-Lun Hsia. Using the vulnerability in-
formation of computer systems to improve the network se-
curity. Computer Communications, 30(9):2032–2047, 2007.
Gordon Fyodor Lyon. Nmap network scanning: The official
Nmap project guide to network discovery and security scan-
ning. Insecure, 2009.
Christian J. Muise, Vaishak Belle, and Sheila A. McIl-
raith. Computing contingent plans via fully observable
non-deterministic planning. In Proceedings of the Twenty-
Eighth AAAI Conference on Artificial Intelligence, July 27 -
31, 2014, Québec City, Québec, Canada., pages 2322–2329,
2014.
Carlos Sarraute, Olivier Buffet, and Jörg Hoffmann.
POMDPs make better hackers: Accounting for uncertainty
in penetration testing.
Carlos Sarraute, Olivier Buffet, and Jörg Hoffmann. Pene-
tration testing == POMDP solving? In SecArt’11, 2011.
Guy Shani, Pascal Poupart, Ronen I. Brafman, and
Solomon Eyal Shimony. Efficient ADD operations for point-
based algorithms. In Proceedings of the Eighteenth Inter-
national Conference on Automated Planning and Schedul-
ing, ICAPS 2008, Sydney, Australia, September 14-18, 2008,
pages 330–337, 2008.
Edward J. Sondik. The optimal control of partially observ-
able markov processes over the infinite horizon: Discounted
costs. Operations Research, 26(2):282–304, 1978.

Tiago Veiga, Matthijs TJ Spaan, Pedro U Lima, Carla E
Brodley, and Peter Stone. Point-based pomdp solving with
factored value function approximation. In AAAI, pages
2513–2519, 2014.
Fedor V Yarochkin, Ofir Arkin, Meder Kydyraliev, Shih-Yao
Dai, Yennun Huang, and Sy-Yen Kuo. Xprobe2++: Low
volume remote network information gathering tool. In De-
pendable Systems & Networks, 2009. DSN’09. IEEE/IFIP
International Conference on, pages 205–210. IEEE, 2009.

