
Ranking Vulnerability Fixes Using Planning Graph Analysis

Tom Gonda, Guy Shani, Rami Puzis, Bracha Shapira
SISE Department

Ben Gurion University, Israel
{tomgond,shanigu,puzis,bshapira}@bgu.ac.il

Abstract
During the past years logical attack graphs were
used to find the most critical vulnerabilities and
devise efficient hardening strategies for organiza-
tional networks. Most techniques for ranking vul-
nerabilities either do not scale well, e.g. brute-force
attack plan enumeration, or are not well suited for
the analysis of logical attack graphs, e.g. centrality
measures.
In this paper we suggest an analysis of the plan-
ning graph (from classical planning) derived from
the logical attack graph to improve the accuracy
of centrality-based vulnerability ranking metrics.
The planning graph also allows efficient enumer-
ation of the set of possible attack plans that use a
given vulnerability on a specific machine. We sug-
gest a set of centrality based heuristics for reduc-
ing the number of attack plans and compare with
previously suggested vulnerability ranking metrics.
Results show that metrics computed over the plan-
ning graph are superior to metrics computed over
the logical attack graph or the network connectivity
graph.

1 Introduction
Large organizations use a vast and diverse set of software
[Morrow, 2012]. As such, ensuring that all installed soft-
ware are completely safe is an impossible task. The com-
puter networks of large organizations can hence be penetrated
by exploiting vulnerabilities in the installed software, oper-
ating system, or their combinations. Indeed, research has
shown that even organizations whose core business is in de-
veloping security software have many vulnerabilities in their
networks[Zhang et al., 2014].

These vulnerabilities can often be fixed. For example,
when a vulnerability in a given program is identified, the
software company maintaining the software often issues a
patch fixing the vulnerability. Alternatively, if a given soft-
ware is found to be too vulnerable, the security adminis-
trator can choose to move from Windows XP to Windows
10, or to move from Windows to Linux or vice versa. Of
course, replacing the software often involves a significant cost

[Shostack, 2003]. When moving from Windows to Linux one
has to install software versions appropriate to Linux instead
of the Windows versions. Thus, the system administrator
must prioritize the fixes such that the more important vulner-
abilities will be fixed first [Cukier and Panjwani, 2009].

Most research focuses on analyzing possible attacks on the
network in order to rank the vulnerability fixes. A common
data structure for conducting such analysis is the logical at-
tack graph (LAG), whose nodes represent assets or vulnera-
bility exploits, and edges represent which assets are needed
before an exploit can be used, or which assets an exploit pro-
duces [Ou et al., 2005]. One can analyze the attack graph
[Albanese et al., 2012] to gain better understanding of which
vulnerabilities can be used to gain a specific sensitive infor-
mation from a given starting point (e.g. when controlling only
machines outside the organization).

Hoffmann et al [Hoffmann, 2015] suggested a different ap-
proach for identifying vulnerabilities, by computing directly
attack plans for penetration testing (pentesting). An attack
plan is a sequence of actions (e.g. exploits) that allow the at-
tacker to achieve its goals, such as access to specific sensitive
information. The system administrator can use these attack
plans to decide which vulnerabilities to patch. We suggest
taking this approach to the extreme, computing all possible
attack plans together. Then, the set of all attack plans can be
used for, e.g., identifying vulnerabilities that appear in more
plans, ranking their fixes higher.

We explain how the (relaxed) planning graph — a data
structure often used in the classical planning community,
mainly to compute forward search heuristics — can be used
to compute the set of all possible plans in our application. We
provide an algorithm for enumerating all such plans using a
backward scan of the planning graph.

Previous research has suggested various node centrality
measures, such as betweenness [Hong and Kim, 2013], and
pagerank [Sawilla and Ou, 2008], for ranking the vulnerabil-
ities to be fixed. We demonstrate here that over a range of
benchmarks including a scan of a large organization network,
metrics computed over the planning graph provide a much
better ranking compared to metrics computed over the logical
attack graph. We focus here on the task of increasing the cost
of the minimal attack. We rank different vulnerabilities by the
various metrics, and show that ranking using metric over the
planning graph increases the minimal attack cost compared

to rankings based on the logical attack graph. Moreover, for
this task, pagerank has shown the best results.

2 Background
We now briefly review relevant background, starting with at-
tack graphs and their use in ranking vulnerability fixes, and
then discussing the planning graph data structure, and how it
is used for classical planning in general, and for pentesting in
particular.

2.1 Logical Attack Graphs
Logical attack graphs (LAGs) are graphs that represent the
possible actions and outcomes of actions applied by an at-
tacker trying to gain a goal asset in a system. An example of
an attack graph can be seen in Figure 1.

We now describe the attack graph structure. The graph
contains 3 types of nodes:

1. Primitive fact nodes represent facts about the system.
For example, they can represent network connectivity,
firewall rules, user accounts on various computer and
more. In the example graph (Figure 1) primitive fact
nodes are represented by rectangular nodes.

2. Derivation nodes (or action nodes) represent an action
the attacker can take in order to gain a new capability
in the system. The outcome of performing an action, is
an instantiation of a new derived fact. Action nodes are
represented in figure 1 by ovals.

3. Derived fact nodes (or privilege nodes) represent a ca-
pability an attacker gains after performing an action
(derivation phase). For example, a node stating that the
attacker can execute arbitrary code on a specific machine
with certain privileges. Derived fact nodes are repre-
sented by diamonds in Figure 1.

Edges in the LAG from a fact node to an action node repre-
sent the dependency of the action on the facts, and edges from
an action to fact represent the derivation of that fact following
the action.

Figure 1: Example of an attack graph

Definition 2.1. Logical attack graph. Formally, a logical at-
tack graph is a tuple:

G = (Np, Ne, Nc, E, L, g)

Where Np, Ne and Nc are three sets of disjoint nodes in the
graph, E is a set of directed edges in the graph where

E ⊆ (Ne ×Np) ∪ ((Np ∪Nc)×Ne)

L is a mapping from a node to its label, and g ∈ Np is the
attacker’s goal (multiple goals can be transformed into a sin-
gle goal using an action with preconditions as the multiple
goals). Np, Ne and Nc are the sets of privilege nodes, action
nodes and primitive fact nodes, respectively.

The edges in an LAG are directed. There are two types of
edges in attack graph: (a, p) an edge from an action node to
a derived fact node, stating that by applying a an attacker can
gain privilege p. (p, a) is an edge from a fact (either primitive
or derived) node to an action node, stating that p is a precon-
dition to action a. For example, in order to apply exploit e on
machine m2 from machine m1, there must be a connection
from m1 to m2 (represented by a primitive fact node p), and
the user must have already gained access to code execution
on m1 (represented by a derived fact node d). Hence, there
will be edges from p to e and from d to e. In addition, if us-
ing exploits e results in obtaining code execution privileges
on m2, represented by a derived fact node c, then there will
be an edge from e to c.

The labeling function maps a fact node to the fact it repre-
sents, and an action node to a rule that defines the derivation
of new facts. Formally, for every action node a, let C be a‘s
child node and P be the set of a‘s parent nodes, then

(∧L(P)⇒ L(C))

is an instantiation of interaction rule L(a). [Ou et al., 2006]
LAGs are a special case of And/Or Graphs [De Mello and
Sanderson, 1990] where each action can instantiate only one
fact (or derived fact). We will use this notation from [Gefen
and Brafman, 2012]

• pre(a) = {v ∈ Np ∪Nc : (v, a) ∈ E}
• add(a) = {v ∈ Np : (a, v) ∈ E}
• ach(v) = {a ∈ Ne : v ∈ add(a)}
Where pre(a) is the set of facts which are preconditions to

the action a. add(a) is the set of facts gained by applying the
action a (in LAGs this set contains only one node). ach(v) is
set of actions which can achieve derived fact node v.

An attack planG′ is a subgraph ofG. The attack plan must
hold the following:
• g ∈ G′

• ∀a ∈ G′Ne
: preG(a) ⊆ G′

• ∀v ∈ G′Np
: ∃a ∈ achG(v)s.ta ∈ G′ ∧ |achG′(v)| = 1

Meaning, an attack plan is a sub-graph of G’ that contains
the goal node of graph G. Each action a in G’ is fulfilled by
all of the preconditions of a in G. Each fact is achieved by
exactly one action. Attack plan represents a scenario in which
an attacker infiltrates the organization and achieves his goals.

Figure 2: Example attack plan of Graph G in Figure.1

2.2 Graph Centrality Measures
Graph centrality is a sub-field in graph theory research. Cen-
trality measures try to capture how important a node is within
a graph. This is useful in many domains, such as social net-
work (finding prominent members in social networks) and
more.

Previous research on ranking vulnerability fixes has used
some centrality measures in order to identify which vulnera-
bilities should be fixed [Hong and Kim, 2013] [Sawilla and
Ou, 2008] following is a list of such measures that were pre-
viously used to that effect.

One of the basic centrality measure in graphs is the degree
centrality. mainly because it is easy to compute. Although
it is easy to compute (O(1)),degree centrality often poorly
represents the true importance of a node in a graph.

CD(v) = degree(v)

Betweenness centrality captures a more delicate aspect of
the importance of the node in a given graph. This measure
represents for each node, the number of shortest paths be-
tween any two nodes that passes through that node. Formally,
betweenness is:

CB(v) =
∑
s6=v 6=t

σst(v)

σst

Where σst is the number of shortest paths between nodes
s and t, and σst(v) is the number of shortest paths between
nodes s and t that pass through node v. It was used in few
researches aiming to find important nodes in attack graphs
[Hong and Kim, 2013]. The CB values of the nodes can be
computed using [Brandes, 2001] in O(|V ||E|).

We have also used a variation of betweenness centrality
in which only paths starting from a subset of the nodes in
the graph, or ending in a subset of nodes in the graph were
counted.

Another commonly used graph centrality measure is the
Closeness Centrality. This centrality measure captures how
close a certain node is to the rest of the nodes in the graph.
In this centrality method, nodes on the fringe of the graphs
should score lower than nodes in the center of the graph. For-
mally closeness centrality is defined by:

CC(v) =
1∑

u d(u, v)

Where d(u, v) is the shortest distance between u and v. The
running time for finding CC is O(nm + n2log(n)) where n

is the number of nodes in the graph, and m is the number of
edges in the graph [Wang, 2006].

Researches also used Google’s PageRank to rank important
nodes in a graph. Initially used to rank the importance of web
pages in the Internet, PageRank’s essence is measuring how
likely for a web-surfer to be at page i [Page et al., 1999].
0 < d < 1 is a damping factor, representing how likely a web
surfer will get bored and move to another web page which is
not directly linked to the current node.

The metric is given by:

CPR =
1− d
N

+ d
∑

j∈In(j)

πj
|Out(j)|

Where N is the number of nodes in the graph, Out(j) are
the outgoing neighbors of j, In(j) are the ingoing neighbors
of j, and πj is the probability that the web-surfer will be at
nodes j. Fast, distributed algorithms for approximation of the
PR values exists [Sarma et al., 2015]. This algorithm runs
in O(lognε) rounds. where n is the number of nodes in the
network and ε is the damping factor.

2.3 Planning Graphs
Planning graphs [Blum and Furst, 1997] are a data structure
from the automated classical planning community. A plan-
ning graph is a directed, layered graph with two types of
nodes and two kinds of edges. The layers change between
fact layers, containing only fact nodes, and action layers con-
taining action nodes.

In general planning problems, already obtained facts can be
removed by other actions. Planning graphs hence include ad-
ditional information, such as which facts cannot be achieved
at the same time (mutexes). However, in pentesting, once a
fact is obtained, it is never lost. We can hence focus on the
relaxed planning graph, where obtained facts cannot be lost,
which is much simpler to represent and reason about.

The first layer of the relaxed planning graph is a fact layer,
and contains one node for each condition node c ∈ Gc. The
next layer is an action layer, containing all actions that can
be executed using the facts at the previous layer. That is, all
actions whose preconditions appear in the previous layer. The
third layer contains all the effects of the actions at the second
layer.

In addition, we add for each fact p a special no-op action,
that takes p as precondition, and generates p as output. Hence,
each fact layer is a superset of the preceding fact layer. Once
no new facts have been obtained in a fact layer, we can stop
the expansion of the planning graph.

Edges in a planning graph represent relations between ac-
tions and facts. The action nodes in action-layer i are con-
nected by ”precondition-edges” to their preconditions in fact
layer i. The action nodes are also connected to their add-
effects facts in layer i+ 1 by ”add-edges”.

Action nodes may exist at layer i only if all of their precon-
ditions exist at fact layer i. A fact may exist at fact-layer i+1
if it is an effect of some action in action layer i. Thus, the
planning graph avoids cycles by allowing repeated fact and
action nodes at different layers.

Facts often appear in multiple layers in the planning graph
— once a fact has appeared at layer i, it will appear in all fact
layers j > i. We denote each fact by its layer, that is, for fact
p at layer i, we write pi.

Figure 3 shows a planning graph for the graph G presented
in Figure 1. We omit some of the edges between the facts and
”no-op” actions for ease of presentation.

Figure 3: Planning graph of Graph G from Figure.1

To conclude, planning graphs in delete-free domains cap-
ture the same information as an attack graph, in a slightly
different format. Below, we suggest analyzing the planning
graph, replacing the standard centrality measures with an
analysis of all attack plans.

3 Enumerating All Attack Plans
We now explain how one can use the planning graph in order
to enumerate all possible attack plans. Once we have enumer-
ated all possible attacks, we can, e.g., identify fact or action
nodes that participate in many such plans, which may be good
candidates for an early fix.

We analyze the planning graph, rather than the LAG, be-
cause LAGs contain cycles, which are avoided in the plan-
ning graph by using repeated nodes. We use a BFS-style al-
gorithm, moving backward from the goal node gn at the last
fact layer n.

We maintain a set of plans. For each plan there is a set
of unsatisfied facts, initialized with the goal. To expand a
plan backwards from layer i, for each unsatisfied fact pi+2,
we identify an action a (possibly a no-op) that has p in its
effects. We remove pi from the list of unsatisfied facts, and
for each fact q in the preconditions of a we add qi to the set of
unsatisfied facts. If a provides an additional unsatisfied fact
ri, it is also removed from the list of unsatisfied facts. That
is, we will not search for another action a′ to satisfy ri.

There can be many potential actions that satisfy a needed
fact p, each corresponding to a different plan. Thus, for each
action a that satisfy p we create a copy of the plan and add
a to the copy. Thus, the expanded plan is split into multiple
identical plans, differing on the last added action only.

More precisely, let Pi be the set of unsatisfied facts of
the expanded plan at layer i, and APi−1 = {a : ∃p ∈
Pi, p ∈ effects(a)} be the set of actions at layer i − 1
that satisfy at least one fact in Pi. We create a copy of
the plan for each minimal subset APi−1 ⊆ APi−1 such that
Pi =

⋃
a∈AP

i−1
effects(a), and add APi−1 to the copy.

Algorithm 1: Enumerating All Attack Plans
1 EnumeratePlans(PG, t) :

Input: Planning graph PG, target node t
Output: Set of all the attack plans in the graph

2 P ← {t}; // Solution plans
3 cur layer ← lastLayer(PG);
4 while cur layer 6= 0 do
5 if cur laye.type = action then
6 for p ∈ P do
7 for a ∈ p.cur layer nodes do
8 p← p ∪ a.predecessors;
9 end

10 end
11 end
12 else if cur laye.type = fact then
13 for p ∈ P do
14 P ← P \ p;
15 FA← ∅; // open fact nodes achievers
16 for f ∈ s.cur layer nodes do
17 FA← FA ∪ {f.predecessors};
18 end
19 AA← CartesianProduct(FA);
20 for ActionSet ∈ AA do
21 P ← P ∪ (p ∪ActionSet);
22 end
23 end
24 cur layer ← cur layer − 1;
25 end
26 Return(P);
27 end

Once we have reached the initial layer we have enumer-
ated all possible plans. Let Π be the set of all such plans.
Π may contain some redundancies, due to the use of no-
ops. More specifically, given Pi = {pi, qi}, and two ac-
tion ap, aq that produce p, q, respectively, we may have 4 dif-
ferent alternatives — 〈ap, aq〉, 〈ap, noopq〉, 〈noopp, aq〉, and
〈noopp, noopq〉 for expanding the plan backwards. Then, at
layer i− 2, we can choose ap where noopp was selected and
aq where noopq was selected. Ignoring the no-ops, which are
not real actions to be executed, we obtain 4 identical plans.
To remove such duplicates, once we have obtained the set of
all plans, we remove no-ops from all plans, and then remove
duplicate plans, ignoring the action order within a plan.

Using the above planning graph construction and plan enu-
meration method only yields plans with bound number of ac-
tions (which is the number of action layers in the planning
graph). In order to allow plans in various lengths, additional
edges should be added to the planning graph between the fi-
nal fact layer and the final actions layer. At this point we have
chosen to use only the plans with the shortest length, and not
allow plans with larger amount of actions that needed.

This process is obviously np hard, but in the real world
graph that we have obtained, it runs sufficiently fast to be use-
ful. Creating the planning graph and enumerating the plans
took less than a second on both graphs Table. 1. The ex-

Dataset Nodes Plans Time(Seconds)
localPlus 394 48 0.04
ScannedNetwork 1013 2012 0.52

Table 1: Enumeration running time in respect to LAG size

periments where performed on a Virtual Machine using one
Intel Xenon E5-2620 v2 @ 2.10 GHz processor, with 8 GB
of RAM. In the future, we will explore sampling techniques,
originating from research in AND-OR graphs, to provide a
rapid estimation of the needed statistics.

Using the set of all plans we can compute useful measure-
ments. For example, we can count for each action a the num-
ber of plans in which a participates:

CΠ(a) = |{π : π ∈ Π, a ∈ π}|

We can also compute this over a subset of plans, such as only
over the set of plans of length at most k, thus identifying ac-
tions that appear in shorter, more efficient, plans.

4 Network Data Acquisition
To test our approach we created realistic models using data
obtained from scanning the network of a large organization,
containing several subnets. Using the machine configurations
and existing exploits discovered using the scan, we can create
real world models that allow us to provide an empirical eval-
uation of our approach. We now provide some explanations
of the model and the network, unfortunately omitting many
details due to confidentiality restrictions.

To collect the needed information for our models, we began
by running a scan of the various subnets using the Nessus
scanner [Beale et al., 2004]. Nessus starts its scan from a
given computer, and identifies all reachable hosts from that
computer, including desktops, gateways, switches, and more.

As Nessus does not actually launch attacks to control a
host, a Nessus scan identifies only hosts that are directly log-
ically reachable from the source machine where the scan is
running, possibly through several switches and gateways. We
hence executed several such scans, each from a different sub-
net within the organization, as well as one scan from outside
the organization network.

The resulting scans contain the set of machines that are vis-
ible from each source machine. The machines inside a subnet
are all visible to each other. Hence, we assume that all ma-
chines within a subnet can directly access the machines that
the representative source machine can access. Only a part of
the machines outside the subnet are visible from within the
subnet, due, e.g., to firewall restrictions. We model the ac-
cessibility of machines identified through the scans as direct
edges in the network graph. That is, machinem1 is connected
in our model to machine m2, if m2 is visible from m1 or vice
versa.

In addition, Nessus reveals for each identified host its oper-
ating system. The network contained hosts running Windows
and Linux (with a few versions of each operating system).
Nessus also identifies softwares with potential vulnerabilities
that run on the machines. Our model contains about 50 such

software, including well known applications such as openssh,
tomcat, pcanywhere, ftp services, and many more.

Nessus finds vulnerabilities of varying importance. For the
purpose of this experiment we ignored all the lesser vulnera-
bilities, which do not allow an attacker control of the system.
We remain with about 60 serious types of vulnerabilities that
exist in the network. We remove from the network all hosts
that do not run any software for which a serious vulnerability
exists, remaining with about 23 hosts.

For constructing our attack goal, we took six random hosts
from the innermost subnet, and set them as the target hosts.
The problem goal is to gain control over one of these six
hosts.

Figure 4: Connectivity graph of a network. Each node is
a host computer, a directed edge between two hosts (u, v)
means host u can initiate a connection to node v

5 Evaluation
We now compare the utility of various graph centrality mea-
sures in ranking the set of possible machine vulnerabilities
to be fixed. In this paper we focus on the task of increasing
the cost of the minimal attack plan. That is, we use the vari-
ous metrics computed over the LAG or the planning graph to
rank the vulnerabilities to be fixed, and check which ranking
induces an increase in the minimal attack plan cost using less
fixes.

5.1 Domains
We experiment with a benchmark network from previous re-
search [Hoffmann, 2015] [Durkota et al., 2015], as well as
the network of the large organization that we scanned. The
network scanned contained 23 hosts including a host repre-
senting the Internet. The hosts had 144 critical vulnerabilities
which an attacker could leverage. The dataset from the litera-
ture - LocalPlus-20 originally contained 23 hosts, we added 3
more hosts and slightly altered it’s connectivity graph. In the
end the graph contained 26 hosts and 26 vulnerabilities. The
statistics about the LAG produced from the above networks
are presented in Table.2.

We have searched for additional publicly available net-
works and found none. We also explored additional simulated
benchmarks, but these presented very artificial networks (e.g.

|V | |E| Avg. Degree Diameter
Scanned network 1003 1591 3.172 15
LocalPlus-20 394 560 2.84 16

Table 2: Attack Graphs Statistics

where each machine had only a single vulnerability), and the
results over these networks were uninteresting.

5.2 Methods
We compare here the following metrics:

1. Plan count

2. Betweenness

3. PageRank

4. Closeness

5. Random ranking

Plan count is the number of shortest plans in which a vul-
nerability participates. This is computed using the plan enu-
meration procedure. Vulnerabilities are ranked by decreasing
number of plans in which they participate.

All metrics are computed over both the LAG and the plan-
ning graph, except for the plan count, which is computed only
over the planning graph. As a node in the LAG can appear
multiple times in the planning graph (For instance between
no-op actions, e.g: p → noop → p), we count the different
appearances of a node in the planning graph.

5.3 Procedure
We performed the experiments in the following manner; For
each centrality method we begin with the original graph
(LAG or planning graph), and compute the metric for all vul-
nerability nodes in the graph. We then rank all the nodes
according to the centrality method by decreasing value.

We select the node with the highest centrality measure to
be fixed first. The vulnerability corresponding to this node
is now removed, and we recompute the LAG or the planning
graph without this node. Then, we recompute the metric over
the new, revised, graph.

In addition, we enumerate the set of attack plans over the
original planning graph using Algorithm 1. We identify the
subset of plans with the minimal cost (shortest plans). When-
ever we remove a vulnerability following the above proce-
dure, we also remove all the shortest plans that use this vul-
nerability. We end when there are no more shortest plans left.

5.4 Results
Figure 5a presents the reduction in the number of shortest at-
tack plans after every patch (removal of a vulnerability on
a specific host) on the simulated Local+20 benchmark. On
this network, the only two metrics that supply any useful in-
formation are the shortest plan count, and Betweenness over
the planning graph. Both methods allow the administrator to
remove all shortest attack plans after patching only 4 vulner-
abilities. All other centrality metrics do not perform better
than a random ranking.

The network of the real organization that we scanned pro-
vides completely different results (Figure 5b). On this net-
work, while selecting vulnerabilities that appear in the largest
number of shortest plans reduces the amount of plans most
rapidly at first, PageRank over the planning graph manages
to remove all shortest plans using the minimal number of
patches. Closeness over the planning graph and the plan
count method remove all attack plans with the same num-
ber of patches (13). Over this network, all metrics computed
over the planning graph provide better rankings than metrics
computed over the LAG.

The difference between the performance of the metrics
over the real network and the simulated benchmark clearly
present the urgent need for experiments with real world data.
Simulated networks in this case may not model properly the
real world, and results over them may be misleading.

6 Related Work
Attack Graphs have been used to depict possible ways for
an attacker to compromise a computer network. Almost two
decades ago DARPA created attack graph manually as part of
red-team analysis. Initially, attack graphs were used to bet-
ter visualize the paths an attacker can take in the network.
Once attack graph could easily be generated automatically,
researches have used them to improve the security of the net-
works. They did so by a number of different methods. We
presented works that can help determine what vulnerabilities
to patch in an organizational network. Additional works ex-
ist [Durkota et al., 2015] to help determine countermeasure
placements in the network (like IPS or Honeypots) but they
are out of scope for this work.

6.1 Finding Optimal Attack Plans
Many researches have assumed some metric on actions in the
attack graph [Obes et al., 2013]. The metrics usually repre-
sents cost, like the time it takes to launch exploit, risk of de-
tection and so on. Another common metric for actions is the
probability of success when performing the action. [Wang et
al., 2008] Researchers then tried to find attack plans which
minimize/maximize the suggested metric. The assumption is
that rational attacker will first try to launch attacks that mini-
mize the cost for the attacker. The downsize of many of those
models are simplifying assumptions on the attacker, which
are not always realistic in the real world. Example of those
assumptions are the fact the attacker needs to know before-
hand the structure of the network, or that he cannot change
the structure of the network. When trying to relax those as-
sumptions, using Contingency Planning, MDP or POMDP
to achieve realistic results, the runtime for deriving conclu-
sions makes it not practical for real-size networks [Hoffmann,
2015] [Shmaryahu, 2016]. More over, test shows [Sommes-
tad and Sandström, 2015] that attack graphs do not always
represent all the actual paths an attacker can take. So trying
to eliminate numerous plans in respect to some metric might
not always prevent an attacker from achieving his goals.

6.2 Denying Access to the Goal
Another common use of attack graphs is finding a set of con-
ditions to patch which will prevent the attacker from reach-

(a) Local+20 network

(b) Large organization network

Figure 5: Amount of shortest attack plans (y axis) available after applying k patches (x axis) to the most central nodes, according
to the different centrality methods.

ing the goal. Works in this area use various methods such as
minimum-cost SAT solving [Huang et al., 2011] and special-
ized methods [Albanese et al., 2012] invented for this task.
The down-side of this method is that in practice, even after
finding minimal set of conditions to patch it may still contain
a significant amount of vulnerabilities to patch, which will
not be possible without significant IT resources. This leads to
our goal to minimize the number of attack plans in the graph
that could be used to reach the goal.

6.3 Patching to Minimize Paths to the Goal
In their work [Hong and Kim, 2013] [Hong et al., 2014] pro-
pose to use network centrality measures to find which vulner-
abilities to patch first. To our understanding, this work pro-
poses using a two-layer graph. The first layer, representing
the hosts in the system. A directed edge between two nodes
(a, b) means that when controlling node a, an attacker is able
to advance to node b (using exploit, or a similar manner). The
second layer is an AND-OR tree containing all the ways to
compromise a machine from an arbitrary other machine. The
authors then compute different network centrality measures
on the first layer to find which vulnerabilities to patch. To our

understanding, the absence of the knowledge on how to gain
access to a host (which is depicted in layer two) when com-
puting centrality measures on the first layer, can often yield
sub-optimal results.

7 Conclusion and Future Work
We discuss in this paper metrics for ranking the vulnerabili-
ties to patch in a computer network. We focus on the problem
of increasing the cost of the shortest attack plan. We show that
metrics computed over the planning graph — a data structure
from automated planning — provide much better rankings.
In addition, the planning graph allows us to enumerate the set
of shortest plans, providing a new ranking metric based on
vulnerability appearance in shortest plans.

We experiment with a real world network, which we de-
fined using a scan of a large organization computer network.
As such, this is one of the first papers to report results over
an attack graph of a real network. We also experimented with
a standard simulated benchmark. It is interesting to see that
the results over the simulated network are very different than
results over the real network, emphasizing the urgent need for

additional real world networks for experiments.
In the future we intend to experiment with additional inter-

esting real world networks. We would also explore additional
optimization problems, such as removing all identified attack
plans. The plan enumeration procedure that we used has an
exponential complexity, and we intend to explore sampling
methods to allow for rapid estimation of the set of shortest
plans.

References
[Albanese et al., 2012] Massimiliano Albanese, Sushil Jajo-

dia, and Steven Noel. Time-efficient and cost-effective net-
work hardening using attack graphs. In Dependable Sys-
tems and Networks (DSN), 2012 42nd Annual IEEE/IFIP
International Conference on, pages 1–12. IEEE, 2012.

[Beale et al., 2004] Jay Beale, Renaud Deraison, Haroon
Meer, Roelof Temmingh, and Charl Van Der Walt. Nes-
sus network auditing. Syngress Publishing, 2004.

[Blum and Furst, 1997] Avrim L Blum and Merrick L Furst.
Fast planning through planning graph analysis. Artificial
intelligence, 90(1):281–300, 1997.

[Brandes, 2001] Ulrik Brandes. A faster algorithm for be-
tweenness centrality. Journal of mathematical sociology,
25(2):163–177, 2001.

[Cukier and Panjwani, 2009] Michel Cukier and Susmit Pan-
jwani. Prioritizing vulnerability remediation by determin-
ing attacker-targeted vulnerabilities. IEEE Security & Pri-
vacy, 7(1):42–48, 2009.

[De Mello and Sanderson, 1990] LS Homem De Mello and
Arthur C Sanderson. And/or graph representation of as-
sembly plans. IEEE Transactions on Robotics and Au-
tomation, 6(2):188–199, 1990.

[Durkota et al., 2015] Karel Durkota, Viliam Lisỳ, Branislav
Bošanskỳ, and Christopher Kiekintveld. Optimal network
security hardening using attack graph games. In Proceed-
ings of IJCAI, pages 7–14, 2015.

[Gefen and Brafman, 2012] Avitan Gefen and Ronen I Braf-
man. Pruning methods for optimal delete-free planning. In
ICAPS, 2012.

[Hoffmann, 2015] Jörg Hoffmann. Simulated penetration
testing: From” dijkstra” to” turing test++”. In ICAPS,
pages 364–372, 2015.

[Hong and Kim, 2013] Jin B Hong and Dong Seong Kim.
Scalable security model generation and analysis using k-
importance measures. In International Conference on Se-
curity and Privacy in Communication Systems, pages 270–
287. Springer, 2013.

[Hong et al., 2014] Jin B Hong, Dong Seong Kim, and Ab-
delkrim Haqiq. What vulnerability do we need to patch
first? In Dependable Systems and Networks (DSN),
2014 44th Annual IEEE/IFIP International Conference
on, pages 684–689. IEEE, 2014.

[Huang et al., 2011] Heqing Huang, Su Zhang, Xinming Ou,
Atul Prakash, and Karem Sakallah. Distilling critical at-
tack graph surface iteratively through minimum-cost sat

solving. In Proceedings of the 27th Annual Computer Se-
curity Applications Conference, pages 31–40. ACM, 2011.

[Morrow, 2012] Bill Morrow. Byod security challenges:
control and protect your most sensitive data. Network Se-
curity, 2012(12):5–8, 2012.

[Obes et al., 2013] Jorge Lucangeli Obes, Carlos Sarraute,
and Gerardo Richarte. Attack planning in the real world.
arXiv preprint arXiv:1306.4044, 2013.

[Ou et al., 2005] Xinming Ou, Sudhakar Govindavajhala,
and Andrew W Appel. Mulval: A logic-based network
security analyzer. In USENIX security, 2005.

[Ou et al., 2006] Xinming Ou, Wayne F Boyer, and Miles A
McQueen. A scalable approach to attack graph gener-
ation. In Proceedings of the 13th ACM conference on
Computer and communications security, pages 336–345.
ACM, 2006.

[Page et al., 1999] Lawrence Page, Sergey Brin, Rajeev
Motwani, and Terry Winograd. The pagerank citation
ranking: Bringing order to the web. Technical report, Stan-
ford InfoLab, 1999.

[Sarma et al., 2015] Atish Das Sarma, Anisur Rahaman
Molla, Gopal Pandurangan, and Eli Upfal. Fast distributed
pagerank computation. Theoretical Computer Science,
561:113–121, 2015.

[Sawilla and Ou, 2008] Reginald E Sawilla and Xinming
Ou. Identifying critical attack assets in dependency attack
graphs. In European Symposium on Research in Computer
Security, pages 18–34. Springer, 2008.

[Shmaryahu, 2016] Dorin Shmaryahu. Constructing plan
trees for simulated penetration testing. In The 26th Inter-
national Conference on Automated Planning and Schedul-
ing, page 121, 2016.

[Shostack, 2003] Adam Shostack. Quantifying patch man-
agement. Secure Business Quarterly, 3(2):1–4, 2003.

[Sommestad and Sandström, 2015] Teodor Sommestad and
Fredrik Sandström. An empirical test of the accuracy of
an attack graph analysis tool. Information & Computer
Security, 23(5):516–531, 2015.

[Wang et al., 2008] Lingyu Wang, Tania Islam, Tao Long,
Anoop Singhal, and Sushil Jajodia. An attack graph-based
probabilistic security metric. In Data and applications se-
curity XXII, pages 283–296. Springer, 2008.

[Wang, 2006] David Eppstein Joseph Wang. Fast approxi-
mation of centrality. Graph Algorithms and Applications
5, 5:39, 2006.

[Zhang et al., 2014] Su Zhang, Xinwen Zhang, and Xinming
Ou. After we knew it: empirical study and modeling
of cost-effectiveness of exploiting prevalent known vul-
nerabilities across iaas cloud. In Proceedings of the 9th
ACM symposium on Information, computer and communi-
cations security, pages 317–328. ACM, 2014.

	Introduction
	Background
	Logical Attack Graphs
	Graph Centrality Measures
	Planning Graphs

	Enumerating All Attack Plans
	Network Data Acquisition
	Evaluation
	Domains
	Methods
	Procedure
	Results

	Related Work
	Finding Optimal Attack Plans
	Denying Access to the Goal
	Patching to Minimize Paths to the Goal

	Conclusion and Future Work

