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Analyzing the security of Wearable Internet-of-Things (WIoT) devices is considered a complex task due to
their heterogeneous nature. In addition, there is currently no mechanism that performs security testing
for WIoT devices in different contexts. In this article, we propose an innovative security testbed framework
targeted at wearable devices, where a set of security tests are conducted, and a dynamic analysis is performed
by realistically simulating environmental conditions in which WIoT devices operate. The architectural design
of the proposed testbed and a proof-of-concept, demonstrating a preliminary analysis and the detection of
context-based attacks executed by smartwatch devices, are presented.
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1. INTRODUCTION

The Internet of Things (IoT) is a global ecosystem of information and communication
technologies aimed at connecting any type of object (thing), at any time and in any
place, to each other and to the Internet. The application domains of the IoT are di-
verse, spanning from smart cities, building and home automation, transportation and
logistics, and environmental monitoring, to smart enterprise environments, connected
home appliances, and smart wearable devices [Atzori et al. 2010; Gubbi et al. 2013;
Perera et al. 2015].

Wearable computing is an emerging ubiquitous technology in the IoT ecosystem,
where new products are entering the market at an ever increasing rate. Wearables
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are smart embedded devices comfortably worn directly on the user’s body, which de-
fine a new Wearable IoT (WIoT) segment as a user-centered environment [Hiremath
et al. 2014]. These smart devices are naturally integrated into daily life by transform-
ing ordinary wearable and health-related products, such as: bracelets, wristwatches,
glasses, clothes, shoes, contact lenses (see Google’s “Smart Contact Lens”), and even
bandages, into smart digital wearable devices with the capability to sense, compute,
and communicate with their surroundings [Swan 2012].

Security experts have recently raised concerns about the security and privacy of
wearable IoT devices [Lee et al. 2015; Hale et al. 2015; Cyr et al. 2014]. This is due to
the following characteristics and properties of these state-of-the-art IoT devices. First,
these devices are powered by advanced (and mostly standard) operating systems, en-
abling users to install applications on the device (specifically in smartwatch devices),
and are therefore exposed to different types of security breaches and attacks, most of
which are already known from other platforms (e.g., desktops/laptops, smartphones)
[Donohue 2014; Migicovsky et al. 2014; Wang et al. 2015]. Second, these smart devices
are equipped with advanced sensing and communication capabilities that permit the
monitoring and tracking of the wearer’s activity, behavior, location, and health condi-
tion in real-time [Hiremath et al. 2014; Swan 2012], all of which are attractive device
features. The fact that such devices are always connected to the network greatly in-
creases the risks of privacy violations [Lee et al. 2015; Hale et al. 2015]. Third, WIoT
devices are not designed with security in mind and are designed mainly on the basis of
features and cost considerations [Cooper 2015; Puckett 2014]. Unfortunately, standard
security solutions are largely not applicable to such devices due to the devices’ lim-
ited resources (computational, memory, power). Finally, analyzing the security of such
devices is considered an extremely complex task due to their heterogeneous nature
(numerous types of devices and vendors) and the fact that these devices are used in a
variety of contexts and states.

Therefore, there is an urgent need to develop advanced mechanisms that, on the one
hand, can determine if a wearable device complies with a set of predefined security
requirements and, on the other hand, can determine if the device is compromised by
malicious applications. In this article, we propose an innovative IoT security testbed
whose main objective is to test the wearable IoT device’s security against a set of
security requirements, as well as to test its behavior under various conditions (e.g.,
when different applications are running). That is, the testbed is designed to simulate
environmental conditions in which the tested device might be operated, such as the
location, time, lighting, movement, etc., in order to detect possible context-based attacks
(i.e., attacks that are designed to be triggered when the device is within a specific state)
and data attacks that may be achieved by sensor manipulation. The main contributions
of this article are as follows:

—We provide a detailed discussion of security and privacy threats for current and
future wearable IoT devices and present several approaches to mitigate the threats
posed by such devices.

—We present our design for a novel advanced security testbed framework and provide
an in-depth description of the proposed testbed mechanism, including the interac-
tions between the relevant modules of the testbed framework.

—We use a prototype implementation of the testbed in order to analyze different wear-
able devices (Google Glass and smartwatch devices), and to detect new context-based
attacks that are executed by these devices and could occur in the future.

The rest of the article is structured as follows. In Section 2, we present an overview
of security and privacy aspects in wearable computing. In Section 3, we portray the
design considerations for the advanced security testbed framework, including an
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in-depth description of the functional architecture model. In Section 4, we present a
proof-of-concept for the proposed security testbed operation using several wearable
devices, followed by work related to this study in Section 5. We conclude with a
discussion and possible future work in Section 6.

2. SECURITY AND PRIVACY ASPECTS OF WEARABLE COMPUTING

Wearable devices may pose major security and privacy risks [Lee et al. 2015; Hale et al.
2015], because of their range of functionality and the variety of processes involved
in their operation, including data collection, processing, storage, and transfer – by,
from, and to these smart devices. Furthermore, these devices are worn on the body
and can operate continuously in order to gather information from their surroundings;
hence they are highly visible and accessible – especially to attackers. In the following
subsections, we discuss security and privacy aspects related to device architecture,
network connectivity, and the type of data collected by wearable devices. In addition,
we present countermeasures to reduce and mitigate the problems discussed.

2.1. Device Architecture

The device architecture aspect includes hardware and software security considerations
as follows. Regarding hardware, wearable devices are low resource devices (in terms of
power source, memory size, low-bandwidth communication, and computational capabil-
ities) [Hiremath et al. 2014; Lindström 2007]. This may result in severe security flaws,
as only lightweight-based encryption mechanisms and authentication algorithms can
be applied in order to encrypt the data stored on, and transmitted from, the device
[Al-Muhtadi et al. 2001; Lennon 2015].

From a software perspective, the common operating systems of wearable IoT devices
(e.g., Android) are highly exposed to known and zero-day vulnerabilities [Donohue 2014;
Briodagh 2015; Goodin 2015]. Additionally, the applications running on wearable IoT
devices are only as good as the developers who wrote them. Often, if serious bugs
are identified in the software, no one is responsible for patching them [Hammond
2014]. Furthermore, wearables are much cheaper than PCs and smartphone devices,
and hence they are assumed to be less continuously maintained and upgraded by the
manufactures [Locke 2014].

Wearable devices often automate certain functionalities and require limited config-
uration with little intervention from the user. For example, the Google Glass device
enables the automatic set-up of a Wi-Fi connection after viewing QR codes [Rogers
2013] or sharing information on the web. This often makes wearable devices more
exposed to security risks than traditional devices.

2.2. Network Connectivity

Wearable devices can be constantly connected to the Internet [Swan 2012], either
directly using Wi-Fi or cellular connectivity, or indirectly via Bluetooth connection (by
pairing with smartphone devices). However, these advanced IoT devices are not always
designed with security in mind, due to cost considerations and their limited resources
[Cooper 2015; Puckett 2014]. Consequently, they are highly exposed to traditional
Internet attacks, such as denial-of-service (DoS) attacks; data leakage; man-in-the-
middle (MITM) attacks; phishing attacks; eavesdropping; side-channel attacks; and
compromised attacks [Blum 2015a; Bitdefender 2014]. Moreover, due to the fact that
lightweight authentication algorithms are employed [Al-Muhtadi et al. 2001], it is quite
possible to manipulate and control these devices at their weakest point—when data is
sent from, and received by, the device.

Another potential security issue is network disruption and overload [Blum 2015a].
With the proliferation of wearable devices, especially in corporate networks, these
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devices are constantly producing and broadcasting information, and thus unceasingly
consume bandwidth. More importantly, they increase the attack surface as they become
new points of entry into the network.

2.3. Data Collection

A major concern related to wearable devices is the type of data they collect, which
potentially may lead to privacy invasion and information theft [Hiremath et al. 2014;
Lee et al. 2015; Kaspersky Labs 2014]. As data becomes an increasingly valuable asset,
many data brokers collect information about potential customers and organizations by
any means, including vulnerable wearable devices [Hammond 2014].

From a user’s point of view, most of the collected data is personal, and may contain
sensitive information about the wearer’s habits and behavior, and even private health
details [Hiremath et al. 2014; Swan 2012]. Moreover, recently, wearable technology
has also been integrated into enterprise and organizational environments in order to
increase business productivity and efficiency levels [Perera et al. 2015]. As wearables
become more commonly used in the workplace, companies might exploit them to violate
employees’ privacy, as employers can track and record an employee’s actions—and even
more worrisome—monitor a user’s health condition [Upton 2014]. On the other hand,
sensitive corporate information might also become more accessible to outsiders and
can be exposed to unauthorized individuals via these devices [Puckett 2014].

Another concern associated with wearable devices centers on theft or loss of the de-
vice [Blum 2015a], as well as ransomware attacks [Jain 2015]. Personally identifiable
information (PII) stored on the device renders it at risk to security and privacy issues.
Due to the lightweight security mechanisms that are employed, this sensitive informa-
tion is readily accessible to attackers and can be used for malicious activities, such as
identity theft.

2.4. Countermeasures and Mitigations

This section discusses several countermeasures that can be implemented to reduce
and mitigate the security and privacy risks posed by wearable devices. For example,
sensitive data stored on the device should be limited and encrypted [Tolentino 2013]
(both regarding the type, and the amount of data stored on the device) in order to reduce
the possibility of personal data exposure. In addition, data scrubbing and automatic
wipe features that enable remote deletion of unnecessary data from wearable devices
should be employed [Blum 2015b].

Companies should enforce Bring-Your-Own-Device (BYOD) security and privacy poli-
cies [Puckett 2014; Almasy 2015], especially for wearable devices. This can be done us-
ing enterprise-grade encryption mechanisms for access control [Upton 2014] in order
to identify any new connected device in the network, as well as to protect data from
eavesdropping measures. Moreover, the rule of least privilege should be implemented
to limit the capability of employees to read and/or write unauthorized data, and restrict
attackers from accessing sensitive corporate data from wearable devices that have been
compromised [Blum 2015a]. In addition, implementing further authentication, autho-
rization, and accountability mechanisms for wearable devices that directly connect to
the network is required [Blum 2015b].

As most of the wearable devices are Bluetooth-enabled, it is preferable to turn the
Bluetooth connectivity off once the device is not in use [Nguyen 2014]. Moreover, users
should be responsible for maintaining and periodically updating software versions and
downloading relevant updates and patches for their wearable devices [Locke 2014].

If, for any reason, the above security problems cannot be mitigated, wearable elec-
tronic devices will eventually need to be banned in highly sensitive places [Brandon
2014], as is the case with common mobile devices (such as laptops, smartphones, tablets,
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etc.), in order to provide an infrastructure solution. Such measures will be instituted
in the interest of protecting the security, privacy, and confidentiality of the wearer, as
well as the people in his/her surroundings.

In addition to the above countermeasures and mitigations, there is a constant need
to be able to evaluate the security and privacy levels of wearable IoT devices without
violating the user’s privacy. This should be done using a designated security testbed for
wearable devices, where the motivation is twofold: (1) the security testbed will perform
security testing for new devices (running known applications) as a means of assessing
their security level, and (2) the security testbed will also execute security testing for
wearable IoT devices that are suspected of having been compromised by malicious ap-
plications. Because the conditions that trigger these malicious applications to execute
attacks are not always known, the testbed should be able to simulate possible condi-
tions (e.g., using different simulators) in order to identify any context-based attacks the
device may carry out under predefined conditions that an attacker may set, as well as
data attacks which may be achieved by sending crafted (or manipulated) context/sensor
data. This issue is discussed in more detail in this article.

3. ADVANCED SECURITY TESTBED FRAMEWORK FOR WEARABLE IOT DEVICES

In this section we discuss the design considerations for an advanced security testbed
framework for the wearable IoT devices environment. We list the fundamental design
requirements and security tests needed from a comprehensive security testbed. Based
on these requirements, we define the functional architectural model for the proposed
security testbed.

3.1. Design Requirements

The design requirements for the advanced security testbed are listed below. The spec-
ifications include different aspects, ranging from the type of device under test (DUT),
testing environment, and simulators array, to communication channels, protocols, data
forensic analysis capabilities, management, and report tools, etc.

Device under Test (DUT). The testbed should be able to examine a wide range of
wearable devices from different categories, including: activity trackers, smartwatches,
smart glasses, smart clothes, smart shoes, and smart healthcare devices.

Testing Environments. The testbed should be able to emulate different types of test-
ing environments, such as indoor and outdoor, static and dynamic environments, and
mobile scenarios.

Security Testing. The security testbed should support a range of security tests, each
targeting a different security aspect. Standard security testing will be performed based
on vulnerability scans and penetration test methodology, in order to assess and verify
the security level of wearable IoT devices under test. See Table I for a list of supported
tests. In addition, advanced security testing will be performed by the security testbed
using different arrays of simulators. We consider two types of advanced security tests
that can be executed: context-based attacks and data attacks. In context-based attacks,
the attacker designs his or her attack to be triggered when the device is within a specific
state. This is an important attack feature that enables the malicious function to evade
detection. For detecting context-based attacks, the testbed will realistically simulate
environmental conditions using different simulators (e.g., sending different GPS loca-
tions and times) in order to trigger the internal sensor activities of the wearable IoT
devices under test. By monitoring the behavior of the tested device we will be able to
identify the contexts in which different applications act. Data attacks are carried out by
manipulating the signals and data that are sent to the sensors. This class of attack can
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Table I. Vulnerability Scans and Penetration Tests Supported by the Advanced Security Testbed

Test Description Test/Success criteria (example)
Scanning (e.g.,
IP and port
scanning)

Investigate the detectability of
wearable IoT devices by observing
wireless/wired communication
channels. Attempt to identify the
existence of the device. Enumerate
communication channels/traffic types
observed, open ports, etc.

Undetectable- The WIoT-DUT cannot be
detected by the testbed via any
communication channel; Safe- The
WIoT-DUT is detectable, but no open
ports were observed; Minor risk- The
WIoT-DUT is detectable, and common
ports are open, e.g., port 80 (HTTP), 443
(HTTPS), etc.; Major risk- The WIoT-DUT
is detectable, and uncommon ports for
such devices are open, e.g., ports 20, 21
(FTP), port 22 (SSH), port 23 (Telnet),
etc.; or, Critical risk- The WIoT-DUT is
detectable, and unexpected ports are open
in the device.

Fingerprinting By monitoring communication traffic
to/from the device, attempt to identify
the type of device, its operating
system, software version, list of all
sensors supported, etc.

Unidentifiable- The type of WIoT-DUT
cannot be identified by the testbed; Safe-
The device provides identifiable
information, but all the WIoT-DUT’s
software versions are up-to-date; Minor
risk- Some low risk detected applications,
e.g., calendar, etc., are out-of-date; Major
risk- Some major risk detected
applications, e.g., navigator, mail, etc., are
out-of-date; or, Critical risk- Operating
system and critical applications are
out-of-date.

Process
enumeration

Lists all running processes on the
device and presents their CPU and
memory consumptions. This can be
done by monitoring the device’s
activities, e.g., using ADB (Android
Debug Bridge) connectivity.

Safe- The list of processes cannot be
extracted without admin privileges;
Moderate risk- The list of processes can be
extracted without admin privileges on the
device only; or, Fail- The list of processes
can be remotely extracted without admin
privileges.

Data leakage Validate which parts of the
communication to/from the device are
encrypted (and how) or sent in clear
text, and accordingly check if an
application leaks data out of the
device.

Pass- Traffic is encrypted, and no data
leaks are detected; or, Fail- Traffic is
unencrypted and sent in clear text,
therefore data may leak from the
WIoT-DUT.

Side-channel
attacks

Check for side-channel attack by
executing any desired measuring tool
(e.g., network traffic monitoring, power
consumption, acoustic or RF
emanations) and analyzing the
collected data while correlating it with
specific events performed by/using the
WIoT device under test.

The criterion is measured by the level of
correlation found between the events and
measurements (collected data); the
weaker the correlation, the higher the
pass score.

Data collection Check if an application on a wearable
IoT device collects sensor data and
stores it on the device. This can be
achieved by monitoring the locally
stored data and correlating sensor
events.

Safe- The tested application does not
collect and store data on the WIoT-DUT;
Minor risk- The tested application collects
and stores normal data, e.g., multimedia
files, on the WIoT-DUT; Major risk- The
tested application collects and stores
sensitive data, e.g., GPS locations, on the
WIoT-DUT; or, Critical risk- The tested
application collects and stores critical
information, e.g., device status (CPU,
memory, sensor events, etc.), on the
WIoT-DUT.

(Continued)
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Table I. Continued

Test Description Test/Success criteria (example)
Management
access

Attempt to access the management
interface/API of a device using one of
the communication channels. Access
could be obtained by using default
credentials, a dictionary attack, or
other known exploits.

Pass- Management access ports, e.g., port
22 (SSH), port 23 (Telnet), are closed; or,
Fail- One of the management access ports
is open on the tested device.

Breaking
encrypted
traffic

Apply known/available techniques of
breaking encrypted traffic. For
example, try to redirect HTTPS to
HTTP traffic (SSLstrip) or
impersonate remote servers with
self-certificates (to apply a
man-in-the-middle attack).

Pass- Unable to decrypt traffic
sent/received by/to the WIoT-DUT with
the applied techniques; or, Fail- Able to
decrypt traffic data sent/received by/to the
WIoT-DUT using the applied techniques.

Spoofing/
masquerade
attack

Attempt to generate communication
on behalf of the tested wearable IoT
device. For example, determine if any
of the communication types can be
replayed to the external server.

Pass- Reply attack failed; or, Fail- Replay
attack successful.

Communication
delay attacks

Delay the delivery of traffic between
the device and remote server, without
changing its data content. Determine
which maximal delays are tolerated on
both ends.

Safe- The time delay between two
consecutive transactions of the WIoT-DUT
is within the defined/normal range; or,
Unsafe- The time delay is greater than
the defined/normal range.

Communication
tampering

Attempt to selectively manipulate or
block data sent to/from the device. For
example, inject bit errors on different
communication layers or apply varying
levels of noise on the wireless channel.

Safe- The device ignores received
manipulated/erroneous data; or, Unsafe-
The device crashes or behaves
unexpectedly when
manipulated/erroneous data is sent.

List known
vulnerabilities

Given the type, brand, version of the
device, running services, and installed
applications, list all known
vulnerabilities that could be exploited.

Safe- No relevant vulnerabilities were
found; Minor risk - Insignificant/low risk
vulnerabilities were found; or, Unsafe-
Significant and critical vulnerabilities
where found.

Vulnerability
scan

Search for additional classes of
vulnerabilities by: (1) utilizing existing
tools (or developing new dedicated
ones as part of the ongoing research)
that attempt to detect undocumented
vulnerabilities such as buffer overflow
and SQL injection; (2) maintaining a
database of attacks (exploits) detected
on previously tested WIoTs or detected
by honeypots, and evaluate
relevant/selected attacks on the tested
WIoT; and (3) using automated tools
for code scanning.

Safe- No new vulnerabilities were found
during the testing process conducted;
Minor risk- Insignificant/low risk new
vulnerabilities were found; or, Unsafe-
Significant and critical new
vulnerabilities were found.

result in manipulating the normal behavior of the device (e.g., sending false GPS loca-
tions), performing a denial-of-service attack on the device by sending crafted data, or in-
jecting code by exploiting vulnerabilities in the code that processes the sensor data. For
detecting data attacks, the testbed will support the execution of a set of predefined tests,
each of which involves sending crafted sensor data, which includes specific edge cases
or previously observed data attacks and monitoring the behavior of the tested device.

Simulator Array. The testbed should be able to realistically generate arbitrary
real-time stimulations, ideally for all sensors of the tested devices. This can be
achieved using different types of simulators (e.g., a GPS simulator that simulates
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Table II. Simulators Supported by the Advanced Security Testbed

Simulator Description
Network The testbed uses network simulators to simulate different network

environments, such as Wi-Fi, Bluetooth, ZigBee, and more, in order to support
different network connectivity in the testbed.

Location The testbed simulates different locations and trajectories using the GPS
generator device, in order to test the behavior of the WIoT device under test in
different locations/trajectories.

Time The testbed simulates different days of the week and times of day using either
the GPS generator device, internal NTP server, or internal cellular network, in
order to test the behavior of the WIoT device under test at different times.

Movement The testbed simulates different movements using either robots or human testers,
in order to test the behavior of the WIoT device under test while performing
different movements.

Lighting The testbed simulates different lighting levels, in order to test the behavior of the
WIoT device under test in different lighting scenarios.

Audio The testbed simulates audio using a voice simulator, in order to test the behavior
of the WIoT device under test in different sound environments.

Video The testbed simulates images, pictures, and videos using a video simulator, in
order to test the behavior of the WIoT device under test during different video
changes.

Pressure The testbed simulates different levels of pressure, in order to test the behavior of
the WIoT device under test under different pressure conditions.

different locations and trajectories, movement simulators such as robotic hands, etc.).
See Table II for a list of supported simulators.

Communication Channels. The testbed should be able to support the most com-
mon types of wireless communication channels, including: Bluetooth, Wi-Fi, cellular
network, ZigBee, RFID, and NFC connectivity, as well as wired communication tech-
nologies such as Ethernet and USB.

Protocol Analysis. The testbed should be able to process and analyze different com-
munication protocols, such as IPv4, IPv6, TCP, UDP, HTTP, FTP, and SNMP, to name
a few, as well as security protocols, such as SSL, TLS, DTLS, and IPsec.

OS Compatibility. The testbed should provide virtual machines to natively run soft-
ware related to the wearable devices. In addition, its software tools should support the
following embedded operating systems: Android (Android Wear), Windows (Windows
Mobile, Window 10 IoT), Linux, iOS, and others.

Data Forensic Analysis. In order to perform security forensic analysis, the testbed
should be able to extract all stored data from the tested device, including system
snapshots (the status of the memory and processes) and system files (e.g., config files).
Data extraction could be achieved through connections such as USB and JTAG, by
using different command line tools, such as ADB (Android Debug Bridge).

Management and Report Mechanisms. The testbed should be able to support man-
agement and report mechanisms in order to control and manage the testing flow, as
well as to generate reports upon completion. Such report tools should include intelli-
gent data exploration tools for manual investigation and analysis of the collected and
processed data. In addition, information obtained from the security tests, as well as
prior settings provided by the system operator, can be used to output the probability of
an attack and its severity of impact, and consequently this can also be used to quantify
risks associated with using the tested WIoT in different case scenarios.
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Fig. 1. Advanced security testbed framework – abstract functional architecture model. The testing process
starts by loading a config file in the testbed via the MRM. Based on the configuration loaded, a standard
security testing phase (Phase 1 in the red line) is conducted using the SSTM component. Then using the
results obtained in Phase 1, a context-based security testing phase is conducted (Phase 2 in the black dashed
line) using the ASTM component. These testing phases are controlled by the STMM. Finally, a forensic
analysis is performed by the MRM based on the results obtained from both phases, and the final results are
sent to the user (Phase 3 in green dashed line). Note that during our proof-of-concept (described in Section 4)
we used several functional modules (marked in gray in the figure), in order to illustrate our proposed security
testbed framework’s operation.

User Intervention and Automation. The testbed should be able to support user inter-
vention and automation capabilities during all phases of the test sequence.

Testbed Enhancement Capability. All of the components in the testbed should be
implemented as a plugin framework to support future operational capabilities.

3.2. Functional Architecture Model

The functional architecture model of the advanced security testbed, as illustrated in
Figure 1, is designed based on the list of requirements and security tests defined above.
The suggested model is a layer-based platform model with a modular structure. This
means that any type of wearable device can be tested in the proposed security testbed
framework, and also that any relevant simulator and/or measurement and analysis tool
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can be deployed in the testbed. An in-depth description of the modules that comprise
the functional model and the interactions between these modules as a complete security
testing system are provided.

Management and Reports Module (MRM). This module is responsible for a set of
management and control actions, including starting the test, enrolling new devices,
simulators, tests, measurement and analysis tools and communication channels, and
generating the final reports upon completion of the test. The testbed operator (the
user) interfaces with the testbed through this module using one of the communication
interfaces (CLI\SSH\SNMP\WEB-UI) in order to initiate the test, as well as to receive
the final reports. Accordingly, the module interacts with the Security Testing Manager
Module and the Measurements and Analysis Module, respectively. The MRM holds a
system database component that stores all relevant information about the tested device
(including the OS, connectivity, sensor capabilities, advanced features, etc.), as well as
stores information regarding the test itself (including config files, system snapshots,
and test results).

Security Testing Manager Module (STMM). This module is responsible for the ac-
tual testing sequence executed by the security testbed (possibly according to regulatory
specifications). Accordingly, it interacts with the operational testing modules (the Stan-
dard and Advanced Security Testing Modules) in order to execute the required set of
tests, in the right order, based on predefined configurations provided by the user (via
the MRM).

Standard Security Testing Module (SSTM). This module performs standard security
testing based on vulnerability assessment and penetration test methodology, in order
to assess the security level of the WIoT-DUT. See Table I for a list of supported tests.
SSTM is an operational module which executes a set of security tests as plugins, each
of which performs a specific task in the testing process. The module interacts with
the Measurements and Analysis Module in order to monitor and analyze the test
performed.

Advanced Security Testing Module (ASTM). This module generates various environ-
mental stimuli for each sensor/device under test. It is an operational module which sim-
ulates different environmental triggers, in order to identify and detect context-based
attacks that may be launched by the WIoT-DUT. This is obtained using a simulator
array list, such as a GPS simulator or Wi-Fi localization simulator (for location-aware
and geolocation-based attacks [Tippenhauer et al. 2011]), time simulator (using simu-
lated cellular network, GPS simulator, or local NTP server), movement simulator (e.g.,
using robots), etc. See Table II for a list of supported simulators. The module interacts
with the Measurements and Analysis Module in order to monitor and analyze the test
performed.

Measurements and Analysis Module (MAM). This module employs a variety of mea-
surement (i.e., data collection) components and analysis components (both software and
hardware-based). The measurement components include different network sniffers for
communication monitoring such as Wi-Fi, cellular, Bluetooth, and ZigBee sniffers, and
device monitoring tools for measuring the internal status of the devices under test. The
analysis components process the collected data and evaluate the results according to a
predefined success criterion (for example, binary pass/fail or a scale from 1 [pass] to 5
[fail]). The following is an example of a predefined success criterion: “If an SSH service
is open on the tested device, and it is possible to access the device using a dictionary
attack, then the test result is fail; if otherwise, the result is pass.” We believe that most
of the predefined success criteria are not generic and are defined for a specific tested
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Fig. 2. The shielded room built especially for the “IoT Security Testbed” project.

IoT device and/or tested scenario. For example, the success criterion of a data leakage
test may be defined differently within the scope of private or enterprise usage scenarios
of an IoT. Alternatively, in some cases, a success criterion cannot be clearly defined,
and therefore the analysis components extract useful insights that can be investigated
and interpreted by the system operator. As an example, we can apply a network-based
anomaly detection component that processes the recorded network traffic of the tested
WIoT and detects anomalous events in the system. In this case, the pass/fail decision
will be based on the number of detected anomalies and a predefined threshold provided
by the system operator in advance. The detected anomalies should then be investigated
and interpreted by the system operator using a dedicated exploration tool which is part
of the user interface.

4. SECURITY TESTBED OPERATION – A PROOF-OF-CONCEPT

In this section we present a proof-of-concept for our proposed security testbed operation
on selected wearable devices (Google Glass and smartwatch devices). The proof-of-
concept was deployed within a shielded room (depicted in Figure 2) which served
as our IoT security testbed environment. The shielded room allowed us to conduct
various tests, such as simulating GPS locations, in a neutral environment with minimal
external disruptions. As can be seen in Figure 2, the testbed was equipped with an
internal IP camera that documented and recorded the course of a test, as well as
an external workstation that was used to control the testbed’s operation, including
defining, executing, and analyzing tests.

The proof-of-concept demonstration was conducted in two phases. First, as part of
the standard security testing phase (using the SSTM component), a preliminary secu-
rity analysis is conducted for all of the wearable IoT devices under test (WIoT-DUTs).
Then, based on the information collected and analyzed, a context-based security test-
ing process is executed (by the ASTM). This is done by using a GPS simulator that
simulates different locations and times of day as the triggers for context-based attacks
that are carried out by malicious applications installed on the smartwatch devices.
Finally, forensic analysis is performed in order to detect the context-based attacks in
the testbed. Note that we implement two malicious applications specifically for the
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Fig. 3. Testbed configuration: (a) The components we used during the examination, including: Wi-Fi and
GPS simulators, Google Glass and smartwatch devices (the WIoT-DUTs), measurement and analysis tools,
and a Wi-Fi printer which served as an environmental variable component in the network; (b) The actual
testbed configuration employed during the proof-of-concept.

proof-of-concept in order to illustrate the operation of the testbed, as is discussed
next. The practical testbed configuration and the full testing procedure are presented
below.

4.1. Testbed Configuration

The scenarios discussed below refer to Bring-Your-Own-Device (BYOD) use cases,
where more and more employees bring their personal mobile devices, including wear-
able IoT devices (and more specifically, smartwatch devices), to the workplace. We built
an isolated Wi-Fi network in our lab in order to simulate a small organizational envi-
ronment, as is illustrated in Figure 3. During our examination, a network simulator
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Fig. 4. (a) A “malicious” application running on the Sony smartwatch device; (b) The network mapping
attack is executed once the location for the attack is identified (Wi-Fi is already enabled on the device).

(using a Wi-Fi router) and a GPS simulator (LabSat 3 device) were used as part of
the simulator array in the testbed framework. In addition, different measurement and
analysis tools were used, including a sniffer device based on the Wireshark network
protocol analyzer tool [Combs 2007] that monitored the communication traffic during
the test. Moreover, we also employed a tester device that ran dedicated scripts which
recorded the internal status data of the WIoT-DUTs during the test (via ADB connec-
tivity). The tester device was also used for executing the standard security tests. The
wearable devices tested (the WIoT-DUTs) during the testing process are the Google
Glass device and two different smartwatch devices, the Sony Smartwatch 3 SWR50
and the ZGPAX S8 Smart Watch Phone. Moreover, a Wi-Fi printer was used as an
environmental component in the testbed.

4.2. Pre-Testing Setup

In order to illustrate a full testing process using our security testbed proof-of-concept
implementation, including both standard and context-based security testing, we devel-
oped two “malicious” applications, one for each smartwatch device. These “malicious”
applications read the time from the watch and the GPS raw data directly from the in-
ternal built-in GPS sensor of the smartwatch devices. This information is then used for
time-based and location-based attacks, respectively, meaning the time and location are
the contextual triggers for the attacks we implemented. Note that these applications
can be any legitimate applications that currently exist for smartwatch devices (such
as a fitness application that uses the GPS connectivity), but once the conditions are
met (time of day, location identification, and/or Wi-Fi connectivity) the applications can
covertly execute a context-based attack. For example, the application we implemented
and installed on the Sony smartwatch device actually performs a network mapping
attack once the location is identified by the application and the Wi-Fi connectivity is
enabled in the device. We implemented this network mapping attack by utilizing the
Nmap tool that was modified to run in an Android Wear environment (this was done
by adjusting and enhancing an open source code Holden [2015]). In this case, we used
Nmap as an attack tool that requires only a standard mode of operation, without the
need for a rooted device. The information received during the attack includes all IP
addresses and open TCP/UDP ports for each IP address, for all hosts (wireless-based)
connected to our Wi-Fi network, as illustrated in Figure 4.

The second “malicious” application we implemented was installed on the ZGPAX
S8 Smart Watch Phone device. This application executes a fake access point attack
based on the time of day as the trigger. For this purpose, we adjusted our previous code
attack that simulates a Wi-Fi printer service (as presented in iTrust [2015]) to operate
under the Android OS. In this case, the ZGPAX device poses as a legitimate AP in the
network in order to “silently” collect sensitive information from the organization. That
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is, first, the smartwatch phone device is connected directly to the Wi-Fi’s organizational
network as a legitimate client. Then, once the specific hour of the day the attacker set
in advance is identified, the application opens a malicious AP with the same SSID
name of another legitimate AP in the network, in this case a Wi-Fi printer. This is
an important scenario wherein sensitive data can be collected (“silently”) from the
enterprise network without anyone noticing (the IT department would be unaware of
this attack scenario, since there are no tools to monitor such cases).

4.3. Testbed Operation – Security Testing Process

The security testing process conducted by our proposed security testbed framework is
illustrated in Figure 1. First, we executed a preliminary security analysis for Google
Glass, the Sony smartwatch, and the ZGPAX smartwatch devices. In order to demon-
strate the feasibility of the implementation of the proposed testbed, as part of the
Standard Security Testing Module (SSTM), we implemented the following subset of
security tests from Table I: Scanning, Fingerprinting, Process Enumeration, Data Col-
lection, and Management Access (illustrated as Phase 1 in Figure 1 by the red line).
For this purpose, we utilized different security testing tools available online, such as
the Nmap security scanner tool [Lyon 2009], the Kali Linux penetration testing envi-
ronment [Offensive Security 2016], and several scripting tools that we implemented
for this testing phase. Using these generic tools we investigated the WIoT-DUTs from
different aspects, including: the operating system, communication channels, firmware
and hardware (sensor point of view), and the applications installed in the device, as
discussed next. Note that all of the above tests were conducted using the tester device
shown in Figure 3 and using the Kali Linux platform.

Scanning. First, in order to identify the WIoT-DUTs in the testbed and for analyz-
ing the information exposed by the WIoT-DUTs via different communication channels,
we implemented the scanning test (sub-process 1.1 in Figure 1). During this test we
managed to detect all WIoT-DUTs in the testbed, both via scanning the wireless com-
munication channel (by scanning the Wi-Fi network using an “arping” command), and
via scanning wired connectivity (by scanning all USB ports of the tester device and
detecting the ADB connectivity of all of the devices under test. For that, we enabled
developer mode in all of the devices). This means that the WIoT-DUTs are accessible in
the testbed for further analysis, both via wireless and wired communication channels,
as defined in Table I.

Fingerprinting. Next, the fingerprinting test (sub-process 1.2 in Figure 1) was run
for each WIoT-DUT separately, in order to identify the properties of the device, such
as its type (type of wearable device), the OS installed, software versions, open ports
(TCP/UDP), communication channels supported by the device and their configurations,
device memory, a list of features and device capabilities (such as a set of sensors
supported by the device), etc. We used the Nmap tool (for wireless communication) and
also ran a dedicated script (that executes different commands, such as “getprop,” “pm
list features,” etc.) via the ADB connectivity, in order to collect the information needed
for the fingerprinting test.

Process Enumeration. For the process enumeration test (sub-process 1.3 in Figure 1),
we executed a script (that uses the “top” and “pm list packages” commands via ADB
shell) in order to list all of the processes running and application packages installed
on the WIoT-DUTs, as well as to monitor their CPU and memory consumptions. Using
the above information, we further analyzed the devices’ activities.

Data Collection. During this security test (sub-process 1.4 in Figure 1), we em-
ployed the internal device monitoring tools (via MAM component in Figure 1). Using
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these tools, we are able to investigate the WIoT-DUTs’ activities (from memory, CPU,
file system perspectives, and more) while running the applications installed on these
WIoT-DUTs. We also extracted further information for each application, such as its
permissions (using “dumpsys package” command), etc. Based on this examination, we
tagged selected applications as suspicious applications (e.g., applications that use the
GPS while running) that were later tested by the ASTM component.

Management Access. In this security test (sub-process 1.5 in Figure 1) both telnet and
SSH connections were tested, in order to examine whether these services were opened
unexpectedly and/or accessible. In this test we tried to connect to the WIoT-DUTs via
these connections using a dictionary attack methodology. We used common usernames
(such as “root,” “admin,” etc.) and a common password list (by utilizing the well-known
password list “rockyou.txt” database) for this test. In all cases, both telnet and SSH
connections were found to be closed. Note that although we could examine the list of all
of the WIoT-DUTs’ open ports, we decided to actively perform the security connectivity
test and try to connect to the WIoT-DUTs via these connections (telnet and SSH) in
order to illustrate the testbed capabilities.

All of the results obtained during this phase, including the list of all suspicious ap-
plications mentioned above, were stored in the system database as shown in Figure 1.
Note that in our case, the list of suspicious applications includes the malicious appli-
cations that we implemented specifically for the proof-of-concept. This list was then
used as input for the context-based security testing phase in the testing process. The
above list of suspicious applications can be generated by either the testing process itself
(by identifying abnormal behavior during the test, e.g., GPS activated unexpectedly,
etc.) or by examining each application installed in the device against whitelisted and
blacklisted application databases available online (e.g., based on application ratings,
etc.)

Context-Based Security Test. In order to determine whether the devices under test
are compromised by malicious applications, a context-based security testing phase is
executed next. In this phase (illustrated as Phase 2 in Figure 1 by the black dashed
line), both of the smartwatch devices were further tested by examining the suspected
application (from the list generated in the previous phase) that was installed on it.
For this matter, we used a GPS simulator device (LabSat 3) in order to realistically
simulate the environmental conditions (i.e., locations and times) that would trigger
the internal sensor activities of the tested smartwatch devices, and would accordingly
trigger the attacks discussed above. Therefore, prior to the test performed in our lab,
we recorded a predetermined path around our campus that was later replayed during
the testing process, in order to illustrate changes in space and time for the attacks.
Note, the overall testing time (∼10 minutes) of the advanced/dynamic security testing
phase performed in the proof-of-concept is defined based on the recorded path, shown
in Figure 5.

Regarding the test performed in Phase 2 (Figure 1), first, as mentioned, we es-
tablished an isolated Wi-Fi network in our lab and connected the WIoT-DUTs (the
Sony and ZGPAX smartwatch devices) to the tester device (as shown in Figure 2). For
each WIoT-DUT, an ADB connection was opened in the tester computer, in order to
monitor and track the device’s internal activities during the testing process. For that
matter, we employed several measurement and analysis tools using scripts that read
and locally store (on the tester device) the internal state of the WIoT-DUTs at the
beginning, during, and at the end of the test. The recording includes the memory and
CPU consumption, the file system configuration, the space usage (used for temporal
file tracking), a list of active processes in the WIoT-DUT, a list of SSIDs available in the
network, and the time and location received by the GPS simulator (which will be used
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Fig. 5. The recorded path around our campus as shown in U-Blox application (supplied with the GPS).

in the forensic analysis procedure to identify the time and locations of the attacks).
Note that we record these parameters, since we expect to see changes in the internal
state of the WIoT-DUTs at the time of the attacks. In addition, we use a Sniffer device
from the measurement and analysis tools (as shown in Figure 2), in order to monitor
and track communication changes during the testing process. Here as well, we expect
to see changes in the communication at the time of the attacks.

At the beginning of the test, we started our “malicious” applications (the suspicious
applications) and ran the scripts from the tester device for each of the smartwatch
devices under test (via the ADB connections) in order to record their internal state
data during the testing process. Once the initial data collection is complete, both the
GPS simulator and the Wireshark application were started simultaneously. This was
done in order to synchronize the time of the recorded path and the network traffic
monitoring. This point is defined as the starting point, T0, of the test. In this phase,
the recorded path is replayed in the testbed by the GPS simulator in order to illustrate
changes in space (locations) and time. Accordingly, once the locations and times for the
context-based attacks defined above were identified by the WIoT-DUTs, the attacks
were executed in the testbed. Moreover, we also injected controlled false alarms during
this period (by executing a port scan with the laptop on one of the devices which is
not one of the WIoT-DUTs). This was done to illustrate the forensic analysis for these
events, such that, the testbed should be able to handle this type of situation as a
comprehensive security testing system. Finally, once the replay of the recorded path by
the GPS simulator was finished (after ∼10 minutes) and defined as the ending point, Tn,
of the test, we stopped the test (stopped the traffic monitoring and automatic scripting)
and stored the test results (communication monitoring and WIoT-DUT internal state
data that were recorded during the test), in the testbed system database, and the
overall test was complete.

4.4. Detecting Context-based Attacks

In order to identify the context-based attacks in our testbed, a forensic analysis is
performed for each smartwatch device tested, based on the recorded information (com-
munication and internal status of the DUTs) obtained during the testing process dis-
cussed above. As will be shown next, this was done by examining both the suspicious
behavior of the tested devices, from memory consumption and CPU utilization points
of view, and the communication transmissions recorded during the test. Note that the
locations and times for the attacks discussed above were randomly selected from the
recorded path, meaning in each new execution of the dummy applications, different
locations and times will be selected for the context-based attacks. Accordingly, forensic
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Fig. 6. The results obtained from the testing process, including the internal status of the WIoT-DUTs, based
on CPU utilization (user and system perspectives in percentages) and memory consumption (in kB, from
the free RAM point of view): (a) Sony smartwatch CPU utilization; (b) Sony smartwatch memory consump-
tion; (c) ZGPAX smartwatch-phone CPU utilization; (d) ZGPAX smartwatch-phone memory consumption;
(e) Communication monitoring recorded during the testing process; and (f) Correlation in the time dimension
between the communication and WIoT-DUTs anomalies.

analysis is performed manually and individually on findings obtained for each new test
executed in the testbed, utilizing the testing methodology presented below.

Figure 6 shows the internal status of the Sony smartwatch and the ZGPAX smart-
watch devices, from both CPU utilization (user and system perspectives in percentages)
and memory consumption (from the free RAM point of view in kB) that were recorded
during the test, with respect to the testing time (in seconds). Regarding the free RAM
parameter, it should be noted that when the application starts to run, the system
memory decreases, as is shown in the respective graphs. Moreover, the communication
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activity obtained during the test performed, in terms of packets per second (axis Y),
with respect to the testing time in seconds (axis X) is presented in Figure 6(e). The
graph was generated using the information extracted from the IO Graph tool (Wire-
shark). Finally, Figure 6(f) presents the correlation in the time dimension between all
of the events/anomalies that occurred during the testing process.

Note that the emphasis here is on anomalies and not on the actual attacks that
were executed. Recall the following points: we do not know when the attacks occurred,
and the testbed should be able to deal with false alarm events. After the post-mortem
procedure, we will be able to declare which of the anomalies were attacks and which
were false alarm events. Therefore, as shown next, we manually analyzed each anomaly
in order to understand its origin (the source of the deviation in the graph), and to find
any correlation between the anomalies that occurred during the test.

Moreover, during the entire forensic analysis process presented here, we focus on the
major deviations that show significant changes in the graphs. For the CPU analysis, an
anomaly is defined as high CPU utilization, and from the memory perspective, an
anomaly is defined as high memory consumption/releasing. For the communica-
tion analysis, an anomaly is defined as a burst of transmissions with high traffic
volume. An anomaly threshold that was determined based on the results obtained is
employed, in order to define the anomalies for each parameter (communication, CPU,
and memory).

From the perspective of the Sony smartwatch device shown in Figure 6, it can be
seen that there were three major anomalies that occurred in both the CPU utilization
(Figure 6(a)) and the memory consumption (Figure 6(b)), which were defined by the
selected thresholds. Note that, in the memory graph, we used a dual threshold for
the analysis. We then define the time intervals for all the anomalies obtained. From
the CPU point of view, the time intervals are as follows: the first anomaly is between
217 and 248, the second is 260-299, and the third anomaly is between 485 and
507 (seconds). From the free RAM point of view, the time intervals of the anomalies
are: 217-243, 260-300, and 463-507 (seconds).

From the ZGPAX smartwatch-phone device analysis perspective, shown in Figure 6,
it can be seen that there are two major anomalies in the CPU utilization graph (Fig-
ure 6(c)), and only one anomaly in the memory consumption graph (Figure 6(d)), both
of which were defined by the selected thresholds. The time intervals for the anomalies
in the CPU graphs are between 34 and 40 seconds and 212 to 231 seconds, and the
anomaly shown in the memory graph is in the time interval of 212-225 seconds.

Next, we also examined the communication monitoring that was recorded during the
testing process for one of the tests performed in our lab. For that matter, we manually
analyzed the pcap file (generated by Wireshark) and the list of all available SSIDs in
the network (recorded using the scripts we developed). As can be seen in Figure 6(e),
four anomalies/deviations are shown in the graph with respect to a threshold of 1000
packets per second, as indicated by the red dashed line in the graph (Figure 6(e)). Using
this threshold, we defined the time intervals in which the anomalies occurred. In this
case, the first anomaly is defined as the time interval between 280 and 294 (seconds),
the second is 318-323, the third is 479-510, and the fourth anomaly is defined as the
time interval between 551 and 556 (seconds).

After defining the time intervals for all anomalies that occurred during the test
(based on the analyses shown above), we can now try to find a correlation between
these anomalies in order to identify and detect the context-based attacks executed in
the testbed. Figure 6(f) presents the correlation in the time dimension between all the
anomalies that occurred (denoted by points 1 to 6 in the graph). Regarding points 3
and 5 in Figure 6(f), as can be seen, there is an indication for correlation between the
anomalies that occurred in the CPU and memory parameters of the Sony smartwatch
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Fig. 7. (a) The network traces shown in the pcap file for one of the anomalies defined during the forensic
analysis for the Sony device. As can be seen, a sort of network scanning is executed by the device; (b) Illus-
tration of the fake access point attack in the testbed environment: (b.1) The SSID list before the attack was
executed, (b.2) At the point of the attack, a new AP with the same SSID name as the Wi-Fi printer is added
to the network (with the BSSID name of the ZGPAX smartwatch-phone device).

device to the anomalies that occurred in the communication space at these points
of the test. Namely, at that time in the test the Sony device performs some activity
which influences the network. Therefore, we further investigated these time intervals
and analyzed the network traces from the pcap file at these indications of anomaly.
From the analysis, it was found that the Sony smartwatch device executed some sort
of network scanning at that time in the test, as illustrated in Figure 7(a). Therefore,
we can actually declare that we managed to detect two network mapping attacks that
were executed by the Sony smartwatch device at these points of the test.

Now, recall that as part of the information collected during the test (using the ded-
icated scripts), we also record the locations and times (the replayed information) that
the GPS simulator transmits in the testbed. Accordingly, from the above analysis we
can now obtain the specific locations and times that the network mapping attacks were
executed by the Sony smartwatch device in the testbed (with respect to geo-fencing and
time frame parameters of 50 meters and 2 minutes, respectively) as follows: the first
attack occurred on 08-11-2015, 12:17:06 (this is the actual date and time of the path
we recorded prior to the test) at location: latitude=31.26445, longitude=34.8128716,
and the second attack occurred on 08-11-2015, 12:20:22 at location: latitude=31.26309,
longitude=34.8116266.
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Regarding point 2 in Figure 6(f), as can be seen, there is no anomaly in the com-
munication space at that point of the test. However, there is correlation between the
anomalies caused by the Sony device and those that were caused by the ZGPAX device
(from both the CPU and memory parameters) at that point. This means that one of
the devices, either the Sony or ZGPAX device, performs some activity in the testbed
that may affect the other device (such that the anomalies of the affected device can be
explained as internal memory management and CPU processing of that device due to
this activity). To understand the origin of these anomalies, we further examined and
analyzed the SSID list (the list of all Wi-Fi networks around our lab) that was recorded
during the test. This examination indicated that at that point of the test (point 2 in
Figure 6(f)) another access point was added to the list with the same SSID name as
one that already existed in the network. The new/fake SSID name added is HP-Print-
B2-Officejet Pro 8610, with a different BSSID name (MAC address 02:08:22:44:C5:14)
than the actual printer, as shown in Figure 7(b). This BSSID name is related to the
ZGPAX smartwatch-phone device (belonging to the fake AP that opened in the smart-
watch device due to the attack). Accordingly, this indicates that we actually managed
to detect the fake access point attack (fake Wi-Fi printer attack) that was executed
by the ZGPAX smartwatch-phone device during the test. As before, now we can deter-
mine the specific location and time of the fake access point attack (again, with respect
to the geo-fencing and time frame parameters), as 08-11-2015, 12:15:46 at location:
latitude=31.2644366, longitude=34.8119433.

The other anomalies that occurred during the testing process are denoted by points
1, 4, and 6 in Figure 6(f). Point 1 refers to the anomaly that occurred in the CPU uti-
lization of the ZGPAX device. At that point in time, the test has only begun. Therefore,
this anomaly could be explained as internal CPU processing performed due to the syn-
chronization of the ZGPAX smartwatch-phone device with the GPS signal. Note that
at the beginning of each new test, the WIoT-DUTs had to resynchronize with the GPS
signal transmitted in the lab. Regarding the last two points of anomaly (points 4 and 6
in Figure 6(f)), these referred to anomalies that occurred in the communication space.
As can be seen, there is no correlation between these anomalies and the anomalies of
the DUTs. Recall that only the Sony smartwatch and the ZGPAX smartwatch-phone
devices were actively tested in the testbed during Phase 2 of the testing process.
Meaning that besides the GPS simulator device, only these devices were active in
the testbed. Therefore, these anomalies can be considered false alarms that were not
caused by the WIoT-DUTs. Now, recall that during the execution of the test we actually
injected two controlled false alarms by executing a port scan with the laptop on one
of the devices in the network which was not a WIoT-DUT. Accordingly, we further
examined the network traces in the pcap file during these anomalies’ time intervals
and found that these were actually port scan events. Hence, these anomalies were
identified as the injected false alarms in the final forensic analysis procedure. The final
reports for the full testing process presented above are generated by the Management
and Reports Module (MRM, as illustrated by Phase 3 in Figure 1 by the green line);
then the results are stored in the system database component and sent to the user.

The above examination demonstrates the testbed operation as a complete testing
system. Note that since we developed both the malicious applications and the testing
platform discussed, one may claim that we are testing what we already know (i.e., we
know what to look for in the testbed). Regarding this point, at the time of writing this
article, apart from Migicovsky et al. [2014] and Wang et al. [2015], we are not familiar
with such context-based attacks executed using smartwatch devices. Accordingly, in
order to be able to illustrate the functionality of our proposed security testbed and, as
part of the proof-of-concept idea, we had to implement the attacks ourselves. However,
we try as much as possible to perform real attack scenarios by using a random process,
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whereby the locations and times of the attacks were randomly selected from a prede-
fined route/path (the route is known but the specific locations of the attacks are not)
and a predefined time frame, respectively (meaning, we use randomization in the space
and time dimensions for the attacks). This means that once the attacks are triggered,
we are not aware of the locations or times the attacks are executed and only learn these
details after the event has occurred during the evaluation process (during the testing
and forensic analysis procedure as discussed in the next subsections). In addition, the
proposed security testbed is designed as a generic security testing platform for wear-
able IoT devices, regardless of the type of device under test, its hardware (sensors,
etc.) and software (OS) configurations, and most importantly, the user applications in-
stalled on the device. Our comprehensive evaluation demonstrates the robustness of
the testbed and its ability to withstand real context-based attacks that may be carried
out by compromised wearable IoT devices in the future.

5. RELATED WORK

In this section, we discuss related work, focusing on commercial wearable applications
and implementations and emphasizing security and privacy considerations.

A security testbed platform designated for the wearable device environment, called
SecuWear, aimed at hardware and software vulnerability assessment, was proposed by
Hale et al. [2015]. The proposed platform consists of several open source technologies,
including: MetaWear, Apache Cordova, Ubertooth One, and Django. While this secu-
rity testing platform facilitates assessment of vulnerabilities for the wearable device
environment, it is targeted solely at BLE (Bluetooth low energy) security testing and
was tested using only basic attack vectors. In addition, it may result in false alarms
by identifying unrelated events as security problems. However, it should be noted that
the SecuWear platform can be integrated into our proposed security testbed frame-
work as part of the standard security testing module discussed in Section 3, under the
vulnerability scan submodule for BLE testing scenarios.

A comprehensive security examination was performed for a common tracker device,
the Fitbit Flex fitness device, by Cyr et al. [2014]. The researchers analyzed the device
itself, inspected the Bluetooth connectivity between the device and a paired smartphone
device, examined the Fitbit Android app installed on the smartphone, and analyzed
the communication between that application and the Fitbit web service. They found
several security and privacy violations that referred to the type and amount of data
collected by the Fitbit device, and to the pairing process, where the smartphone sent
the MAC addresses of all nearby Fitbit devices to the Fitbit server (this information
could be used to track other Fitbit users). They also found that the BLE credentials can
be sent in plaintext from the web service (Fitbit server) to the smartphone, potentially
leaving the smartphone vulnerable to MITM attacks.

Migicovsky et al. [2014] introduced a contextual attack, where a group of dishonest
students inconspicuously collaborated and cheated on multiple-choice exams (the con-
text) in real-time by utilizing the Pebble smartwatch device. The proposed attack sys-
tem, called ConTest, included a malicious lightweight application that was installed on
the smartwatches and interacted with a cloud-based service that coordinated answers
shared by the users during the exam. To the naked eye the watch seemed perfectly
innocent where the display of the time and date was concerned, but for the attack-
ers it was a perfect attack surface, since the data (the answers) were encoded on the
smartwatch device’s screen by inverting a small number of pixels in the date and time
display. This simple case scenario illustrates how individuals can maliciously exploit
wearable devices for their own advantage, without alerting those around them.

Another contextual attack using the smartwatch device was presented by Wang et al.
[2015]. In this article, the authors managed to utilize a smartwatch device in order to
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leak sensitive typed information about the user. The proposed attack system, called
MoLe (Motion Leaks through Smartwatch Sensors), examined the accelerometer and
gyroscope built-in sensors of the smartwatch device while the user (a wearer) typed
on a standard keyboard. By combining the results obtained by linking the user’s wrist
micro-motions while typing with a known list of valid English words, it was possible
to identify the typed words with reasonable accuracy. This attack exemplifies how
an advanced attacker can exploit a regular smartwatch device within the context of
keyboard typing, in order to compromise the privacy of the user.

On the other hand, several other works utilized wearable devices, specifically smart-
watch devices, as an automated security appliance for smart environments. For exam-
ple, Al-Muhtadi et al. [2001] proposed a security solution for active spaces and smart
rooms. However, the problem with their solution is the performance degradation of the
device in terms of battery life and memory and computational consumption. Sun et al.
[2008] suggested an efficient security mechanism using a wearable token system that
aimed to provide convenient and simple authentication and session key establishment
services. The authors managed to reduce performance overhead, in terms of storage,
computation, and communication costs, by implementing efficient key management
and communication components, as well as using the transient authentication mech-
anism. Nonetheless, in general, the main problem with automating security services
using mobile devices – and especially wearable devices – is that they are highly vul-
nerable to theft or loss.

Wearable computing technology is also considered part of the Wireless Body Area
Network (WBAN), as discussed in Tufail and Islam [2009]. Similar to cases involving
commercial wearable devices, WBAN deployments present security challenges [Lim
et al. 2010], since sensitive information about the patient is collected and transferred
through the Internet. Aside from an invasion of privacy, more direct threats to the user
also exist with eHealth medical wearable devices [Halperin et al. 2008], for example,
one could try to attack a patient’s pacemaker, potentially causing heart malfunction.

Doukas et al. [2012] presented a security system which aggregated health contextual
sensor data using a designated IoT gateway. Digital certificates and PKI data encryp-
tion is then employed by the gateway in order to securely transfer the information to the
cloud service. A security testbed for the eHealth IoT application domain was proposed
by Berhanu et al. [2013] as part of the ASSET (Adaptive Security for Smart Internet
of Things in eHealth) project. The authors presented architecture consisting of a set of
commercial off-the-shelf products and open source software, where low-power sensing
objects collected and sent a patient’s medical information to an eHealth application
in the cloud through a smartphone device (as a WBAN gateway). Their work focused
mainly on an energy consumption issue rather than security considerations.

6. DISCUSSION AND FUTURE WORK

Wearable computing is an emerging, ubiquitous technology in the Internet of Things
(IoT) ecosystem, where wearable devices, such as activity trackers, smartwatches,
smart glasses, and more, define a new Wearable IoT (WIoT) segment as a user-centered
environment. However, the extensive benefits and application possibilities provided by
wearable computing are accompanied by major potential compromises in data privacy
and security, since any smart wearable device becomes a security risk. In addition,
analyzing the security of such devices is a complex task due to their heterogeneous
nature and the fact that these devices are used in a variety of contexts.

Therefore, in this article, we propose an innovative security testbed framework for
wearable IoT devices. The proposed testbed is designed to perform traditional secu-
rity testing, including discovery, vulnerability scans, and penetration tests, as well
as to execute advanced contextual security testing by realistically simulating the
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environment in which wearable IoT devices exist (such as location, lighting, move-
ment, etc.), in order to identify and detect context-based attacks that may be carried
out by malicious applications installed on such devices.

Security analysis frameworks and standards, such as ITSEC and Common Criteria,
have been used by government and military organizations for evaluating security-
critical devices. Such frameworks are used to evaluate the adherence of a tested device
to a desired level of security and assurance in a white-box approach. Such evaluations
are usually time and resource consuming and involve the evaluation of the complete
process of specification, implementation, and evaluation of the product/system (and
therefore assume access to documentation, design, and development processes and
code). The proposed testbed, however, aims for a black-box approach in which we
assume that only the final product is available. The proposed framework is also targeted
specifically at IoT devices and designed to execute relevant security tests with minimal
human intervention. The downside of such an approach is that it cannot provide a
mapping of the IoT device (or its functions) to a specific security/assurance level, but
rather lists the results of the tests.

In general, detecting context-based attacks requires executing a security test within
different contexts. We can assume that simulating all possible contexts in the testbed is
not feasible due to the potentially large number of context variables (such as location,
time, sound level, motion, etc.) and the infinite number of values for each contextual
element. For example, consider the geolocation as a context; although we use SATGEN
GPS simulation software,1 which can be used to create a different user-generated
trajectory that can be replayed by the LabSat GPS simulator, it will be impossible to
run a context-based test that covers all possible locations. Therefore, we define two
types of context-based tests: targeted and sample tests. In a targeted test we assume
that a bounded set of contexts to be evaluated by the testbed is provided as an input
to the testing process. For example, an IoT device that is going to be deployed in
a specific organizational environment will be tested with the organization’s specific
geographical location, given the execution limits of the testbed. In a sample test, a
subset of all possible contexts (those that can be simulated) is evaluated. This subset
is selected randomly according to a priori assumptions about contexts of interest (for
example, malicious activity is usually executed at night, the device is installed in a
home environment).

We demonstrated a proof-of-concept for the testbed operation in Section 4 and showed
that our proposed security testbed can serve as a new tool for measuring and analyzing
the security of wearable IoT devices in different case scenarios.

In future work, we intend to finalize the implementation of the WIoT security testbed
based on the current design and to enhance the testbed’s capabilities in order to support
all of its features – including the user interface, infrastructure, and security modules.
Such operational implementation of a WIoT security testbed will provide us with in-
formation about additional requirements for an IoT security testbed, as well as its
potential limitations, which is essential for expanding the testbed to other IoT devices
used in home and office environments. We also intend to use the enhanced testbed
to check “Smart City” IoT devices that are used to collect information from the city
environment. Moreover, several open issues related to wearable technology can also
be considered in future work, such as developing a lightweight antimalware, or fire-
wall designated specifically for wearable devices, and testing them in our proposed
testbed. The idea of detecting whether a wearable device is part of a botnet could also
be explored in future work.

1http://www.labsat.co.uk/index.php/en/products/satgen-simulator-software.
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