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In exploratory domains, agents’ behaviors include switching between activities, extraneous actions, and mis-
takes. Such settings are prevalent in real world applications such as interaction with open-ended software,
collaborative office assistants, and integrated development environments. Despite the prevalence of such
settings in the real world, there is scarce work in formalizing the connection between high-level goals and
low-level behavior and inferring the former from the latter in these settings. We present a formal grammar
for describing users’ activities in such domains. We describe a new top-down plan recognition algorithm
called CRADLE (Cumulative Recognition of Activities and Decreasing Load of Explanations) that uses this
grammar to recognize agents’ interactions in exploratory domains. We compare the performance of CRADLE
with state-of-the-art plan recognition algorithms in several experimental settings consisting of real and
simulated data. Our results show that CRADLE was able to output plans exponentially more quickly than
the state-of-the-art without compromising its correctness, as determined by domain experts. Our approach
can form the basis of future systems that use plan recognition to provide real-time support to users in a
growing class of interesting and challenging domains.
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1. INTRODUCTION

Exploratory domains are environments in which agents engage in behavior that in-
cludes switching between activities, extraneous actions, and mistakes [Amir and Gal
2013]. Open-ended educational software (such as one of the domains presented in this
paper [Yaron et al. 2010]) is a paradigmatic example of such a setting, but other real-
world environments, such as interactive drawing tools and integrated development
environments (IDEs), exhibit similar characteristics.

Past work on plan recognition in exploratory domains operated offline, assuming that
all of the agents’ actions are known at the time of recognition [Amir and Gal 2013; Uzan
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et al. 2015]. The focus of this article is online plan recognition in exploratory domains,
in which the recognition is being performed during the agents’ interactions. The online
variant of the recognition problem is more challenging because there is uncertainty
over agents’ future activities so that explanations of possible future completions of
agents’ yet unseen activities given the observed actions must be maintained.

In this article, we propose a novel approach for inferring users’ activities in
exploratory domains, which leads to significant improvement over the state of the
art when evaluated on real data. Specifically, the contributions of this article are as
follows:

(1) A formal model for describing agents’ activities in exploratory domains. The model
explicitly captures partial plans and exogenous actions.

(2) An online plan recognition algorithm called Cumulative Recognition of Activities
and Decreasing Load of Explanations (CRADLE), which extends the PHATT (Prob-
abilistic Hostile Agent Task Tracker) algorithm [Geib and Goldman 2009] in the
following way: It reduces the set of possible explanations on the fly using a set of
domain-independent criteria, and updates arguments in the plan so that explana-
tions remain consistent with new observations.1

(3) An empirical study showing CRADLE outperforms two state-of-the-art on-line plan
recognition algorithms on a variety of data sets.

To demonstrate relative performance of the algorithms, we empirically evaluate them
on three datasets from the literature containing logs of observable actions that exhibit
aspects of exploratory behavior. We compare the performance of CRADLE to two state-
of-the-art algorithms, PHATT [Geib and Goldman 2009] (which we extend to handle
the types of plans in our datasets) and DOPLAR (Decision Oriented PLAn-Recognizer)
[Kabanza et al. 2013] in terms of both correctness and speed. The results show that
despite its inherent incompleteness, CRADLE performs well in practice, outperforming
the state-of-the-art in accuracy and in solution time, in some cases achieving results
exponentially faster.

The ability of CRADLE to deliver solutions in practical time means that the heuristic
algorithm can provide correct solutions in more cases than algorithms that are complete
in theory but prohibitively slow in practice. Our approach can form the basis of future
systems for providing real-time support to users in a growing class of interesting and
challenging domains.

2. RELATED WORK

We first describe works that use domain representations that are strictly less expressive
than exploratory grammars. Bui [2003] used particle filtering to provide approximate
solutions to online plan recognition problems. Avrahami-Zilberbrand and Kaminka
[2005] handled temporal and free order constraints among actions by using plan li-
braries and recognize plans by traversing the tree in a manner that is temporally consis-
tent with the observations, and making minimal commitments about matching actions
to the grammar. This work was subsequently extended to provide an anytime expecta-
tion of time needed to recognize the plan [Fagundes et al. 2014] and to rank hypotheses
based on the expected utility to the observer agent and probabilistic information in the
grammar [Avrahami-Zilberbrand and Kaminka 2007]. Pynadath and Wellman [2000]
developed a probabilistic grammar for modeling agents’ plans that also included their
beliefs about the environment but do not represent action parameters or exogenous
actions. Blaylock and Allen [2004, 2006] developed an algorithm to infer the goal of

1The term CRADLE is also evocative of the mechanical contrivance of the same name used in placer mining
for washing out the gold-bearing soil, leaving only nuggets of gold.
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users from their actions in a Linux shell environment. Their approach is probabilistic
and uses a chain of HMMs (Hidden Markov Models) to represent the possible paths an
agent can take to perform a task. Actions in their domain representation include argu-
ments, one of the characteristics of exploratory grammars. Additional approaches use
probabilistic constraints over the plan duration [Duong et al. 2005] as well as resource
dependencies [Sukthankar and Sycara 2008].

Geib and Goldman [2009] use and/or trees to represent domains and introduced
a top-down plan recognition algorithm called PHATT, which maintains a probability
distribution over the hypothesis space. Exploratory grammars extend their representa-
tion to handling arguments and to be able to capture exogenous actions. A derivative of
the PHATT algorithm called YAPPR (Yet Another Probabilistic Plan Recognizer) [Geib
et al. 2008] is based on string writing and provides a more compact representation of
the hypothesis space. This approach facilitates inference at the cost of representing
only partial information about the agent’s activities.

Some prior work in plan recognition focused on pruning the hypothesis space during
runtime. The DOPLAR algorithm [Kabanza et al. 2013] refrain from generating plans
that are not predicted to make significant contributions to the resulting hypothesis.
This article shows that CRADLE was able to outperform the DOPLAR approach in the
same empirical setting. Wiseman and Shieber [2014] propose an abduction technique
that discriminatingly scores hypotheses based on features of the plan trees. These
works can predict the agent’s goals and future actions but do not output a complete
hierarchy of activities.

Finally, we mention several works for recognizing students’ interactions with e-
learning software, which corresponds to two of the empirical settings used in the paper.
Katz et al. [2007] used plan recognition algorithms to infer students’ plans to solve
problems in a simulated physics environment by comparing their actions to a set
of predefined possible plans. Gal et al. [2012] proposed two algorithms for inferring
students’ plans in an exploratory setting consisting of a virtual laboratory for statistics
education. This approach was extended to work with recursive grammars [Uzan et al.
2015]. These algorithms worked off-line and assumed that agents’ complete interaction
sequence is known at the time of recognition.

3. EXPLORATORY GRAMMARS

In this section, we formalize a parameterized grammar and corresponding notions of
(full and partial) plan trees, which are at the foundation of the CRADLE algorithm. This
formalization captures the type of behaviors found in exploratory domains, namely free
ordering and exogenous actions. Exploratory grammars can be seen as an extension of
ID/LP grammars [Gazdar and Pullum 1981], which allows interleaving and an action
to have arguments.

Definition 1 (Exploratory Grammars). An exploratory grammar is a tuple
〈�, N, G,U, V, P〉 where:

—� is a list of primitive actions,
—N is a list of complex actions,
—(A = � ∪ N is the set of actions,)
—G ⊆ N is a set of goal actions,
—U is a set of argument names,
—V is a set of argument values that the named arguments can take on,
—P is a set of production rules, each of the form 〈〈α0, . . . , αn〉, LP, EC〉, where the

following hold:
—α0 ∈ N and 〈α1, . . . , αn〉 ∈ A∗. This portion of the rule is conventionally notated

α0 → α1, . . . , αn.
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—LP is a partial order capturing the linear precedence over the actions α1, . . . αn,
given as a set of pairwise inequations i ≺ j where 1 ≤ i, j ≤ n. Intuitively, i ≺ j
indicates that the action αi should precede the action α j .

—EC is a set of equational constraints over argument values associated with the
actions in the rule, notated as i.u = j.u′ or i.u = v, where u, u′ ∈ U and v ∈ V and
0 ≤ i, j ≤ n. A 0 index corresponds to the parent action, a nonzero index to the
corresponding numbered child.

(We will typically use α and its subscripted variants as metavariables over primitive
or complex actions, and reserve β and its subscripted variants to range over primitive
actions only.)

To illustrate these concepts, we will use an open-ended educational software package
for chemistry called VirtualLabs, which also comprises part of our empirical analysis.
VirtualLabs allows students to design and carry out their own experiments for investi-
gating chemical processes [Yaron et al. 2010] by simulating the conditions and effects
that characterize scientific inquiry in the physical laboratory. We use a problem called
“Oracle” as a running example:

Given four substances A, B, C, and D that react in a way that is unknown, design
and perform virtual lab experiments to determine which of these substances react,
including their stoichiometric coefficients.

(All questions used in the two test domains are provided in Appendix.)
We define an exploratory grammar for the VirtualLabs software as follows, adapting

the rules suggested initially by Amir and Gal [2013]. The set of primitive actions �
represents rudimentary operations with VirtualLabs that cannot be decomposed. These
include a single action pour that represents pouring a chemical substance from a source
flask to a destination flask. Since the source and destination represent arguments of
the action, we encode them with two arguments in U , s, and d, respectively. The set
of complex actions N describe composite activities such as mixing two compounds
together. The set N in the grammar includes the following two types of activities:
The first activity, the complex action SAME, denotes a pour from two source flasks
into a single destination flask. We call this a “same destination” activity. The second
activity, denoted by the complex action INTER, represents a pour from a source flask
to a destination flask via an intermediate flask. We call this an “intermediate flask”
activity. The set of argument names U and values V in the grammar identify flasks
and their contents. The set of goals G in the grammar is comprised of both complex
actions SAME and INTER. The rules in the grammar are shown in Figure 1.

Rule (1) describes the recipe for achieving the complex action SAME by combining
two SAME actions. The EC constraint of this rule requires that both pours end up in the
same destination flask identified as 0.d and the LP constraint requires that the pours
occur in sequence (1 ≺ 2). The rule in Equation (2) describes the recipe for achieving
the complex action INTER by combining two SAME actions. The EC constraint of this
rule requires that the destination flask of the first pour is the source flask of the second
pour (1.d = 2.s). The rule in Equation (3) allows converting INTER actions to SAME
actions (to reduce the number of rules required). The rule in Equation (4) grounds the
complex action SAME in the primitive pour action pour.

A key construct in the -icleart- +grammar+ are partial plan trees, which are used
to describe agents’ possibly incomplete and interleaving activities. Before formalizing
this notion, we need to make the following definitions. A binding is a partial function
from argument names U to values V . For example, we will notate a binding D that
maps the argument s to value 1 and d to 2 as {s = 1, d = 2} and use the notation D[s]
for the value of the binding D at argument s (i.e., the value 1), implicitly requiring that
the binding be defined at that argument. A grounded action is a pair 〈α, D〉 of an action
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Fig. 1. Grammar for VirtualLabs domain.

α ∈ A and a binding D. An observation sequence is a sequence 〈〈β1, D1〉, . . . , 〈βn, Dn〉〉 of
grounded primitive actions (that is, βi ∈ � for all i).

An example of an observation sequence in VirtualLabs is presented in the following.
It includes a sequence of basic pour actions (including values for source and destination
arguments in the corresponding bindings), which are indexed for convenience according
to their temporal order of execution:

〈〈pour1, {s = 1, d = 2}〉, 〈pour2, {s = 6, d = 3}〉, 〈pour3, {s = 5, d = 4}〉〉
A partial plan tree is an ordered tree where each node is labeled with a grounded

action. We refer to the set of all leaves of a tree as the frontier of the tree. Notice that
using this definition, a plan tree’s frontier can contain both basic and complex actions. A
partial plan tree whose frontier is composed solely of primitive actions is a full plan tree.
Henceforth, we use the term plan tree for partial plan trees. Plan trees are well formed
if they obey all the kinds of constraints in the grammar: The immediate dominance (ID)
relationships between each parent and its children are consistent with a production
rule; the ordering of children is consistent with the linear precedence (LP) rules; and
the argument values are consistent with the equational constraints (EC). We define
appropriate checks for ID and EC acceptability next, postponing LP acceptability until
presenting the context of observation sequences that ground the orderings.

Definition 2 (ID-Acceptability). A parent node 〈α0, D0〉 in a plan tree with chil-
dren nodes 〈α1, D1〉, . . . , 〈αn, Dn〉 is ID-acceptable if there is a rule p = 〈α0 →
α1, . . . , αn, LP, EC〉 ∈ P. In such a case, we say that the rule p sanctions the node.

Definition 3 (EC-Acceptability). An ID-acceptable node is called EC-acceptable if:

(1) For every i.u = j.v in EC of the rule that sanctions the node, we have that if either
Di[u] or Dj[v] is defined then Di[u] = Dj[v].

(2) For every u.i = v in EC that sanctions the node, we have that Di[u] is defined and
Di[u] = v.

We extend these definitions to say a plan tree is ID-acceptable if each node in the
plan tree is ID-acceptable, and similarly for EC-acceptability.

To illustrate, consider the plan trees in Figure 2. The plan tree with the root labeled
〈SAME, {d = 2}〉 is ID-acceptable because the rule SAME → SAME, SAME in Equa-
tion (1) sanctions the root node; the rule SAME → INTER in Equation (3) sanctions
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Fig. 2. Two plan trees comprising the explanation for observation sequence 〈pour1, {s = 1, d = 2}〉,
〈pour2, {s = 6, d = 3}〉, 〈pour3, {s = 5, d = 4}〉.

the node 〈SAME, {s = 5, d = 2}〉; the rule SAME → pour in Equation (4) sanctions the
node 〈SAME, {s = 1, d = 2}〉, and so forth. This plan tree is EC-acceptable, because the
EC constraints of the rule that sanctions each node are satisfied by its children nodes.
For example, we have that the value d = 2 holds for the root and all its children nodes.
Similarly, it can be shown that the plan tree with root labeled 〈SAME, {d = 3}〉 is ID-
and EC-acceptable. We will make crucial use of the fact that partial plan trees do not
have to extend down to primitive actions, and in fact, there may be no way to extend
any given partial plan tree to a full plan tree.

Exploratory grammars allow actions in a plan tree to be observed in free order in
an observation sequence matching the plan tree, provided that the nodes (and their
descendants, down to the observations) meet the declared LP constraints. We define
this condition formally:

Definition 4 (LP-Acceptability). An observation sequence 〈〈β1, D1〉, . . . , 〈βn, Dn〉〉
is LP-acceptable with respect to an ID-acceptable plan tree with frontier
〈γ1, E1〉, . . . , 〈γk, Ek〉, (n ≤ k) if the following holds:

(1) There exists a one-to-one (but perhaps not onto) function π from {1, . . . , n} to
{1, . . . , k} such that βi = γπi and Di = Eπi .

(2) For each node 〈α0, D〉 in the plan tree with children 〈〈α1, D1〉, . . . , 〈αn, Dn〉〉, sanc-
tioned by the rule p = 〈〈α0, α1, . . . , αn〉, LP, EC〉, and for each inequation i ≺ j ∈ LP,
let Yi and Yj be the set of leaf nodes in the frontier of the tree that are descendants
of the node αi and α j , respectively. For all γπl ∈ Yi and γπm ∈ Yj , it must hold that
l < m for βl and βm.

Intuitively, the first condition provides a mapping from the observations to the plan
frontier. The last condition states that the ordering over the leaves in the plan tree
must not conflict with the ordering constraints defined in the rules that make up the
plan tree.

To illustrate, in Figure 2 the observation sequence 〈pour1, {s = 1, d = 2}〉 and
〈pour3, {s = 5, d = 4}〉 is LP-acceptable with respect to the plan tree with the root
labeled 〈SAME, {d = 2}〉. To see this, consider the permutation over observations that
match 〈pour1, {s = 1, d = 2}〉 and 〈pour3, {s = 5, d = 4}〉 with their corresponding leaf
nodes in the plan tree. The LP constraint 1 ≺ 2 of the rule that sanctions the node is
satisfied in that pour1 precedes pour3 in the tree. The frontier of this tree includes a
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node 〈SAME, {s = 4, d = 2}〉 in dashed outline, which is not labeled with a terminal ac-
tion (and which does not conflict with the LP-acceptability of the observation sequence.)
This node is called an “open frontier” and is a place-holder for a yet unseen activity
that is expected to occur in the future. It will play a central role in the recognition
algorithm that is described in the next section.

We are now ready to state formally how observation sequences are accepted by the
grammar.

Definition 5 (Accepting Observations). An observation sequence
〈〈β1, D1〉, . . . , 〈βn, Dn〉〉 is accepted by the grammar if there exists an ID- and EC-
acceptable plan tree such that

(1) The observation sequence is LP-acceptable with respect to the plan tree; and
(2) The root of the tree is of the form 〈α0, D0〉 and α0 is a goal in the grammar, that is,

α0 ∈ G.

For example, in Figure 2, the observation sequence {pour1, pour3} is accepted by the
grammar using the plan tree that is rooted in 〈pour, {d = 2}〉 and the observation
sequence {pour2} is accepted by the grammar using the the plan tree with the root
labeled 〈SAME, {d = 3}〉. Note that both of these plan trees are incomplete, in that they
have actions that are not grounded.

Lastly, we define the notion of an explanation, which is used to describe activities in
the grammar as a union of plan trees. Allowing explanations to include several plan
trees captures trial-and-error and interleaving plans, both of which are endemic to
exploratory domains.

Definition 6 (Explanation). An explanation of an observation sequence is a partition
of the sequence into subsets of observation sequences that are accepted by the grammar.
We then say the observation sequence is “explained” by the grammar.

Figure 2 shows an observation sequence {〈pour1, {s = 1, d = 2}〉, 〈pour2, {s = 6, d =
2}〉, 〈pour3, {s = 5, d = 4}〉} that is explained by the grammar. The observations are
presented in order of execution, from left to right. The explanation consists of two
interleaving plan-trees.

4. THE CRADLE ALGORITHM

CRADLE2 is a top-down probabilistic plan recognition algorithm that extends the
PHATT algorithm of Geib and Goldman [2009] to exploratory domains. It receives
as input an exploratory grammar and an observation sequence. It outputs a set of
explanations for the observation sequence according to the grammar.

We begin by adapting some necessary definitions from PHATT to our setting. We
first define the notion of a leftmost child in a plan tree as one that is allowed to be first
among its siblings given the LP constraints of the rule that sanctions its parent.

Definition 7 (left-most child). Let T be a plan tree, and let 〈α0, D0〉 be a parent node
in T with children 〈〈α1, D1〉, . . . , 〈αi, Di〉, . . . , 〈αn, Dn〉〉. We say 〈αi, Di〉 is a left-most child
of node 〈α0, D0〉 if

(1) 〈α0, D0〉 is ID-acceptable and sanctioned by rule p with linear precedence con-
straints LP; and

(2) For each child node labeled 〈α j, Dj〉 such that j �= i, it holds that j ≺ i /∈ LP.

2The code for CRADLE is freely available at https://github.com/ReuthMirsky/CRADLE.
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Fig. 3. The generating set of the observation pour4.

We lift the notion of leftmost child to a notion of left-most tree, which incorporates a
single primitive leftmost child and which we will use to incorporate new observations
into existing plan trees.

Definition 8 (left-most tree). A left-most tree deriving an observation σ = 〈βi, Di〉 is
an ID- and EC-acceptable plan tree with frontier that includes 〈βi, Di〉 such that

(1) βi ∈ � for all j �= i; and
(2) For any child node labeled 〈α j, Dj〉 and its parent 〈αk, Dk〉 in the path from 〈βi, Di〉

to the root, the node 〈α j, Dj〉 is a left-most child of 〈αk, Dk〉.
The node labeled with 〈βi, Di〉 is called the left corner of the tree.3 Any leaf in a left-
most tree that is not the left corner is an open-frontier node. Such nodes represent place
holders for possible future activities that depend on observations that have yet to be
seen.

The generating set of a primitive action σ is the set of all left-most trees in the gram-
mar that derive σ . Suppose we extend the observation sequence 〈{pour1, pour2, pour3}〉
with a new observation 〈pour4, {s = 7, d = 3}〉. Figure 3 shows the generating set of
the observation pour4, which consists of three trees: Figure 3(a) shows a tree that
derives pour4 using the base-case rule SAME → pour in the grammar; Figure 3(b)
shows a left-most tree that derives pour4 by composing the same-destination rule
SAME → SAME, SAME with the base-case rule; Figure 3(c) shows a left-most tree that
derives pour4 by composing the intermediate-flask rule in INTER → SAME, SAME
with the base-case rule. In all trees, leaves in dashed outlines are open-frontier nodes.
Importantly, for recursive grammars, such as the one of Figure 1, the number of trees
in the generating set is potentially unbounded. In practice, we limit the depth of recur-
sion in trees in the generating set to one. This is the maximum number of times that
each rule is allowed to be used recursively for deriving an observation.

Any of these trees from the generating set could be “spliced in” to the partial plan
trees shown in Figure 2 to extend the coverage of those trees to explain the additional
pour4 observation. Alternatively, any of these trees might stand alone as a partial
plan tree to augment the current explanation of the observation sequence with a new
separate subsequence.

The CRADLE algorithm, whose main methods are shown in Figure 4, uses just
such kinds of operations—maintaining a set of heuristically pruned nondeterministic
possibilities—to construct a set of explanations E for an observation sequence σ1, . . . , σn

3In the PHATT approach, this node is called the “foot” of the tree.

ACM Transactions on Intelligent Systems and Technology, Vol. 8, No. 3, Article 45, Publication date: April 2017.



CRADLE: An Online Plan Recognition Algorithm for Exploratory Domains 45:9

Fig. 4. The CRADLE algorithm.

incrementally from left to right. At any given point in the algorithm, a set Et−1 holds
the set of explanations for the subsequence of observations σ1, . . . , σt−1, which is to be
augmented with the next observation σt.

The function ADDOBS is responsible for adding a new observation σt = 〈βt, Dt〉 into
the existing set of explanations Et−1 given a set of filtering rules F. (The role of filtering
rules is explained in Section 4.1.) The function proceeds in two steps. First, it attempts
to incorporate the observation into an existing plan tree in an explanation e ∈ Et−1
(line 4 in Figure 4) by replacing an open-frontier node in one of the plan trees in e with
a left-most tree from the generating set that derives σt, an operation performed by the
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Fig. 5. Maintaining consistency of explanations.

function COMBINEINEXPLANATION. Each time an explanation is modified it is added to the
set of possible explanations.

Second, it adds a new plan tree to an existing explanation (line 5 in Figure 4), an oper-
ation performed by ADDNEWTREE, which attempts to add each plan-tree Tσ in the gener-
ating set of σt as a new plan-tree in e if the root of Tσ is in the goal set G of the grammar.

CRADLE’s probability model is similar to the one used by PHATT, computing the
probability of each explanation as the conditional probability that this explanation is
what the agent is really doing, given the sequence of observations. More formally, for
each explanation exp for the observation sequence obs, we need to compute P(exp ∧
obs) = P(exp) · P(obs | exp). Geib and Goldman [2009] show that this computation
can be decomposed to P(exp ∧ obs) = P(goals) · P(plans | goals) · P(obs | exp), where
P(goals) is the probability that the agent’s goals are exactly the root nodes of the
plan trees in exp, P(plans | goals) is the probability that the specific plan trees of the
explanations are the way to achieve the root goals and P(obs | exp) is the probability
that the observed actions are chosen from all possible actions that could have been
taken to extend exp after every step.

4.1. Extensions over PHATT Algorithm

The CRADLE algorithm extends the PHATT approach [Geib and Goldman 2009] in
three ways: First, it supports exploratory grammars (Definition 1), meaning that CRA-
DLE receives as input an exploratory grammar and an observation sequence, and out-
puts a set of hypotheses, each of which is an explanation of the observation sequence in
the sense of Definition 6. Second, it filters redundant explanations according to a set of
domain-independent conditions. A filter is a function taking a candidate explanation
e, and returning true or false depending on whether the candidate explanation does or
does not pass a certain condition. Third, CRADLE can handle exogenous actions and
mistakes and can omit them from the set of explanations as needed. We expand on
each of these extensions in turn.

4.1.1. Incorporating New Observations. Integrating new observations requires careful
bookkeeping to maintain the consistency of explanations in CRADLE. First, the ar-
gument values for uninstantiated actions in the plan tree need to be updated to reflect
the new information that is embedded in the plan. Second, a plan deriving the new
observation can replace a node in an existing explanation only if the new plan tree
is ID-acceptable and satisfies all of the LP and EC constraints that are embedded in
the rules used to construct the plan. For example, consider the plan tree in Figure 5.
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Adding a new observation 〈pour3, {s = 2, d = 3}〉 to the plan tree requires propagating
the value d = 3 to the open-frontier nodes in the plan tree in which the value of d is
not instantiated, as is shown in the figure.

In order to maintain this consistency, the SUBSTITUTENODE(T , Tσ , o) function in Fig-
ure 4 clones the original plan tree T and substitutes the node representing the open
frontier action o with the plan tree Tσ that explains the new observation σ . The UPDATE

function recursively propagates the argument values from the root of a sub-tree in the
plan to the rest of the plan tree. Specifically, if the arguments associated with a node
n and its parent violate a constraint in the rule that derives n and its siblings, then
UPDATE returns false, and SUBSTITUTENODE does not incorporate σ into the plan tree
T . The result of a successful substitution is a modified plan-tree T that is ID- and
EC-acceptable and a new explanation for the observation sequence up to time t.

To illustrate, Figure 6 shows two ways of incorporating observation pour4 into the
explanations originally shown in Figure 2. In Figure 6(a), the plan-tree in the gener-
ating set of Figure 3(a) is substituted for the open frontier node 〈SAME, {d = 3}〉. In
Figure 6(b), the plan-tree in the generating set of Figure 3(b) is substituted for the
same open frontier node. In total, incorporating the observation pour4 into the exist-
ing explanation set results in five possible explanations for the observation sequence
pour1, . . . , pour4.

4.1.2. Filtering the Set of Explanations. The following filters used by CRADLE heuristi-
cally prune the space of possible explanations based on certain thresholds:

—The aging filter prefers explanations in which successive observations extend exist-
ing subplans in the explanation rather than generate new plans. It discards expla-
nations in which observations have not extended an existing plan for a given number
of iterations.

—The frontier size filter prefers explanations that make fewer commitments about
future observations. It measures the number of open items in the frontier of each
explanation, discarding explanations where this count is more than τ f standard
deviations above the mean number of open-frontier nodes per explanation in the
current set of explanations.

—The explanation size filter prefers explanations with a smaller number of plan trees.
It discards explanations in which the number of plans is more than τe standard
deviations above the mean number of plans in the current set of explanations.

—The probability filter prefers explanations with a higher likelihood. As in PHATT,
we compute the probability of each explanation as the product of the probabilities
assigned to each rule that was used to make up the explanations given the observa-
tion sequence. The filter discards explanations whose probability of generating the
observation sequence is within τp standard deviations below the mean probability.

For the frontier size, explanation size, and probability filters, we used a relative thresh-
old value (the distance from the mean). We hypothesized that by using a relative
threshold value we would be able to adapt the filter behavior to specific instances. For
example, when the mean explanation size is high, the threshold value for the expla-
nation size filter would increase, and conversely when the mean explanation size is
low. We experimented with several possible values for the thresholds τ f , τe, and τp on
a set of held out instances, eventually choosing a value of zero for all these measures.
Thus, the threshold value for the explanation size filter was set to the mean number of
explanations (and similarly for the frontier size and probability filters).

Line 6 in the ADDOBS function in Figure 4 applies the different filter conditions.
The filter functions also have access to Et so that they may use statistics over Et
as thresholds. To illustrate, after adding the observation pour4 to the existing set of
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Fig. 6. Updated explanation set after observing action 〈pour4, {s = 7, d = 3}〉.

explanations, three of the five resulting explanations will be filtered by the explanation
size filter. Two possible explanations remain, shown in Figures 6(a) and 6(b).

4.1.3. Exogenous Actions. Finally, we explain how CRADLE deals with exogenous ac-
tions, actions that do not form a necessary part of a plan and represent mistakes or
explorations. Such actions may be impossible to incorporate into any existing expla-
nation without compromising at least a single constraint, so they need special han-
dling. Exogenous actions are identified when both functions COMBINEINEXPLANATION

and ADDNEWTREE in the CRADLE algorithm return the empty set, because they can-
not combine an observation to the existing explanation set. A threshold parameter R
determines the minimal number of explanations required to be able to combine the
observation so that it is not considered exogenous. CRADLE explicitly reasons about
the possibility that an action is exogenous, and includes explanations in which this
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action is omitted. Specifically, the ADDOBS function keeps count of the number of times
that action σt was successfully incorporated into an existing explanation. If this num-
ber falls below a certain threshold R, then CRADLE also considers explanations Et−1,
which do not include the action σt (lines 7–8).

The three main functionalities of CRADLE are modular, in that they can be turned
“on” or “off” independently. In fact, when the filtering, argument values, and exogenous
actions aspects are dropped, we have essentially the PHATT algorithm.

5. EMPIRICAL EVALUATION

Despite the inherent incompleteness from using the filtering methods to prune the
space of explanations, the CRADLE algorithm performs well in practice, both in run-
time and in accuracy, as we show empirically in experiments with three domains.

5.1. The VirtualLabs Domain

The first domain involves students’ interactions with the VirtualLabs system when
solving two different types of problems: the Oracle problem described in Section 3, and
a problem called “Unknown Acid,” which required students to determine the concentra-
tion level of an unknown acid solution by performing a chemical titration process (see
Appendix). We sampled 35 logs of students’ interactions with VirtualLabs to solve the
above problems (20 Oracle and 15 Unknown Acid instances). These two problems differ
widely in the types of solution strategies they require from students, which is reflected
in the length and the types of actions in the logs that we sampled. The logs consisted
of between 4 and 211 actions. We ran different versions of the CRADLE algorithm,
one for each filter variant (age, explanation size, frontier size, and probability). We
set the exogenous-action threshold R to 0, meaning that an action will be considered
exogenous only if it cannot be included in any tree in any explanation.

All actions in the VirtualLabs domain include arguments and values, which are not
supported by the original PHATT approach. Therefore, we used an augmented version
of the PHATT algorithm with arguments and consistency checking that we will call
PHATT-E. We ran both PHATT-E and the CRADLE variants on the VirtualLabs logs,
assigning a uniform probability distribution over the rules in the grammar.

5.1.1. Speed and Termination. Figure 7 shows the performance obtained using PHATT-E
and CRADLE with the combined filter criteria, running both algorithms on a commod-
ity core-i7 computer. The log actions were fed to each algorithm step-by-step to simulate
real-time conditions. The x-axis in the figure corresponds to time (in seconds). The y-
axis measures the percentage of problems solved.

The figure shows that for each filter variant, the CRADLE algorithm was able to
outperform the PHATT-E approach. The best performance for CRADLE was achieved
using the AGE and Explanation Size filters, which were able to complete almost all
of the logs in less than 10 seconds of CPU time. In contrast, PHATT-E was not able
to complete more than 30% of the logs in a designated time frame of 100 seconds
of CPU time, which is a conservative upper bound for online recognition, in which
feedback needs to be provided quickly to a user. There was no single filter method that
outperformed all of the other methods for all logs in this domain. Also, combining the
full set of filters did not improve the average performance of the methods over the best
individual filter.

Figure 8 compares the average number of explanations generated by CRADLE and
PHATT-E for different number of observations. For each number of observations, we
only show cases in which there were at least 15 logs of at least the given length. In
practice, this limited the number of observations shown in the graph to 20, as shown
in the x-axis in the graph. As shown in the figure, the average number of explanations
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Fig. 7. Solution percentage as a function of run-time for the extended PHATT algorithm and several
CRADLE variants.

Fig. 8. Number of generated explanations.

maintained by PHATT-E grows exponentially in the number of observations. By way
of example, PHATT-E generated 142 different explanations for one of the logs with 4
observations, and more than 10,000 explanations for one of the logs with 8 observations.
The PHATT-E algorithm was not able to terminate in the designated 100 seconds of
CPU time on logs with more than 8 observations. The best performance was attributed
to the CRADLE variants using the Explanation- and Age-Size filters, which were able
to keep the size of the explanation set relatively constant. Interestingly, the probability
filter was not able to terminate on logs over 13 observations. We attribute this to
the fact that the variance over the probability of explanations was low, such that the
probability filter was not able to prune a substantial number of explanations.

Next, we compare the run-time of several CRADLE variants with different explana-
tion set size growth rates (frontier size and explanation size filters) and PHATT-E for
the different logs containing 20 observations or less. We chose these two filters as they
show different trade-offs between runtime and the number of generated explanations.
Figure 9 shows the average runtime on different log sizes, measured in seconds, pre-
sented in a logarithmic scale. The average runtime of PHATT-E grows exponentially
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Fig. 9. Runtime of PHATT-E and CRADLE variants with frontier and explanation size filters.

with the log size. Both CRADLE variants completed the runs in less than 10 seconds of
CPU time for all of the logs, with the frontier size filter constantly outperforming the
explanation size filter. For a small number of observations, the number of generated
explanations is relatively low, and PHATT-E was able to terminate more quickly than
the CRADLE variants. However, once the number of observations grows, the runtime of
PHATT-E increases substantially, due to the overhead of maintaining the explanation
set.

Lastly, we note that in the VirtualLabs domain there is no possibility for an ac-
tion to be exogenous, since all actions can be the first action in a new tree using the
ADDNEWTREE function. Indeed, the VirtualLabs grammar shown in Figure 1 describes
how students perform chemistry activities using the software (e.g., pouring a compound
from flask A to B). It does not describe students’ higher-level solution strategies (such
as comparing each pair of compounds in order to determine which are the reactants in
the Oracle example of Section 3). Gal et al. [2015] show how to infer such higher-level
strategies by showing plans of students’ activities as generated by a plan recognition
algorithm to teachers.

5.1.2. Agreement with Domain Experts. Given that CRADLE is able to terminate in rea-
sonable time on the instances we collected, the next question to ask is whether the
solutions it outputs make sense in practice according to a domain expert. We used
plans generated from partial logs when comparing with domain experts’ opinions, ef-
fectively simulating an online setting. To this end, we cut the 35 logs to the maximal size
for which PHATT-E was able to terminate within the designated 100-second runtime.
We compared the performances of PHATT-E and CRADLE with all filters combined.
We selected the explanation to visualize with highest probability among all those that
did not include any open frontier nodes (i.e., they provided a full description of the
log). If no explanation met this criterion, we chose the explanation with the highest
probability. In practice, 23 out of the 35 logs had at least one explanation with no open
frontier.

We engaged a set of domain experts to evaluate the quality of generated solutions
for these logs. All of the experts were chemistry education researchers with prior
experience working with VirtualLabs and similar software in classes. Each expert was
shown a pair of visualizations for each log, one generated by each algorithm. They
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Fig. 10. Plan visualization.

were asked to indicate which of the visualizations was correct, the one generated by
CRADLE, by PHATT-E, by both, or by neither of the algorithms. (The identity of the
algorithms was not disclosed.) Figures 10(a) and 10(b) show the explanations that were
generated by CRADLE and PHATT-E, respectively, on one of the ORACLE logs used
in the study. An explanation was visualized to the experts using a dedicated GUI as a
set of trees in which nodes representing complex actions were labeled with information
about the chemical reactions that occurred in the activity represented by the complex
action. Nodes representing basic actions were labeled with observations. For example,
the root node labeled A+ B + C + D −→ C + D represents an activity of mixing four
solutions together which resulted in a chemical reaction that consumed substances A
and B and generated substance D. A data panel (not shown in the figure) shows the
amounts of each chemical used and obtained in the student’s interaction. All of the
experts preferred the CRADLE explanation over the PHATT-E explanation in the log
instance that relates to the example. In total, the domain experts evaluated 105 log
instances from the two problems. The explanation generated by CRADLE was rated
at least as highly as the one generated by PHATT-E in 100 instances (95%), and rated
strictly better than the explanations outputted by PHATT-E in 64 instances (61%). In a
post-study survey, the domain experts wrote that CRADLE generally provided a more
concise and coherent description of students’ activities than did PHATT-E. In all the
instances where the domain experts preferred the explanation by PHATT-E, the first
action of the log represented the start of a plan a student had abandoned and did not
pursue later on. In the explanation set corresponding to these early interaction stages,
the values of the average explanation size and frontier size in the given explanation are
very low and the evaluators’ preferred plan was discarded after the second observation.
The interannotator agreement between the different experts who judged the same logs
was κ = 0.737 using Fleiss’ Kappa measure.

5.2. The TinkerPlots Domain

In this section, we evaluate CRADLE on another type of open-ended educational sys-
tem called TinkerPlots, used worldwide to teach students in grades 4 through 8 about
statistics and mathematics [Konold and Miller 2004]. Using TinkerPlots, students
build stochastic models and generate pseudo-random samples to analyze the underly-
ing probability distributions. Our study used two different problems for which students
interacted with TinkerPlots to model hypothetical situations and to determine the prob-
ability of events. There are two key differences between TinkerPlots and VirtualLabs.
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Fig. 11. Exploratory Grammar for TinkerPlots domain.

First, in TinkerPlots, recipes are question dependent and describe ideal solution paths
to specific problems. Later in the section, we show how this affects CRADLE’s ability
to recognize exogenous actions in students’ interactions. Second, although the Tinker-
Plots grammar is larger than the one used for VirtualLabs and contains significantly
more ambiguity, it is not recursive. We will use the following running example problem
posed to students using TinkerPlots in schools, called ROSA:

There are 4 letters printed on cards, each card contains one letter: A,O,R,S. The
cards are lined up in a row. After mixing the cards up, what is the probability that
the cards would spell ROSA?

In order to solve this problem, the student must perform three subtasks: (1) create a
sampler model (the complex action CSM), (2) run the model (R), and (3) plot the results
(PO). When accomplishing all three subtasks successfully, the student is said to have
solved the ROSA problem, which can be represented by the complex action SRP.

This process and the restrictions constraining it are represented using the fourth
rule in Figure 11. The third rule shows that in order to achieve the subtask of creating
a sampler, the student must perform several actions: create a new sampler (NS), add
a device to the sampler (SAD), adjust the device to model the rosa letters (MR), set
the number of device spins (SDS), set repetitions (SR), and change replacement type
(CRT). In order to achieve a complete “Create a sampler model” (CSM) action, all these
subactions should be performed. Some of these actions are primitive actions and can
be modeled as such, but some can hold additional complexity. For example, as seen in
the second rule, when adjusting the device to model the rosa letters (MR), four elements
are added to the device (DAE), each one representing one letter of the rosa problem.
The student can then decide to rename each of the elements (DCE), but this is optional.
Renaming each element is captured using the first rule. The rules described so far are
only part of the complete set of rules for this problem.
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Fig. 12. Number of generated explanations in the TinkerPlots domain.

5.2.1. Speed and Termination. We used the CRADLE variant that combined all of the
filters described in Section 4.1, which achieved the best runtime performance over
using the individual filters. We compared this approach to the PHATT-E algorithm
that was introduced in the previous section. The average number of actions in a log is
27.7083 (stdev = 14.2721).

The results show that PHATT-E was only able to terminate for two logs out of the
24 logs in the allocated CPU time of 100 seconds. On the same logs, CRADLE managed
to generate a solution for 23 logs. The only log for which it failed to produce an output
is one of 36 actions, as the algorithm could not finish the run in 100 seconds of CPU
time. Where there was a complete plan with no open frontier, CRADLE managed to
find it. The average runtime of CRADLE in this domain was 42.9394 seconds (stdev =
29.077). These results demonstrate the ability of the CRADLE approach to generalize
to new domains.

Figure 12 shows the number of generated explanations for CRADLE and PHATT-
E on the different logs. As shown in the figure, CRADLE produces about 2 orders
of magnitude fewer explanations than PHATT-E, the number of explanations being
tracked after the 12th observation.

Plans in the TinkerPlots domain represent solution paths by the student toward
solving the ROSA problem. Given that TinkerPlots supports exploratory activities
and trial-and-error, we expect CRADLE to be able to distinguish actions representing
exogenous actions from those actions representing part of the solution paths. The
average number of exogenous actions over the 24 logs we examined was 9.13 (out of
27.7 average actions per log). This reflects a high degree of exploratory activities by
students in the TinkerPlots domain. One example of such an exogenous action occurred
when a student set a sampler device to type “urn” and subsequently changed it to a
sampler of type “spinner.” The grammar requires that creating the sampler device must
follow a creation of a sampler mechanism. One of the setting operations will be deemed
exogenous by CRADLE given the correct parameter settings.

5.2.2. Agreement with Domain Expert. We compared the output of the CRADLE algorithm
on all of the logs in the TinkerPlots domain to the opinion of a domain expert. We used
a single domain expert for this purpose who has significant experience in analyzing
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Fig. 13. Visualization of ROSA plan shown to domain expert.

students’ use of TinkerPlots. The domain expert was presented with a visualization
of the most probable explanation generated by CRADLE. Note that in contrast to the
VirtualLabs domain, a student’s solution in TinkerPlots may be incomplete, and the
plan explaining the student’s interaction includes predictions about future activities
represented by open frontier nodes.

The domain expert was presented with a visualization of the CRADLE generated
plan of all 24 logs from the ROSA problem and an additional problem called RAIN
(see Appendix), as well as the logs themselves. As in the VirtualLabs domain, the plan
was visualized using an interactive GUI that allowed the expert to traverse the trees
in the explanation representing the students’ solution. Figure 13 shows an example of
one of the plans representing a student’s solution of the ROSA problem. (Not shown
are the parameters of each action, which are displayed in a separate panel.) This
solution shows two separate attempts to solve the problem, noted by the two Solve
Rosa Problem (SRP) trees. The bottom tree emanating from the SRP action describes
an exploratory activity by the student that is an incomplete solution, and the Create
Sampler Mechanism (CSM) and PO actions are open frontiers. The top tree emanating
from the SRP describes activities that represent the complete solution to the problem.

The domain expert was asked, for each log, whether the explanation produced by
CRADLE was correct, in that it provided the best description of the student’s activities.
For each of the RAIN and ROSA problems, the domain expert confirmed 11 out of 12
explanations generated by CRADLE to be correct (91% accuracy). In both of these
erroneous cases, the student used two sampler mechanisms in the solution, but the
chosen hypothesis included the wrong one. This result demonstrates the ability of
CRADLE to generalize well to new domains despite its inherent incompleteness.

5.3. Comparison with the DOPLAR Algorithm

In this section, we compare the performance of CRADLE to the DOPLAR algorithm
on the synthetic domain used by Kabanza et al. [2013]. DOPLAR is a YAPPR-based
plan recognition algorithm, augmented with a weighted model-counting procedure for
limiting the number of generated hypotheses at each level. It does so by computing
the lower and upper bounds of goal hypothesis probabilities and uses a heuristic that
discards explanations that fall below a certain threshold. The algorithm was evaluated
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Fig. 14. Correct plan for DOPLAR scenario.

Fig. 15. Incorrect partial plan for DOPLAR scenario.

on a synthetic domain whose description consists of and/or trees with five possible goals.
When translated to rules, it produces 240 actions and approximately 250 rules per
problem. Each log in this domain includes nine actions that comprise a plan to satisfy a
single goal. Given an observation sequence, DOPLAR outputs a probability distribution
over the set of goals, whereas CRADLE outputs a distribution over a set of possible
explanations. However, we can compute the probability of each goal in a similar fashion
to DOPLAR’s approach. We sum each goal’s probability for each of the explanations in
which it appears, normalizing by total probability of all explanations. Because there is
a single goal that was used to create each of the logs, we can compute the mean square
error of each algorithm for each instance using the formula

∑
g∈G(P(g) − T (g))2, where

G is the set of goals, P(g) is the probability assigned to the goal by the algorithm; T (g)
is the true probability, which is 1 if g was used to generate the log, and 0 otherwise.

We compared the DOPLAR approach to CRADLE on the same logs generated by
Kabanza et al. [2013]. The average error of CRADLE was 0.0439, an order of magnitude
smaller than the average error of DOPLAR on this domain, which was 0.3169. In a
striking 42 out of 50 cases, CRADLE generated an explanation comprising the true
goal, representing a perfect prediction. Effectively, the DOPLAR algorithm uses a
single criterion (probability) to prune the hypothesis space, which may explain the
lower performance compared to CRADLE, which uses an array of filter criteria to
prune the hypothesis space.

To illustrate the different behavior of the algorithms, consider the plans in Figures 14
and 15. The first describes the correct plan that can be inferred for the observation
sequence A35, A33, A75, A20, A25, A75, A63, A99, A48. The second describes a partial plan
that can be generated for the first observation. The second observation, however, cannot
be combined in any way in the plan with B112 in its root. DOPLAR keeps a record of
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every possible goal that can match every observation, even if it cannot be developed
further. Consequently, DOPLAR gave a probability confidence window in the range of
0 to 0.0938 to the goal B112 that is pursued in this plan. In CRADLE, on the other
hand, the partial plan shown in Figure 15 will be omitted when considering the second
observation, since it cannot be combined into the plan. This is an especially simple
scenario, but even more subtle scenarios favor CRADLE. Consider a case in which the
second observation could have been introduced into a separate tree in the explanation.
Even here, the CRADLE algorithm would have preferred to eliminate this explanation,
since it contains two plans when there is a better plan (the one from Figure 14) that
contains only one. Accordingly, CRADLE gave a probability of 1 for the pursued goal
to be B140, managing to find the correct explanation and matching it perfectly.

6. CONCLUSION

In exploratory domains, agents’ behavior is characterized by interleaving of activities,
exogenous actions, and mistakes. We provided a new heuristic plan recognition algo-
rithm for exploratory domains that leads to significant improvement as compared to the
state of the art when evaluated on real data. CRADLE extends existing plan recogni-
tion approaches by using domain-independent heuristics to prune the space of possible
explanations, by explicitly reasoning about exogenous actions and mistakes, and by up-
dating plan arguments so that explanations remain consistent with new observations.
CRADLE was able to produce better explanations than two previously proposed algo-
rithms, PHATT [Geib and Goldman 2009] and DOPLAR [Kabanza et al. 2013], when
evaluated on real-world datasets in which agents engage in exploratory behavior.

We are currently pursuing work with CRADLE in several directions. First, we are
evaluating CRADLE on a large-scale intrusion detection domain. Second, we are using
CRADLE to provide machine-generated support to users as well as to construct inter-
active visualizations of users’ activities to overseers (for example, teachers or system
administrators). Third, we will devise filters for reasoning about exploration early on in
the agent’s interaction. Another direction for future research would be to apply similar
capabilities as CRADLE’s to additional plan recognition algorithms, such as ELEXIR,
a plan recognition method based on combinatory categorial grammars [Geib 2009].

APPENDIX

We detail the questions used in evaluating CRADLE on the two educational software
domains.

A.1. VirtualLabs Questions

ORACLE. Given four substances A, B, C, and D that react in a way that is unknown,
design, and perform virtual lab experiments to determine which of these substances
react, including their stoichiometric coefficients.
UNKNOWN ACID. The cabinet contains a solution labeled “Unknown Acid,” which is a
weak mono-protic acid with an unknown Ka and with an unknown concenration.
Your job is to determine the concentration and Ka to two significant figures. Please
report your results and explain your procedure.

A.2. TinkerPlots Questions

ROSA. Jessica has 4 letters printed on cards: R, O, S, and A. After mixing them up,
she blindly picks the 4 letters one at a time and arranges them in line in the order
she chose them. Build a TinkerPlots model and use it to help you estimate the
probability of Jessica spelling the word ROSA.
RAIN. There is a 75% chance of rain for each of the next 4 days. Build a TinkerPlots
model and use it to help you estimate the probability of getting rain on all 4 days.
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