
Type of Submission

choose one of:

original research paper: this is original unpublished work and we confirm that this submission is different enough
from our previously published work

X

PhD panel submission: this manuscript describes the work I have been conducting, or am planning to conduct in
the course of my PhD thesis
resubmission: this is a resubmission of a previously !published! paper, but we would like to present it at DX’17

for original research papers only: choose one of

yes, we want our paper to be published in the official DX’17 proceedings
no, we do not want our paper to be published in the official DX’17 proceedings, only a 300 word abstract X

for resubmissions only:

(a) specify some information (see notes below!)
the original version of this paper was already published at:
—-please enter the full conference/workshop name + abbreviation here
link to the electronic version of the original paper (if available):
e.g., http://ijcai.org/Proceedings/13/Papers/160.pdf
link to an electronic author version of the original paper (if available):
e.g., http://www.ist.tugraz.at/pill/downloads/PillQuaritsch.pdf

(b) choose one of
yes, we would like a 300 word abstract of our presentation to appear in the front matter of the proceedings
no, there shall be no abstract in the front matter of the proceedings, but only a notice of our presentation

Learning Software Behavior for Automated Diagnosis

Ori Bar-Ilan and Roni Stern and Meir Kalech
Software and Information Systems Engineering

The Cyber Security Research Center at Ben Gurion University of the Negev
Be’er Sheva, Israel

Abstract

Software diagnosis algorithms aim to identify the faulty
software components that caused a failure. A key challenges
of existing software diagnosis algorithms is how to prioritize
the outputted diagnoses. To do so, previous work proposed
a method for estimating the likelihood that each diagnosis
is correct. Computing these diagnosis likelihoods is non-
trivial. We propose to do this by learning a behavior model
of the software components and use it to identify abnormally
behaving components. In this work we show the potential
of such an approach by performing an empirical evaluation
on a synthetic behavior model of the components. The re-
sults show that even an imperfect behavior model is use-
ful in improving diagnosis accuracy and minimizing wasted
troubleshooting efforts.

Introduction
Software diagnosis is the task of identifying the root cause
of an observed software bug. That is, the task in software
diagnosis is to identify the software components – classes,
functions, or lines of code – that needs to be fixed in order
to prevent the bug from occurring in the future. The need
for an automated tool able to perform software diagnosis
grows as modern software systems are highly complex. In-
deed, software bugs are prevalent in virtually all software
products and their impact can be catastrophical.

Model-based diagnosis (MBD) is a principled approach
for automated diagnosis that has also been proposed for
software diagnosis [16]. In MBD, a model of the system
is needed along with observations of the system’s behav-
ior. These observations are checked against the given model,
and inference algorithms are used to produce diagnoses,
which are possible assumptions about which components
are faulty that are consistent with the given model and the
observations.

Software systems can rarely be modeled accurately and
thus directly applying MBD to software diagnosis is diffi-
cult. To this end, Abreu et al. [3] proposed Barinel, a soft-
ware diagnosis algorithm that finds diagnoses by analyzing
previously executed tests, their traces, and their outcomes
(pass or fail). Notably, Barinel does not require any model-
ing of the software components’ behaviors.

Barinel may output a large set of candidate diagnosis,
but only one diagnosis is actually correct. Conveniently,
Barinel also assigns a value to each candidate diagnosis that

is roughly associated with the likelihood that it is correct.
The importance of this likelihood estimation has led several
prior works to focus exactly on improving this likelihood
function [3; 2; 4].

In this preliminary work, we set out to investigate the po-
tential of a novel approach for improving the accuracy of
the previously proposed methods to compute the likelihood
function. The approach we propose is based on learning an
approximate behavior model of the software components.
This learning is done over observations of the inputs and
outputs of the program’s components, collected while the
system is being tested.

To evaluate the potential of this approach, we conducted
an empirical evaluation of over several open source projects.
In this evaluation we used a synthetic behavior model,
whose accuracy is controlled by a parameter. Then, com-
pared the diagnostic accuracy – which is directly affected
by the accuracy of the diagnosis likelihood function – of
the vanilla Barinel and the Barinel that uses our modified
diagnosis likelihood function. The results show that our ap-
proach has huge potential to increase Barinel’s diagnostic
accuracy, even with a reasonable amount of error in the com-
ponents’ behavior model.

Preliminaries
A program is composed of a set of componentsCOMPS =
{C1, . . . , CM}. For the ongoing discussion, assume that ev-
ery component is a method in the program, but our expo-
sition also holds for different component granularity, e.g.,
where the component is a class or program statement.

Every software component C has a set of input and out-
put variables, denoted in(C) and out(C).1 The behavior
of component C, denoted Φ(C), describes the relation be-
tween in(C) and out(C). That is, we expect that if all com-
ponents follow their healthy behavior then all tests will pass.
If a component does not follow its healthy behavior, we re-
fer to it as faulty. The health predicate h(C) denotes that
component C has followed its healthy behavior.

Classical MBD is designed for cases where observations
of the system are inconsistent with the assumption that all
components follow their healthy behavior. More formally,
classical MBD is defined by 〈COMPS, SD,OBS〉 where
OBS is the set of observations and SD is a formal descrip-
tion of the system’s behavior, usually in the form of a set

1If the program has a state that affects the behavior of C then
it is also part of in(C), and similarly, if C affects this state then it
will be in out(C).


a11 a12 . . . a1M

a21 a22 . . . a2M

...
...

. . .
...

aN1 aN2 . . . aNM



e1

e2

...
eN


Figure 1: Input to SFL.

of behaviors for the components in COMPS. Under this for-
malism, an MBD problem arises when SD∧OBS is incon-
sistent with the assumption that all components are healthy.
Diagnosis algorithms aim to find a set of components ω such
that SD ∧ OBS is consistent with the assumption that all
components are healthy except those in ω. ω is referred to as
a diagnosis and is defined formally as any set of components
that satisfy the following.

SD ∧OBS ∧
∧

C∈COMPS\ω

h(C) ∧
∧
C∈ω
¬h(C)

Many MBD algorithms use conflicts to direct the search
towards diagnoses.

Definition 1 (Conflict). A set of components γ ⊆ COMPS
is a conflict if

∧
C∈γ

h(C) ∧ SD ∧ OBS is inconsistent.

Conflicts are useful because every diagnosis must be a
hitting set of all the conflicts since at least one component in
every conflict is faulty [8; 18; 13]. Indeed, MBD algorithms
such as GDE and CDA* find diagnoses by finding conflicts
and considering only their hitting sets.

Spectrum-based Software Diagnosis
Software systems are usually too large and dynamic to al-
low a formal specification of the software components’ be-
havior, and thus assuming that Φ is given, is not practical.
Instead, we assume that a set of tests has been executed and
we are given information about these tests. In particular, for
each test t we are given its outcome (pass or fail), and its
trace, i.e., the set of components involved in that test. We de-
note the outcome and trace of t by outcome(t) and trace(t),
respectively. Note that from a practical perspective, it is easy
to modify a set of tests so that they output all the above infor-
mation, e.g. by instrumenting the source code using Java’s
JVMTI.

Abreu et al. [3] proposed Barinel, a software diagnosis
algorithm that uses this information to find candidate diag-
noses. The key concept in Barinel is that if a test failed then
at least one of the components in its trace is faulty. Thus, the
trace of a failed test is a conflict (Definition 1), and Barinel
considers it as such when computing diagnoses. Then, it
uses a fast hitting set algorithm called STACATTO [1] to
find hitting sets of these conflicts, which are then outputted
as diagnoses.

Barinel provides an elegant bridge between MBD and
Spectrum-based Fault Localization (SFL). The input to most
SFL algorithms is in the form of two boolean matrices. The
first matrix, A, is of size N ×M and it describes the pres-
ence or absence of each of the M components in the traces
of each of the N tests, having aij = 1 iff component cj is in
the trace of test ti. The second matrix, E, which is of size
N × 1, contains the outcome (pass/fail) for each of the N
tests (ei = 1 iff ti failed). The matrix E is used as OBS,

and SD is represented by the connection between the traces
and the observation:

∀i ∈ [0, N] :

 ∧
j∈[0,M],aij=1

h(Cj)

→ (ei = 0)

The main drawback of using Barinel is that it often out-
puts a large set of diagnoses, thus providing weaker guid-
ance to the programmer that is assigned to solve the ob-
served bug. To address this problem, Barinel computes a
score for every diagnosis it returns, estimating the likelihood
that it is true. This serves as a way to prioritize the large set
of diagnoses returned by Barinel.

The score of diagnosis ω reflects its probability to be
correct Pr(ω). Since only the observations are known, the
probability of a diagnosis to be correct (i.e. to describe the
actual system faults) depends solely on the degree of which
ω explains the observations. Thus, it is required to compute
Pr(ω|OBS) . Applying Bayes’ rule achieves the following:

Pr(ω|OBS) =
Pr(OBS|ω)

Pr(OBS)
· Pr(ω) (1)

Pr(OBS) does not depend on ω thus it can be considered
as a normalizing factor. Pr(ω) is the prior probability of ω .
If this probability is unknown, it can be computed using this
formula: Pr(ω) = p|ω| · (1− p)M−|ω|, where p denotes the
a priori probability that a component is faulty. In case that
no such information is available, a uniform distribution can
be applied. Pr(OBS|ω) is defined as follows:

Pr(OBS|ω) =


0, if OBS ∧ ω are inconsistent
1, if OBS is unique to ω
ε, otherwise

(2)

Pr(OBS|ω) gets the value of 0 or 1 only in rare cases. ε is
often referred to as epsilon policy and it is where the actual
reasoning of the diagnoses ranking relies. There are many
epsilon policies [7; 2]. Barinel offers one of those. Barinel
makes use of the probability of a faulty component Cj to
produce a correct output. This probability is denoted by ηj .
Formally,

ηj = Pr(e(t) = 0|Cj ∈ trace(t) ∧ ¬h(Cj)) (3)

Assuming that ηj is known for each of the components, ε
can now be computed as follows:

ε =

{∏
Cj∈ωi∧aij=1 ηj , if ei = 0

1−
∏
Cj∈ωi∧aij=1 ηj , if ei = 1

(4)

Intuitively, if a test ti passed, then all of the faulty compo-
nents in trace(ti) (i.e. faulty components that participated
in ti) would have produced a valid output. Therefore, the
result is the product of their probability to produce a valid
output, even though they are faulty. Since ηj is unknown
(for all components), it is estimated by using the maximum
likelihood technique which maximizes the diagnosis’ prob-
ability of being accurate.

Barinel’s score function relies on these goodness func-
tions to estimate the probability that a component produced
an incorrect output thus caused a test to fail. In this work
we propose a novel approach for computing these goodness

function. Our new approach yields more accurate diagnoses
as it leverages the information available by the tests’ probes
(those are the input and output values of the components in
the trace), and it is much faster to compute than the maxi-
mum likelihood estimates originally used in Barinel.

Learning Components’ Behavior
In this work we assume the existence of probes that monitor
the input and output values of components involved in traces
of tests. Implementing such probes can be done in a similar
way to the way used to collect the test traces, e.g., via Java’s
JVMTI instrumentation capabilities. The input and output
values of component C observed by the probes of test t are
denoted by in(t, C) and out(t, C), respectively.

With these probes, we aim to replace the goodness func-
tion ηj with a per-test goodness function, denoted bij .

bij = Pr(outcome(t) = 1|Cj ∈ trace(t)∧
¬h(Cj) ∧ (in(t, Cj) = in(ti, Cj))∧

(out(t, Cj) = out(ti, Cj)) (5)

In words, bij is the probability of a test t to fail given that
component Cj is in its trace and it is faulty and its input and
output values are the input and output values observed for
Cj in test ti. We call bij the “probe probability” of compo-
nentCj in test Ti, to highlight that, unlike Barinel, it specifi-
cally uses the information in the probes. Next, we show how
to estimate bij and how it can be used to create a new epsilon
policy.

Estimating the Probe Probabilities
In order to learn the value of bij , we propose to use Machine
Learning techniques. In particular, we propose to learn a bi-
nary classifier for predicting the outcome of a test given the
probes of a single component in that test. I.e., for a given
test t and a component C, we aim to learn a classifier that
accepts in(t, C) and out(t, C) and predicts outcome(t).

Machine learning proceeds by building a training set to
train a classification model (a classifier) and then evaluate it
with a test set. The training set consists a set of instances,
each with its classification label (the correct classification).
Each instance consists of a set of features.

In our settings, the features are the input and output
values observed for a component in a test, and the clas-
sification label is whether that test has passed or failed.
So, to build the training set we obtain a sample of
〈in(t, C), out(t, C), outcome(t)〉 tuples, e.g., by running
all of the program’s test suites. This training set is then given
as an input to a Machine Learning binary classification al-
gorithm that trains a classifier that determines if a sample of
in(C) and out(C) correlates strongly with a test failure or
a test success.

Importantly, binary classifiers often output a confidence
level, stating the classifier’s confidence about the label it has
outputted. For example, when using tree ensembles, confi-
dence can be measured by the number of individual trees
that voted for the predicted class, out of all trees. We use
these confidence values as our probe probabilities.

Using the Probe Probabilities
The collection of all predictive models is combined into the
input matrix for the Spectrum-based Fault Localization al-
gorithm, and used to compute the goodness function. This


a11, b11 a12, b12 . . . a1M , b1M
a21, b21 a22, b22 . . . a2M , b2M

...
...

. . .
...

aN1, bN1 aN2, bN2 . . . aNM , bNM



e1

e2

...
eN


Figure 2: Transformed input to SFL.

is done by adding the probability bij (∀i, j ∈ N such that
1 ≤ i ≤ N ∧ 1 ≤ j ≤ M). This results in a new trans-
formed input, as seen in Figure 2.

To compute ε, we assume, as Barinel, that software com-
ponents fail independently of each other, and thus the prob-
ability of bij and bkl are independent. Using this indepen-
dence property, if a test ti fails, we can compute ε by multi-
plying the probe probabilities of all components that are di-
agnosed as faulty and participated in ti. In case a test passes,
we use the complementary probability to the probe probabil-
ity of each component that is diagnosed as faulty.

Our novel goodness function, notated with ε′, is com-
puted as such:

ε′ =

{∏
Cj∈ω∧aij=1 1− bij , if ei = 0∏
Cj∈ω∧aij=1 bij , if ei = 1

(6)

Experimental Results
In this section we present semi-synthetic experiments which
show the potential benefit of our approach. We start by de-
scribing how we setup the experiment and then we present
the results.

Experiment Setup

Project Versions Tests Methods Bugs Reported Bugs Fixed

Orient 44 790 19,207 4,625 2,459
CDT 231 3,990 66,982 17,713 9,091
ANT 72 5,190 10,830 5,890 1,176
POI 72 2,346 21,475 3,361 1,408

Table 1: Details on the projects used for benchmarking.

As a benchmark, we used the four real-world open-source
projects used by Elmishali et al. (9). Table 1 lists fundamen-
tal statistics about these projects. Each project has its own
source code files, tests and bug reports. The tests of each
project were run and used to produce the input required by
our algorithm, i.e., the tests’ traces, probes observations, and
outcomes. The bug reports were used to create the ground
truth diagnosis, i.e., the actual components that are faulty.
Using the benchmark above does not only help us measur-
ing our success in a real-world scenario, but also to compare
it to recent state-of-the-art diagnosers.

Synthesizing Probe Probabilities
To be able to measure the potential of the use of probe prob-
abilities in SFL, we used synthetic probe probabilities in
our experiments instead of real probe probabilities that were
learned from observed tests. These synthetic probe probabil-
ities were generated with respect to the ground truth diagno-
sis (i.e. the set of faulty components), denoted ωgt, and an

error parameter, denoted err. ωgt and err were used to syn-
thesize probe probabilities b′ij using the following formula:

b′ij =


0, if ei = 0

0, if ei = 1 ∧ aij = 0

err, if ei = 1 ∧ aij = 1 ∧ Cj /∈ ωgt
1− err, if ei = 1 ∧ aij = 1 ∧ Cj ∈ ωgt

(7)

The first case describes a scenario where a test did not fail.
The second case describes a scenario where a test did fail but
Cj did not participate in that test. In both cases, bij = 0. The
third case describes a scenario where a test failed, Cj partic-
ipated in that test, andCj is known to be healthy. In the most
ideal scenario, our probe probability would be zero, indicat-
ing that while test i failed, it was not caused by component
Cj and so Cj must not appear in any diagnosis. Introduc-
ing err instead of 0, simulates the possible error in the our
learned probe probability. The fourth case describes a simi-
lar scenario to the third case, only that Cj is now known to
be faulty. In the most ideal scenario, our probe probability
would be 1, indicating that Cj is faulty and thus promoting
diagnoses that contain it.

Evaluated Diagnosers
Throughout our evaluation process, we assessed the diag-
noser we present in this paper against two other state-of-
the-art diagnosers. The first diagnoser is Barinel, which was
previously introduced. The second diagnoser, devised by
Elmishali et al. [9], presents a data-augmented improvement
to Barinel [9]. This improvement is done by learning vari-
ous meta-data features of open sourced projects (via ver-
sion control, issue tracker etc) and produce more accurate
a-priori probabilities for components to be faulty. This algo-
rithm will be referred to as DA during our evaluation. Our
diagnoser is referred to as Probe.

Evaluation Metrics
Each of the evaluated diagnosers outputs one or more diag-
noses, each associated with a likelihood score. To compare
the outputs of the different algorithms we used the following
metrics.

Weighted mean precision and recall
The first two metrics we used are the weighted mean preci-
sion and weighted mean recall, which were previously intro-
duced by Elmishali et al. (9). To compute these metrics, we
first computed the precision and recall for every diagnosis
outputted by the evaluated diagnoser. The weighted mean
precision is then computed as the weighted average over the
precision of all diagnoses, using the diagnoses’ score as its
weight. The weighted mean recall is computed in a similar
manner, averaging the diagnoses’ recall scores. The benefit
of these metrics is that they aggregate precision and recall
over the result set of diagnosis, with consideration to the
score assigned by the diagnoser to each diagnosis. So, we
expect higher weighted mean precision and weighted mean
recall for diagnosers that output more accurate likelihood
scores. For brevity, we will refer to both weighted mean
precision and weighted mean recall as simply precision and
recall, respectively.

Health state wasted effort
The health state has recently presented by Stern et al.
(14; 15). The health state indicates the probability of each

Figure 3: Weighted mean precision.

Figure 4: Weighted mean recall.

component to be faulty, given a set of diagnoses Ω and a
probability function over them p:

H(C) =
∑
ω∈Ω

p(ω) · 1C∈ω (8)

where 1C∈ω is the indicator function defined as:

1C∈ω =

{
1 C ∈ ω
0 otherwise

The wasted effort metric estimates the effort wasted in re-
pairing healthy components assuming that components are
repaired in a decreasing order of their health state proba-
bility (H(C)) until all faulty components are repaired. Ties
were broken randomly. The wasted effort is the number of
healthy components that are repaired, normalized by the
number of healthy components.

Results
In Figure 3 and Figure 4 we present the precision and re-
call metrics, respectively. The x-axis represents the different
synthetic error rates. It is clear that the Probe diagnoser, with
0.15 synthetic error, achieves similar results as the DA diag-
noser. Also, the Probe diagnoser, with 0.2 synthetic error,
achieves significantly better results than Barinel.

In Figure 5 we present a comparison of the Health state
wasted effort between the same diagnosers. It is visible
that even with 0.3 synthetic error rate, the Probe diagnoser,
achieves superior results over both the DA and Barinel di-
agnosers.

Figure 5: Health state wasted effort.

The key challenge, left for future work, is to learn probe
probabilities that has sufficiently low prediction errors.
However, our results are very promising, demonstrating that
the error required for our approach to be useful is very rea-
sonable – ranging from 0.3 to 0.15 (depending on the eval-
uated metric).

Related Work

Hofer and Wotawa introduced a new approach, Spectrum
ENhanced DYnamic Slicing [11; 10], which combines
Spectrum Fault Localization (SFL) with slicing hitting set
computation [19]. The method they propose computes slices
for all faulty variables in all failing test cases. A slice is a
subset of a program which behaves like the original pro-
gram for a given set of variables [17]. Then the diagnoses
are computed by a hitting set algorithm based on Reiter’s
HS-tree [12]. The SFL approach assists to compute the fault
probabilities based on both the failed tests as well as the
passed tests. The advantage of combining SFL and SHSC
lies in the use of slicing approach to distinguish statements
occurring in the same basic building block, as well as ana-
lyzing the execution information from both passing and fail-
ing test cases as done in SFL.

In a recent work Cardoso et al. (5) extend Barinel to deal
with degradation failures in software. In many cases the ex-
istence of a fault is linked to degradation of quality of ser-
vice, rather than a clear case of a failed test. Cardoso et
al. propose a fuzzy logic framework to model the observa-
tion and extend the computation of the likelyhood function
Barinel applies to deal with fuzzy observations.

Elmishali et al. (9) propose a data-driven approach to bet-
ter prioritize the set of diagnoses returned by Barinel. In par-
ticular, they use methods from the software engineering lit-
erature to learn from collected data how to predict which
software components are expected to be faulty. Then, they
integrate these predictions into Barinel to better prioritize
the diagnoses it outputs and provide more accurate diagno-
sis likelihood estimates.

Improving the likelihood function by learning an approx-
imate behavior model, as proposed in this paper, is orthog-
onal to all the above works. We demonstrate its benefits in
relation to SFL, but in the same manner it might assist to
Spectrum ENhanced DYnamic Slicing, degradation failures
and the fault prediction.

Conclusion and Future Work
In this paper we proposed a novel way to compute the prob-
ability of a test to fail given information on the inputs and
outputs of the components involved in the test. We claimed
that this probabilities can be learned using a machine learn-
ing technique. Then, we showed how these probabilities can
be used to improve the way Barinel, a state-of-the-art soft-
ware diagnosis algorithm, ranks diagnoses. Our preliminary
results, demonstrate the potential of our approach for in-
creasing Barinel’s diagnostic accuracy.

In future work we will demonstrate the applicability of
our approach by replacing the synthetic probabilities we
used in this work with probe probabilities learned from
the software’s demonstrated behavior while executing tests.
Furthermore, since this technique is orthogonal to other im-
provements to Barinel discussed in the related work section,
we plan to develop a hybrid software diagnosis algorithm
that combines these techniques, harnessing the complemen-
tary strengths of each technique. Lastly, it is important to
note an inherent difficulty that lies within our datasets: Data
Imbalance. Imbalance datasets are frequent in many appli-
cations [6]. This is also true for our application. Naturally,
most of the tests in a test suite pass, while few fail. This
creates an imbalance within our datasets since most of the
records will contain one out of the two classes (the one that
correlates with passed tests).

References
[1] R. Abreu and A. J. van Gemund. A low-cost approxi-

mate minimal hitting set algorithm and its application
to model-based diagnosis. In SARA, volume 9, pages
2–9, 2009.

[2] R. Abreu and A. J. C. van Gemund. Diagnosing mul-
tiple intermittent failures using maximum likelihood
estimation. Artif. Intell., 174(18):1481–1497, 2010.

[3] R. Abreu, P. Zoeteweij, and A. J. C. van Gemund.
Spectrum-based multiple fault localization. In Au-
tomated Software Engineering (ASE), pages 88–99.
IEEE, 2009.

[4] N. Cardoso and R. Abreu. A kernel density estimate-
based approach to component goodness modeling. In
M. desJardins and M. L. Littman, editors, Proceedings
of the Twenty-Seventh AAAI Conference on Artificial
Intelligence, July 14-18, 2013, Bellevue, Washington,
USA. AAAI Press, 2013.

[5] N. Cardoso, R. Abreu, A. Feldman, and J. de Kleer.
A framework for automatic debugging of functional
and degradation failures. In G. A. Kaminka, M. Fox,
P. Bouquet, E. Hüllermeier, V. Dignum, F. Dignum,
and F. van Harmelen, editors, ECAI 2016 - 22nd Euro-
pean Conference on Artificial Intelligence, 29 August-
2 September 2016, The Hague, The Netherlands - In-
cluding Prestigious Applications of Artificial Intelli-
gence (PAIS 2016), volume 285 of Frontiers in Ar-
tificial Intelligence and Applications, pages 569–576.
IOS Press, 2016.

[6] S. Cateni, V. Colla, and M. Vannucci. A method for
resampling imbalanced datasets in binary classifica-
tion tasks for real-world problems. Neurocomputing,
135:32–41, 2014.

[7] J. de Kleer. Diagnosing intermittent faults. In Pro-
ceedings of International Workshop on Principles of
Diagnosis (DX’07), 2007.

[8] J. de Kleer and B. C. Williams. Diagnosing multiple
faults. Artif. Intell., 32(1):97–130, 1987.

[9] A. Elmishali, R. Stern, and M. Kalech. Data-
augmented software diagnosis. In D. Schuurmans and
M. P. Wellman, editors, Proceedings of the Thirtieth
AAAI Conference on Artificial Intelligence, February
12-17, 2016, Phoenix, Arizona, USA., pages 4003–
4009. AAAI Press, 2016.

[10] B. Hofer and F. Wotawa. Spectrum enhanced dynamic
slicing for better fault localization. In ECAI, pages
420–425, 2012.

[11] B. Hofer, F. Wotawa, and R. Abreu. AI for the win: im-
proving spectrum-based fault localization. ACM SIG-
SOFT Software Engineering Notes, 37(6):1–8, 2012.

[12] R. Reiter. A theory of diagnosis from first principles.
Artif. Intell., 32(1):57–95, 1987.

[13] R. Stern, M. Kalech, A. Feldman, and G. M. Provan.
Exploring the duality in conflict-directed model-based
diagnosis. In AAAI, 2012.

[14] R. Stern, M. Kalech, S. Rogov, and A. Feldman. How
many diagnoses do we need? In Proceedings of
the Twenty-Ninth AAAI Conference on Artificial In-
telligence, AAAI’15, pages 1618–1624. AAAI Press,
2015.

[15] R. Stern, M. Kalech, S. Rogov, and A. Feldman. How
many diagnoses do we need? Artificial Intelligence,
2017.

[16] M. Stumptner and F. Wotawa. A model-based ap-
proach to software debugging. In the Seventh Inter-
national Workshop on Principles of Diagnosis (DX),
pages 214–223, 1996.

[17] M. Weiser. Programmers use slices when debugging.
Commun. ACM, 25(7):446–452, July 1982.

[18] B. C. Williams and R. J. Ragno. Conflict-directed A*
and its role in model-based embedded systems. Dis-
crete Appl. Math., 155(12):1562–1595, 2007.

[19] F. Wotawa. Fault localization based on dynamic slic-
ing and hitting-set computation. In Quality Software
(QSIC), 2010 10th International Conference on, pages
161–170. IEEE, 2010.

