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ABSTRACT
In this paper we describe and share with the research com-
munity, a significant smartphone dataset obtained from an
ongoing long-term data collection experiment. The dataset
currently contains 10 billion data records from 30 users col-
lected over a period of 1.6 years and an additional 20 users for
6 months (totaling 50 active users currently participating in
the experiment).

The experiment involves two smartphone agents: SherLock
and Moriarty. SherLock collects a wide variety of software and
sensor data at a high sample rate. Moriarty perpetrates var-
ious attacks on the user and logs its activities, thus providing
labels for the SherLock dataset.

The primary purpose of the dataset is to help security pro-
fessionals and academic researchers in developing innovative
methods of implicitly detecting malicious behavior in smart-
phones. Specifically, from data obtainable without superuser
(root) privileges. To demonstrate possible uses of the dataset,
we perform a basic malware analysis and evaluate a method
of continuous user authentication.

Keywords
Smartphone dataset; machine learning; malware; forensics;
anomaly detection; continuous authentication.

1. INTRODUCTION
Today smartphones are ubiquitous, serving as a mobile

mechanism for centralizing one’s private information, accounts,
contacts, and communication services. Given this, over the
years smartphones have become an attractive target for cyber-
attacks [1, 2]. Trojans are malicious applications that look
legitimate. Users of Android devices do not always carefully
review or understand app permissions during installation [3],
enabling trojans to be installed and gain access to sensitive
resources, even without exploiting vulnerabilities.
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After infection, one approach for detecting a malicious be-
havior on smartphone is to perform dynamic analysis on the
device itself [4–10]. However, many such on-site solutions
require either root system privileges or changes to the kernel
code. To root an Android device, the user needs to perform
special steps that may require some technical background.
Furthermore, rooted devices are exposed to many more vul-
nerabilities, thus causing security architectures to lose their
effectiveness within these environments [11, 12]. Therefore,
approaches that require root privileges are difficult to market
widely via app stores. Moreover, methods that require changes
to the kernel code are unlikely to reach the common user unless
Google or smartphone manufacturers adopt these changes.
Given this distribution problem, it is clear that there is

a need to develop security solutions that are based on low-
privileged monitorable features: information sources that
can be sampled without root privileges or changes to the
smartphone’s OS. Examples of these features are an appli-
cation’s memory consumption and the device’s acceleration.
In [13] the authors explore how different sets of monitorable
features can be used to detect variousmalicious activities. Low-
privileged monitorable features has been used for malware
detection [14–16], data leakage detection [17,18], continuous
authentication [19–21], and in other situations. A great chal-
lenge in researching these domains is the lack of a public dataset
– specifically a labeled smartphone dataset that captures on-
going attacks within the low-privileged monitorable features.

To fill this gap, we have established a long-term smartphone
data collection experiment for cybersecurity research. We
developed a data collection agent called SherLock and a ma-
licious agent called Moriarty. SherLock collects a wide variety
of low-privileged monitorable features at a high sample rate.
In parallel, Moriarty perpetrates different cyber-attacks and
leaves clues (time series event labels) for SherLock to collect.
Both agents are currently deployed on 50 Galaxy S5 smart-
phones. The full data collection experiment began in February
2015 and is expected to continue until at least January 2018,
for a total of three years. The SherLock dataset currently
contains 10 billion data records and is now growing at a rate
of approximately 670 million records (46 billion data points)
a month. With the consent of the volunteers, a version of
the dataset without explicit identifiers available online (at no
charge) to academics and the research community.1

1http://bigdata.ise.bgu.ac.il/sherlock/
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The SherLock dataset is unique with respect to existing
public datasets for the following reasons:

Temporal Resolution. The SherLock dataset offers mon-
itorable features sampled at a significantly higher frequency.
Furthermore, the motion sensor data provides temporal cover-
age that is 80 times greater than other similar datasets. These
sample rates reduce the phone’s battery life to four hours with
the original battery. To make the experiment practical for our
volunteers, we provided each volunteer with a larger battery
that extends the battery life to a full day.

The Collected Data. The SherLock dataset offers wider
range of data. For example, we collect most of the Linux
level memory, CPU, and scheduler information from every
running application. Moreover, we also collect a greater range
of aggregated statistics for the motion sensors.

Explicit Labels. The SherLock dataset offers labels that
capture the moment various types of malware perform their
malicious activities. We achieve this by running our own
malware on the devices, where the behaviors are based on real
malware samples that exist in the wild.

Therefore, our contributions in this paper are as follows:

• We publish and describe a massive smartphone dataset
that contains awide variety of low privilegedmonitorable
features. Compared to existing public datasets, the Sher-
Lock dataset has the highest temporal resolution and is
the only one that provides explicit labels for smartphone
cyber-attacks captured on-site. This dataset can serve
as a benchmark dataset for time series anomaly detec-
tion, data mining, forensics, and more. The dataset can
also be used for fields other than security such as social
sensing and recommender systems.

• We demonstrate how the dataset can be used to analyze
malicious behaviors. As examples, we analyze two differ-
ent malicious behaviors captured by sampled Linux-level
features. We also demonstrate how this dataset can be
used to develop and evaluate continuous user authenti-
cation algorithms. Utilizing the dataset, we found that
a physical device theft can be detected in 15-105 seconds
(2-8 observations) with a low false reject rate (FRR).

The remainder of the paper is organized as follows: In section
2 we provide the experiment setup and agent design. In section
3 we describe the dataset, provide statistics, and suggest pos-
sible uses. In section 4 we demonstrate two uses of the dataset:
the detection of malware and the detection of device theft. In
section 5 we compare our dataset to existing datasets, and in
section 6 we summarize with a conclusion and future work.

2. EXPERIMENT SETUP
The objective of the data collection experiment is to provide

security researchers access to a labeled dataset containing a
wide variety of low-privileged monitorable smartphone fea-
tures that capture both regular usage and cyber-attacks. Two
smartphone agents were developed for this task: SherLock and
Moriarty. Figure 1 presents an overview of the data collection
experiment as described below.

SherLock is a data collection agent which collects data from a
wide variety of low privileged monitorable features (hardware
and software). The collected data is stored temporarily on

Figure 1: A conceptual overview of the data collection experi-
ment. Moriarty performs malicious activities and leaves a log
consisting of clues (entries). SherLock collects a wide range of
data from low-privileged monitorable features, along with Mo-
riarty’s clues, and periodically uploads everything to a server.

the device and then batch uploaded to a server when WiFi
connectivity is available. The server stores the data in a Hive
database on a Hadoop cluster.

Moriarty is a benign application paired with a malicious be-
havior. Both the benign application and its malicious behavior
are changed every few weeks. Moriarty logs both the benign
and malicious activities it performs. We refer to Moriarty’s log
entries as clues. Moriarty leaves clues on the device for Sher-
Lock to collect. The clues serve as explicit labels for the time
series dataset collected by SherLock. In February 2015, 30 vol-

unteers were provided with Galaxy S5 smartphones with Sher-
Lock installed. Then, one year later, 20 more volunteers joined
the experiment and all 50 volunteers had Moriarty installed on
their smartphones. None of the devices were rooted. The vol-
unteers where required to use the provided device as their sole
cellphone for at least two years. The volunteers were required
to open the Moriarty application and use it at least once every
few days for a few minutes (e.g., if Moriarty happened to be a
game, then the volunteers would be required to play it). The
volunteers were also asked to complete a survey. The survey
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Figure 2: Sample results from the volunteer survey.
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contained 118 questions about the volunteer’s daily life, device
usage, and security awareness. A sample of the results is
presented in Figure 2. The survey results show that volunteers
are diverse in their habits and experiences. The complete
survey results are available online with the SherLock dataset.
The basic selection criteria for a volunteer was: (1) is be-

tween the ages 10 and 75, (2) has at least two years smartphone
experience, (3) downloads on average at least one new app
every two months, (4) has WiFi connectivity at home, and
(5) uses a smartphone on a daily basis. From the candidates,
we selected volunteers from at least three different geographic
regions. All volunteers were given the same model phone (S5)
to enable inter-user data analysis. In other words, so that we
can capture the behavior of each malware under the context
of different users using the same hardware as a baseline.
We will now elaborate on the two smartphone agents, fol-

lowing which we will present the version release timeline.

2.1 The Smartphone Agents
2.1.1 SherLock: Data Collection Agent
Framework. The SherLock data collection agent is based
on the Google Funf framework [22]. The Funf Open Sensing
Framework is an extensible sensing and data processing frame-
work for mobile devices, developed by the MIT Media Lab.
Funf was not designed for intense frequent feature monitoring,
such as computing statistics on motion sensors. Therefore,
we had to make modifications to the framework’s processing
pipeline in order to improve stability and reliability. More-
over, we added probes to the framework, such as a probe that
collects statistics on all running applications. The source code
for the SherLock agent, along with its modifications and its
complete version history, is available online with the dataset.
In the Funf framework, monitorable features are referred

to as sensors. Funf allows for developers to define groupings
of sensors such that they will be sampled together at roughly
the same time. These defined groupings are referred to as
probes. A probe is activated (sampled) according to a configu-
ration provided to the Funf’s scheduler. For example, a probe
that senses motion can be triggered once every five seconds
or whenever some specific event occurs (e.g., the press of the
home button). Sensors can retrieve data from either physical
or virtual sources (e.g., external temperature or memory con-
sumption). In general, there are two types of sensors: PUSH
and PULL. PUSH sensors are event-based, such as sensing
when an SMS arrives or when the screen is turned on. PULL
sensors are collected periodically, such as by sampling the
CPU utilization or the device’s acceleration.

The data collected by SherLock is stored temporarily on the
volunteer’s device as a text file in JSON format. Once the file
reaches 500MB, it is zipped to ∼50MB. Eventually, once the
user connects to WiFi, all of the zip files temporarily stored
on the device are uploaded to our server.

Probes. SherLock has seven probes for the PUSH sensors
and five probes for the PULL sensors (described in Tables
8 and 9 in the appendix). Overall, there are many sensors
divided amongst just a few probes. The probes were planned
this way in order to fuse as many sensor records as possible to
individual timestamps. This approach is advantageous when
dealing with a large time series datasets because it minimizes
the number of JOIN operations required on the final database
when producing datasets. The most frequently sampled PULL
probe is T4, sampled once every five seconds. Each time the

T4 probe is triggered, three software sensors are sampled. One
sensor collects global features on the device’s utilization and
statistics down to the Linux level. The second collects statis-
tics and Linux level features from each running application.
The third collects features regarding the battery and power
consumption. The Linux level features are obtained from the
Linux virtual /proc directory which is accessible on unrooted
Android phones. The information collected by T4 ’s three
sensors can be found in Table 10 of the appendix.

Battery Consumption. The SherLock agent consumes a
significant amount of battery power, because it samples many
different sensors at a relatively high frequency. It is important
that the devices have a normal battery life, otherwise the vol-
unteers might leave their phones tethered to the wall charging
for most of the day. This would affect the context and usage
of the device captured in the collected data. To solve this
issue, the volunteers were provided with a protective case that
quadrupled the original battery capacity.

The fact that SherLock has high battery consumption does
not mean that an algorithm developed with the SherLock
dataset will be impractical. This is because:

1. The point of the SherLock experiment is to exhaustively
collect as much information as possible in order to best
identify the most effective features for different tasks.
Therefore, algorithms based on the SherLock dataset
will likely use a small subset of the sensors collected, and
thus consume significantly less power.

2. Cost-aware data acquisition algorithms may be used to
collect the same information more efficiently [23–25].

3. Motion sensors, which consumed much of the power, are
becoming more efficient.

The last point has become evident with the growing popularity
of wearable computing. For instance, the 2015 Freescale ac-
celerometer (MMA8452Q) is approximately 63%more efficient
than it was in 2012 (MMA8450Q)2.

2.1.2 Moriarty: Malicious Behavior Agent
Framework. Moriarty is an agent that perpetrates attacks
on the user’s device while creating labels for the SherLock
dataset. The attacks perpetrated by Moriarty are based on
the following attack model: (1) A benign application is ei-
ther initially given or repackaged to include additional code
(spyware or some other malware). (2) The victim installs the
app from a marketplace without realizing the consequences
of the requested permissions. Given this model, we note that
Moriarty does not need to exploit vulnerabilities on the device
in order to perform its malicious activities.

In terms of its framework, Moriarty is a benign application
to which a malicious behavior has been added, for example, a
puzzle game that steals the user’s contacts. Every few weeks
Moriarty is updated to a new version (app + behavior) via
the Google Play store. If the user forgets to use the Moriarty
application for three days, then SherLock reminds the user to
do so. For ethical reasons, each version of Moriarty does not
contain actual malware code from the wild but rather contains
a behavioral copy of a malware sample found in the wild. In or-
der to protect the volunteer’s privacy, all data sent byMoriarty
over the Internet is scrambled (corrupted) before transmission.

2http://www.nxp.com/files/sensors/doc/data_sheet/
MMA8450Q.pdf and MMA8452Q.pdf
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Benign 
Application 

Malicious 
Behavior Description Malware 
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1 Puzzle 
Game 

Contacts 
Theft 

Steals, encrypts, and transmits all contacts 
stored on the device. 

SaveMe/ 
SocialPath 

2 Web 
Browser Spyware Either: 1) spies on location and audio, or  

2) spies on web traffic and web history. 
Code4hk/ 

xRAT 

3 Utiliz. 
Widget 

Photo 
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Steals photos that are taken and in storage, 
and takes candid photos of the user. 

Photsy/ 
Phopsy 

Q2 

4 Sports 
App 

SMS 
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that contain codes and various keywords. 
Volunteers periodically enter one of our 
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Birds Phishing Makes fake shortcuts and notifications to 

login to Facebook, Gmail, and Skype. Xbot 

6 Game Adware Gathers information and places ads, popups and banners. 

Q3 

7 Game Madware Gathers private information and places shortcuts, 
notifications, and attempts to install new applications. 

8 Lock 
Screen 

Ransom-
ware 

Performs either: 1) lock screen 
ransomware, or 2) crypto ransomware. 

Simplocker.A/
SLocker 

9 File 
Manager 

Click-
jacking 

Tricks the user to activate accessibility 
services to then hijack the user interface. 

Shedun 
(GhostPush) 

Q4 

10 None Device 
Theft 

The volunteer has a friend ‘steal’ his/her device in 
various ways, and records the moment when. 

11 Music 
Player Botnet Either performs: 1) DDoS attacks on 

command, or 2) SMS botnet activities 
Tascudap.A/ 
Nitmo.A… 

12 Web Media 
Player 

Recon. 
Infiltration 

Maps the connected local network and searches for files 
and vulnerabilities. 

Re
le

as
e 

in
 2

01
6 

Ve
rs

io
n  

Table 1: The Moriarty releases for 2016
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Figure 3: Changes in Moriarty v3’s memory consumption,
as indicated by the recorded clues.

Table 1 presents the versions of Moriarty that have been
released so far. The table also lists the malwares taken from
the wild on which each version is based. In total, there will be
at least 12 versions of Moriarty by the end of 2016. Note that
v10 does not follow the attack model since it is an experiment
platform for capturing device theft behaviors. In that version
the volunteer has a friend“steal” and use the in various man-
ners. The labels recorded by Moriarty in this version indicate
the moment the device was stolen.

Clues. The explicit labels Moriarty creates for the SherLock
dataset are referred to as clues. Moriarty creates a clue for
each significant benign and malicious action it performs. A
benign action is one which the application does as part of its
regular usage (e.g., a game makes a new view).

WhileMoriarty is running, it can be in one of twomodes: ma-
licious or benign. While in malicious mode Moriarty performs
its malicious activities in parallel with its benign activities.
In benign mode, Moriarty only performs benign activities.
The purpose of the benign mode is to provide clean (normal)

"Action": "App Mode Change", 
"ActionType": "benign", 
"Details": "App entered onCreate()", 
"TimestampMili": 1453824930840, 
"SessionType": "malicious", 
"Version": "3.0", 
"SessionID": 1 
 
"Action": "Stealing photos", 
"ActionType": "malicious", 
"Details": "Found new photo from the gallery", 
"TimestampMili": 1453825161930, 
"SessionType": "malicious", 
"Version": "3.0", 
"SessionID": 1 
 
"Action": "Sending photo", 
"ActionType": "malicious", 
"Details": "Sent photo successfully  
 (duration [msec],size [bytes]);18640;4154704", 
"TimestampMili": 1453825180575, 
"SessionType": "malicious", 
"Version": "3.0", 
"SessionID": 1 

Figure 4: Three examples of clues left by Moriarty v3.

data that can be separated and used as a comparative dataset
during the development of anomaly detection algorithms. If
Moriarty’s malicious behavior runs as a background service,
the mode changes every 24 hours; otherwise it toggles each
time the user runs the application.
A session is the duration that Moriarty is in benign mode

or malicious mode. All clues recorded during a session are
given a session ID. The session ID can be used to extract the
desired mode or behavior from the time series data. In cases
where Moriarty has two malware behaviors (i.e., v2,v8 and
v11) each behavior is performed in different sessions (i.e., they
do not overlap in time).

In Figure 4 examples of clues fromMoriarty v3 are displayed.
In this version, Moriarty was a widget that displayed the
current CPU andmemory utilization to the user while covertly
taking front-facing photos, stealing photos from storage, and
sending them offsite. The trace of the three clues belongs to a
single session that is malicious. Note that in the first clue the
SessionType is malicious, but the Action itself is benign (i.e.,
part of the application’s legitimate behavior). TheDetails field
elaborates on the action taken and sometimes includes specifics
such as the traffic volume, duration, message content, and so on.
All of these fields are parsed into the final SherLock dataset.

Moriarty’s activities are captured by the wide variety of
sensors that SherLock samples. The clues help explain the
captured data. As an example, Figure 3 plots the changes in
Moriarty’s resident set size (RSS) memory consumption, and
the timestamps of Moriarty’s clues.

2.2 Version Release Timeline
The data collection experiment was divided into four phases:

Pilot, Stage 1, Stage 2, and Upkeep (Figure 5). In the Pilot
phase, seven volunteers were provided with Galaxy S4 de-
vices and initial prototypes were distributed and iteratively
improved. In Stage 1, 30 volunteers were provided with a
stable version of SherLock and a Galaxy S5 smartphone. At
first, the volunteers were provided with a battery case that
extended the internal battery, and a few months later they
were provided with additional battery cases that charge the
internal battery from an external battery. These technical dif-
ferences are important to note, because the latter case charges
the phone’s internal battery as if it were plugged in to the wall,
and thus affects the power consumption statistics.
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(v0.1) Prototyping begins (v1) Foundation: basic probes and data upload framework
(v1.01) New probes: WiFi, bluetooth, telephony, screen on/off

(v1.1) New probes: hardware, audio, userPresent
(v1.2) Local periodic compression of data, added covariance to motion and BSSID to WiFi probes

(v1.2.1) Motion sample rate changed from "fastest" to "game" (better stability)
(v1.2.2) Improved uploader (separate intent service)

(v1.2.3) Orientation and rotation added to motion probe, CPU clock Hz added to T4
(v1.3) New Probe: Android broadcast intent

(v2) SherLock now managed from Google Play store, Moriarty probe added
(v2.1) Fixed Funf alarm scheduler for Android 5.0

(v2.1.4) Data upload bug fixes
(v2.2) New Probe: App Packages, Wifi connectivity added to T4

(v2.3.x) New Linux level data fields added to T4

(v1) Game1 - Contact Theft
(v2) Web Browser - Spyware: Audio, Location

(v3) Utilization Widget - Photo Theft
(v4) Sports App - SMS Bank Thief

(v5) Angry Birds - Fake Icon/Notification Phishing
(v6) Game - Adware Library

(v7) Game - Madware Library
(v8) Lock Screen - Ransomware

(v9) File Manager - Clickjacking
(v10) Device Theft Simulations

(v11) Music Player - Botnet
(v12) Web Media Player - Recon.

7 S4s Distributed to Volunteers

30 S5s Distributed to Volunteers 20 S5s Distributed 
to Volunteers
Battery Cases Upgraded: 
8500 MAh INTERNAL battery

Battery Cases Distributed: 
4000 MAh INTERNAL battery

Battery Cases Distributed: 
8000 MAh EXTERNAL battery

Battery Cases Distributed: 
8000 MAh EXTERNAL battery

2015 2016 2017
SherLock

Moriarty

Logistics

Stage 1 Stage 2 UpkeepPilot

Figure 5: A timeline that summarizes the phases, major events, and agent version releases during the data collection experiment.

In Stage 2, Moriarty was deployed and 20 additional volun-
teers were added (for a total of 50 Galaxy S5 devices). Both
agents were then managed through the Google Play store as
opposed to manual APK updates. At that point all volun-
teers were supplied with a higher quality battery case that
extends the internal battery (Zerolemon 8500MAh). In the
Upkeep phase, further updates to SherLock and Moriarty will
be sparse, but the data collection will continue until at least
January 2018 (for a total of three years of data collection).

During Stages 1 and 2, SherLock was updated several times.
These updates were performed to fix bugs, improve stability,
and add new probes/sensors. A detailed version history for
both Moriarty and SherLock is available with the dataset.

3. THE SHERLOCK DATASET
In this section the contents of the SherLock dataset are

described in detail. We also identify uses of the dataset for the
development of security solutions, as well as other research
possibilities.

3.1 Description of the Dataset
The dataset currently contains approximately 600 billion

data points in 10 billion data records. The dataset is currently
growing at a rate of approximately 670million records amonth.
To manage the big data, the dataset is stored on a Hadoop
cluster as a Hive database. The volunteers were given the
option to leave the experiment at any time, however only two
volunteers left the experiment since it has begun. Together,
the long-term volunteer participation and the high sensor
sample rates make this dataset unique. A full comparison to
other existing datasets is presented later in section 5.

The SherLock dataset is organized into data tables, one for
each SherLock probe (Tables 8 and 9). Some of the sensors
belonging to these probes return a variable number of records
when they are sampled – specifically, the WiFi, Bluetooth,
and Local App Stats sensors, since they perform surveys over
a variable number of entities. The data records from these
sensors cannot be stored in the data tables of their parent
probes. Therefore the data from these sensors are stored in
separate tables.

Every data table has the fields uuid, userid, and version.
uuid is the Unix millisecond timestamp of when the record

 Data Table Number of Records 

PU
SH

 

Call Log 443,175 
SMS Log 245,693 

Screen Status 2,608,766 
User Presence 685,910 

Broadcast Intents 95,471,166 
App Packages 108,612 

Moriarty 650,625 

PU
LL

 

T0 242,762 
T1 14,050,156 

WiFi 54,654,980 
Bluetooth 2,945,238 

T2 43,383,170 
T3 85,861,126 
T4 180,012,794 

Application 9,271,351,994 
 Total: 9,752,716,167 

Table 2: The data tables and number of data records in the
SherLock dataset as of August 2016.

was collected. userid is a unique identifier for the volunteer to
whom the record belongs. Finally, version is the agent’s soft-
ware release code (see Figure 5). The SherLock’s 15 data tables
with their current number of records are listed in Table 2.

3.2 Ethical Concerns
The SherLock data collection experiment has passed Ben-

Gurion University’s Ethics Committee. To protect the privacy
of our volunteers, several concerns were addressed.
Data Transmissions. In order to protect the privacy of
our volunteers, all data transfers from the SherLock agent to
our servers are encrypted and all data sent by the Moriarty
malicious agent is scrambled before transmission.

Identifiers. We have received permission from the volunteers
to allow others to use their data for research, provided that we
anonymize their data. Therefore, network identifiers such as
SSIDs, cell tower IDs, and MAC addresses have been hashed.
Moreover, the phone numbers in the SMS and call logs have
been hashed as well.

Geolocation. The geolocation of each volunteer has been
anonymized by performing k-means clustering over the vol-
unteer’s longitude, latitude, and altitude. This approach was
proposed in [26] and is a method that achieves k-anonymity
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Figure 6: A user’s longitude and latitude after k-means
clustering (k=5) when using only the spatial features (left),
and also the cyclic day of week features (right).

via generalization. This means that those who receive the
dataset will have the volunteer’s location in terms of cluster
IDs. In order to provide various degrees of granularity, we
repeated the clustering for k={5,10,25,50,75,100}. Time has
a contextual importance to a user’s geolocation. For example,
being at work on the weekend is a different situation than be-
ing at work during the week. To provide this spatio-temporal
information in an anonymous manner, we provide additional
clusterings using both geolocation and temporal features with
k={5,25,100}. Specifically, the temporal features we consider
are cyclic time of day, and week [27]. Cyclic time is defined as,

tc≡
(
cos

(
2πt

T

)
,sin

(
2πt

T

))
(1)

where T is some cycle of time, and t is a point in that cy-
cle. For example, when considering a daily cycle, we would
take T =24 such that the time 11:39pm would be interpreted
as t = 23.65. Thus, t would be interpreted in cyclic time
as tc = (0.9958,−0.0915). The advantage of cyclic time is
that it captures temporal contexts better than a single scalar
value. This is especially true when considering Euclidean dis-
tance between the hours t1=0.01 and t2=23.9. In this case,
deuclid(t(c,1),t(c,2))�deuclid(t1,t2). Figure 6 shows the differ-
ence in clustering spatial features with and without the cyclic
temporal features. In summary, by providing the volunteer’s lo-
cation via spatial and spatio-temporal cluster IDs, we provide
enough contextual information to make inferences using the
collected data without compromising the volunteer’s privacy.

3.3 Dataset Usages
The following are some possible cybersecurity usages for the
dataset:

Malware Detection & App Profiling. The dataset can
be used to detect malware and profile applications via implicit
application activity (network traffic, CPU/memory utilization,
etc.). A survey which maps the implicit detection of malware
to monitorable features smartphones is available in [13]. More-
over, the dataset has many contextual features (such as the
device’s location, motion, and battery consumption) that can
be used to improve the recognition of malicious intents.

With regard to malware samples in the dataset, researchers
have two options: (1) each version of Moriarty can be ana-
lyzed as a different type of malicious application (i.e., spyware,
adware, etc.), or (2) the hash values of installed applications’
APKs can be used to detect real malware on the volunteer’s
devices. The hash values are provided by the App Package

probe whenever the application is installed or updated, and
VirusTotal3 can be used to map the hashes to known malware.
We found that 3.5% of applications on our volunteers’ devices
had a virus signature, and ∼1% had at least three positive
detections from different anti-virus solutions.

Malware Analysis. With the APK hashes and version of
Moriarty, it is possible to use the dataset to analyze the im-
pact different malwares have on the device. Specifically, it is
possible to see what low-privileged monitorable features are
affected (and when) by the malware’s activities. This analysis
may be used to help develop an efficient way of detecting
malicious behaviors from low-privileged monitorable features,
obtainable without root privileges.

Continuous User Authentication. The dataset can be
used to develop continuous authentication algorithms. This
is because each volunteer participates in the experiment for
over a year, an thus the data presents the inherent challenges:
concept drifts, behavioral noise, and false positiveswhen the de-
vice is shared with others. Researchers can use the dataset for
this task in one of two ways: (1) by using the labeled data from
Moriarty v8 inwhich the volunteers participate in simulated de-
vice thefts, or (2) by slicing a volunteer’s data at one point, and
then attaching another volunteer’s data as the continuation.

Context-based Security. The dataset can be used to de-
rive the general context of the user and his/her device, as
well as the specific contexts in which events are performed.
These contexts can be used to implement and evaluate differ-
ent context-based security mechanisms. For example, data
leakage can be detected by analyzing the context in which
information is sent from the device. For example, an SMS
that is sent while the screen is off, the device is motionless,
or while the user is driving is likely to be the result of and
automated act of malware. Moreover, the contexts may also
be extracted as a rule-set as a means of improving resource
access control (i.e., only allowing applications to access certain
resources under acceptable pre-defined contexts).

Security Related Statistics. The dataset can be used to
derive security-related statistics. For example, a score that
reflects a user’s security awareness can be computed based on
the user’s WiFi usage patterns, installed applications (pos-
sibly malware) and their permissions, and the user’s general
behavior. Each volunteer completed a survey which included
45 security-awareness questions. The survey responses can be
used to confirm the calculation of these scores or contribute
to their calculation.

Feature Monitoring & Extraction. Thedataset contains
data sampled at a relatively fast rate (with respect to the lim-
itations of the modern smartphone). Thus, researchers who
are investigating security algorithms can also consider the
trade-off between sample rates (more power consumption)
and accuracy. Furthermore, feature selection can be per-
formed to reveal the best features for a particular problem, or
to provide an analysis of an application or user’s behavior.

We note that this dataset can be used for research in domains
that are not strictly security related. For example, context
aware recommender systems, event prediction, user person-
alization and awareness, location prediction, and more. The

3https://virustotal.com/
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Figure 7: Screenshots of Moriarty. Left: v1, puzzle games.
Right: v2, a web browser.

dataset also offers opportunities that aren’t available in other
datasets. For example, the dataset contains the SSID and sig-
nal strength of the connected WiFi access point (AP) which is
sampled once every 5 seconds by the T4 probe and is captured
every second or less by the Broadcast Intents probe. This data
can be used to infer the volunteer’s movement and activities
while indoors or as contextual information for some other task.
A full comparison between the data collected in the SherLock
dataset and other publicly available datasets is discussed later
in section 5.
It is important to note that neither root privileges nor

changes to the AndroidOS are required tomonitor the features
found in the SherLock dataset (as of Android 5.0). Therefore,
solutions based on this data are applicable and accessible to
a large portion of the Android device population.

4. PRELIMINARY RESULTS
4.1 Malicious Behavior Analysis
4.1.1 Overview
Intuitively, each type of malware affects the device’s re-

sources differently. In [13], the authors present a mapping
between types of malwares and the sensors that can be used
to detect them. However, without a real world dataset to
compare to, some features and their importance may be over-
looked. In this section, we examine the usage of the SherLock
dataset as a means for analyzing the impact malicious code
has on low-privileged sensors. Specifically, we focus on the
system’s resource and battery sensors.
In this analysis we examine two versions of Moriarty sep-

arately: versions 1 and 2. In v1, Moriarty was a puzzle game
that would periodically steal the user’s contacts and transmit
them to a web server. In v2, Moriarty was a web browser
that, depending on the session, would send information to a
web server, either: (1) the user’s location every 60 seconds,
recorded audio from the entire session, and every accessedURL
(upon clicking), or (2) the user’s contacts, bookmarks, device
accounts, and the last two months of web history after 30 sec-
onds. Figure 7 presents screenshots from Moriarty v1 and v2.
We remind the reader that Moriarty has benign sessions

during which all activities performed by the Moriarty applica-
tion (e.g., the web browser in v2) are benign (with no added
malicious behavior).

4.1.2 Evaluation Setup
One dataset was created for each version. Each dataset

represents the resource utilization of Moriarty and the entire
device at the moment of each of Moriarty’s malicious and
benign actions. The dataset for Moriarty v1 was made in the
followingway: For each volunteer, the volunteer’s v1 clues were
extracted. Then, for each clue, the instance 〈�x,y〉was added to
the dataset. �x is a vector containing the numeric values of the
T4 probe thatwere sampled closest to the clue’s timestamp, y∈
{0,1} is a nominal label indicating whether the clue’s Action-
Type was malicious or benign. The instances were obtained by
performing the relational JOIN between theApplication andT4
data tables over the uuid field (collection timestamp), where
the application_name = ‘Moriarty’ and version = ‘1.0’.
The same process was repeated to create the dataset for v2.

In the end, each observation �x contained 57 features. Some
of the features from T4 were not included, since they were
added to SherLock after Moriarty v2 (see the Figure 5).

4.1.3 Evaluation Results
To determine the impact Moriarty v1 and v2 have on the

features, we examine each feature’s dcorrelation and informa-
tion gain (IG) to the labels. Features with a higher correlation
than others are consistently affected by the malicious actions.
Similarly, a feature with a higher IG indicates that the feature
is better at discriminating between the benign and malicious
actions [28].
Figure 8 lists the features used in datasets v1 and v2 with

their IG (left) and correlation (right) to the label. The IGs of
the traffic features in the v1 dataset are not a surprise, since
the game (the benign behavior) does not use the Internet.
However, it is interesting to note the battery_temperature
has a correlation, even greater than the battery_voltage or
battery_plugged features. This is a good indication that
although the SherLock agent affects battery consumption, the
battery consumption data in the SherLock dataset can still be
used to model app behaviors. Finally, the otherSharedDirty
memory feature has a low correlation but a high information
gain. This is because the dirty memory levels are noisy with
respect to the malicious and benign activities. However, a
large increase is a strong indication that something malicious
has likely occurred.

With regard to the v2 dataset, importance has both a high
correlation and IG and is therefore strongly affected by the
malware. The importance feature is an Android property
that indicates the relative importance given by the system to
the application [29]. This strong relationship is likely due to
the spyware’s activities relating to location tracking and audio
recording. Thus, importance alone may be a good feature for
detecting spyware activities.
Lastly, we note that for both datasets, the private and

shared memory features ranked consistently higher than the
others. This is a good indication that malicious behaviors in
general can be detected implicitly by monitoring the various
memory utilization features. This is an interesting prospect,
and we encourage further research in this domain.

4.2 Continuous Authentication
4.2.1 Overview
One in ten smartphone owners in the US are victims of

phone theft [30], and 36% of owners do not secure their de-
vices [31]. One way to passively secure a smartphone is to
use continuous authentication (CA). CA is the process of
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Figure 8: The information gain and correlation of the features
to the labels in the v1 and v2 datasets.

continuously examining the current user’s behavior and then
subsequently de-authenticating the user when suspicion arises
(e.g., by locking the device) [32].

Some of the inherent challenges of developing CA algorithms
are as follows: (1) the sensor stream is very long and possibly
unbounded, (2) the user’s behavior is noisy, and 3) concept
drifts and gradual changes in the data’s distribution inevitably
exist [33]. The SherLock dataset contains motion sensor data
that has been continuously sampled from tens of users for over
a year. Therefore, the dataset captures the challenges listed
above, and is therefore a good resource for the development
and evaluation of CA algorithms.

4.2.2 Evaluation Setup
Consider the following attack scenario. The attacker does

not regularly handle a certain user’s smartphone. The attacker
wants to either steal or access an application on the user’s
smartphone. To do so, the attacker waits until the phone is
left unattended on a table and then picks it up and begins to
use it. In this scenario we assume that the attacker is familiar
with the device and its interface.

To demonstrate the value of the SherLock dataset, we have
developed a simple CA algorithm for the above scenario and

evaluated it using the dataset. For this evaluation we simu-
lated device thefts from stationary surfaces (e.g., a table top)
and examined the device motion patterns from the T3 probe.
Specifically, we extracted three motion features from the ac-
celeration, harmonics of the acceleration, and the gyroscope.
Table 3 summarizes the features taken. The magnitudes were
calculated as

√
x2+y2+z2 where x, y, z are the values taken

from the respective axis.

Feature Description Units 
 Magnitude of average acceleration m/sec2 

 Magnitude of average gyroscopic rotation rad/sec 
 Magnitude of strongest harmonics Hz 

Table 3: The features extracted from the SherLock dataset
for the continuous authentication dataset.

The datasets for the evaluation were created from the Sher-
Lock dataset in the following way. Let user-A be the user we
are trying to protect and user-B be the thief. A training set
was formed with a 31 day data stream of user-A’s motion data
(180,000 records).

The test set was formed by: (1) Taking a segment consisting
of user-A’s next 20,000+ observations, up until the moment
that the device was placed stationary on a flat surface (e.g.,
a table) for a period of time. (2) Taking a segment of 30,000
observations from user-B’s data, from the moment that user-B
lifted up his/her phone from a stationary surface. (3) Join-
ing user-A’s segment with user-B’s segment to form a single
nine day data stream. This process was repeated for several
different train and test users.

The continuous authentication algorithm we used is a three-
step process where (1) the extracted motion features are fed
one-by-one into a stream clustering algorithm, (2) the sequence
of outputted cluster IDs are applied to a Markov chain to com-
pute transition probabilities, and (3) the anomaly scores are
computed with the outputted transition probabilities.
For the stream clustering algorithm, we used pcStream,

since it is effective at dynamically detecting situations in data
streamswhile accounting for concept drift [34]. The input of pc-
Stream is an unbounded numerical data stream, and the output
is a sequence of nominal labels, each indicating the respective
situation. A situation can be viewed as a distribution, or clus-
ter, in geometric space that may overlap with other situations.
For the Markov chain, we used an extensible version that

can be incrementally updated [35]. The model captures the
temporal behavior of the outputted sequence of labels, i.e., the
transitions between the situations exhibited by the stream.

For anomaly scoring, we computed the average transitional
probability over a sliding window of length k. More formally,
let M be the Markov chain trained on a single user’s data
stream where M [si,sj ] is the transitional probability between
the situation si and sj , and let xt be the present assigned
situation at time t. Let St =x(t−k),...,xt be the sequence of
the last k observed clusters until time t. Finally, the anomaly
score of St is calculated by

scoreM (St)=
1

k−1

k−1∑
i=1

M(St[i],St[i+1]) (2)

4.2.3 Evaluation Results
In order for this evaluation to be fair, all of the phones must

be the same hardware/model. The Galaxy S5 phone series has
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Figure 9: The Markov chains of Users 1 and 8.

User 
FRR FRs Over Test Sets Average Detection Delay 

Mean Mean Std. Minutes Samples 
1 7.86E-05 1.571 2.225 1.679 7.716 
2 4.29E-05 0.857 1.069 1.821 8.284 
3 2.29E-04 4.571 9.624 1.643 7.572 
4 4.29E-05 0.857 1.574 1.179 5.716 
5 0 0 0 0.25 2 
6 4.36E-04 8.714 11.161 6.643 27.572 
7 2.81E-03 56.143 101.570 3.143 13.572 
8 0 0 0 0.25 2 

Table 4: Results from the continuous authentication
experiment using the SherLock dataset.

different models such as those with either quad or octa-core
CPUs. Therefore, for this evaluation, we only used the data
of eight volunteers, all having the exact same model of S5.
Figure 9 plots two of the users’ Markov chains using the

graph visualization tool Gephi [36]. In this figure, each vertex
is a pcStream situation (state in the Markov chain), and an
edge indicates an observed transition. The size of a vertex
indicates the context’s in-degree (popularity), the color of a
vertex indicates the context’s community using the algorithm
from [37], and the color of an edge indicates the transition’s
probability (darker is more probable). The figure illustrates
that each user has distinct situational behaviors as captured
by their locomotion.
The results of using (2) on the device theft datasets are

presented in Table 4. The table shows that the algorithm has
a low false reject rate (FRR) with an average detection delay
of two minutes (eight observations). Faster sampling rates
may improve these results. The proposed algorithm is only
a demonstration of how the SherLock dataset can be used for
cybersecurity research. We encourage researchers to use the
SherLock dataset to improve results further.

5. RELATED WORKS
In the past, smartphone datasets have been collected for

research in a variety of domains. For example, activity recog-
nition, reality mining, and security. These datasets vary in the
scope of the data collected and the duration of the experiment.
In most cases the datasets were not long-term (i.e., contained
less than three months of data per participant), were crafted
with a specific domain problem in mind, and were not publicly
released online.
In Table 5 we present a comparison between the existing

long-term smartphone datasets that have been made publicly

available. From Table 5 it is clear that the SherLock dataset
rivals the other datasets with respect to the variety and sample
rates. The Device Analyzer (DA) dataset rivals the SherLock
dataset with regard to the number of users, however, the
SherLock dataset exceeds the DA dataset in the following
aspects: Temporal Resolution, Motion & Application Sensors,
and Explicit Malware Activity Labels. We will now compare
each of these aspects in detail.

5.1 Temporal Resolution
In the DA dataset, the PULL sensors are probed once every

five minutes. In comparison with the SherLock dataset, the
PULL sensor with the lowest sample rate (that does not sample
configurations) is T1 at once every minute, and the highest is
T4 at once every five seconds. We also note that we collect the
current WiFi signal strength (RSSI_CHANGED) via the Broad-
cast Intent probe approximately every second although it is a
PUSH sensor. A complete comparison is available in Table 6.
With regard to the application sensors, in the DA dataset

the fiveminute interval is too long to catchmalicious behaviors.
This is because these behaviors can occur within seconds. Fur-
thermore, information can be totally lost from the application
probe, since a user can open and close an application within
that window of time. In the SherLock dataset we sample the
application statistics every five seconds.
We define temporal coverage as the percent of time that

a sensor is being sampled at the highest frequency. The DA
dataset samples the motion sensors for a duration of one sec-
ond every five minutes. Therefore, the temporal coverage of
DA’s motion sensor data is ∼0.003%, compared to ∼26.666%
for SherLock. Table 7 presents a comparison between the
datasets’ temporal resolutions.

The DA’s motion sensor coverage is too low to be properly
used as a contextual feature for an application’s behavior (e.g.,
detecting data leakage by modeling the accompanying device
motion). Moreover, security solutions that consider a device’s
motion require considerably large temporal coverage. For
example, in continuous authentication an attacker can do a
significant amount of damage (in terms of data theft) within
the five minute gap of time between samples.

The DA dataset does include intervals in which sensors are
sampled at a high frequency (2 Hz). During these intervals
he following are sampled: the screen lock state, last started
app, global network traffic stats, and CPU time in states for
each core. However, these intervals are activated randomly
only 10% of the time, only while the screen is on, and are no
longer than five minutes in duration. Therefore, this data is
too sporadic and too general to accurately capture both the
user and applications’ behaviors.

5.2 Motion & Application Sensors
The SherLock dataset has more motion and application re-

lated information than theDAdataset. For themotion sensors,
DA only computes the mean and standard deviation of the cap-
tured samples. In addition to these features, SherLockprovides
the median, middle sample, covariance between axes and FFT
statistics. The FFT is particularly useful, since it has been
shown to improve inference based on activity recognition [43].
DA’s application statistics do not provide a large number

of Linux level features. For example, the state (sleep, zom-
bie, etc.), number of active threads, scheduler priority, and
various memory features. This information is highly useful
for observing an application or service’s behavior. In order
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Dataset Objective # of users Devices Launch Duration Feature Sample Rates 

SherLock  
Implicit cybersecurity 

& general mobile  
phone data collection 

50  
(national) 

Samsung 
Galaxy S5 2014 ongoing 

Device settings/mode, running applications, audio features, 
BT/WiFi probe, network stats, telephony, location, power, 

screen on/off, motion, call/SMS log, Moriarty activity, broadcast 
intents, IO interrupt counts, others. 

Fastest:  
every 5 seconds 

Most data:  
every minute 

Device 
Analyzer 

General mobile  
phone data collection 

30,443 
(international) 

Heterogeneous: 
Android 2011 ongoing 

Device settings/mode, running applications, audio features, 
BT/WiFi probe, network stats, telephony, location, power, 

screen on/off, motion, call/SMS log, others. 
Every 5 minutes 

LiveLab 
Project 

Measuring wireless 
networks and 

smartphone users 
34 (students) iPhone 3GS 2010 1 year App, WiFi, cellular, device activity, call/SMS logs, battery, 

network traffic, others. Every 15 minutes 

LDCC Social sensing 170 (locals) Nokia N95 2009 2 years Location, call/SMS log, BT/WiFi probe, telephony, motion, 
audio, app events, calendar entries, phonebook entries 

Every 60-300 
seconds 

Social 
Evolution Social sensing 80 (students) unknown 2008 1.75 years BT and WiFi signal strength, location labels, call/SMS logs. Every 6 minutes 

Reality 
Mining  Social sensing 100 (faculty 

and students) Nokia 6600 2004 9 months Mobile and BT signal strengths, location, call/SMS logs, 
running Nokia applications. Every 6 minutes 

Table 5: Existing long-term smartphone datasets that are publicly available: SherLock, Device Analyzer [38], Live-Lab [39],
LDCC [40], Social Evolution [41], and Reality Mining [42].

Sensors 
Sample rate: every… 
SherLock DA 

Location, Cellular, WiFi, 
Bluetooth, and Device Status T1: 5 seconds 

300 
seconds Motion Sensors T2: 10 seconds 

Light & Audio Sensors T3: 15 seconds 
Applications & Resource Utilization T4: 60 seconds 

Table 6: A comparison between the SherLock and Device
Analyzer dataset PULL sensor sample rates.

 SherLock  Device Analyzer  
Application 

Statistics 
Every 5 sec. 

(0.2 Hz) Every 5 min. 
(0.003 Hz) 

Probe 
Frequency 

Motion 
Sensors 

Every 15 sec. 
(0.067 Hz) 
4 seconds 1 second Probe Duration 

26.666% 0.003% Temporal 
Coverage 

Table 7: A comparison between the application and motion
sensor temporal resolutions in the Device Analyzer and
SherLock datasets.

to provide a full comparison, we have underlined the fields
in Table 10 of the appendix which are available in the DA
dataset. Overall, SherLock collects over five times more data
points from each application than DA. Moreover, we collect
useful global device information such as various IO interrupt
counts and all Android broadcast intents that occur.
In summary, the SherLock dataset provides both a higher

temporal resolution and a larger scope of sensors than the
DA dataset. The main reason for this is probably because
DA’s volunteers are not provided with extended batteries and
receive no compensation for participation.

5.3 Explicit Malware Activity Labels
The SherLock dataset provides explicit event labels that cap-

ture the activities of malware on the device (Moriarty’s clues).
To the best of our knowledge, there are no other published
smartphone datasets which offer explicit labels that capture
a wide variety of malicious behaviors. Moreover, we include
the hash of each installed application’s APK. This is valu-
able information, since the hash can be cross-referenced with

VirusTotal’s database in order to detect malwares that may
exist on volunteers’ devices. This extends the set of labeled
instances in the SherLock dataset for the purpose of the further
development of security algorithms. Lastly, v10 of Moriarty
captures simulated device thefts. This is valuable information
for developing continuous authentication solutions.

6. CONCLUSION
SherLock is the first publicly available long-term smart-

phone dataset designed for cybersecurity research. The dataset
offers a wide variety of event-based and time series data, sam-
pled at a rate that exceeds that of other publically available
datasets. Moreover, collection of this data did not require root
privileges or changes to the operating system, thus solutions
based on this data are applicable to a large number of Android
devices.

To demonstrate some of the dataset’s usages, we performed
a simple malware analysis using the explicit labels collected by
Moriarty, and showed how the SherLock dataset can be used
to evaluate continuous user authentication algorithms. We
encourage the research community and security professionals
to utilize this data for their research and development goals.

In the future, we plan to expand the experiment by adding
more volunteers and versions of Moriarty. This data, in paral-
lel with what is currently being collected, will open the door to
additional research opportunities for the research community.
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APPENDIX
A. DETAILED DESCRIPTION OF THE SHERLOCK DATASET

Table 8: A description of the PUSH probes and their contents.

Probe Num. 
Fields Description 

Call Log 5 Address, when, duration, outgoing or ingoing, and an indication if number is from user’s contacts. 
SMS Log 5 Address, when, outgoing or ingoing, and an indication if number is from user’s contacts and if the content contains a URL. 

Screen Status 2 Log of when the screen turns on or off. 
User Presence 1 Android USER_PRESENT intent log: a record of when the user begins interacting with the device. 

Broadcast Intents 3 All Android broadcast intents (events): changes in password, Bluetooth, network, RSSI, app packages, wallpaper, volume. 
Actions of button presses, picture/video taken, startup, shutdown, reboot, headset, phone ringing, notifications, TTS, and more. 

App Packages 11 Log of when applications are installed, updated, or removed: provides the app’s version, hash of the APK, and list of permissions. 
Moriarty 6 All clues left by the Moriarty malware agent. 

Table 9: A description of the PULL probes and their contents.

Probe Sample 
Interval Sensors Num. 

Fields Description 

T0 1  
day 

Telephony Info 15 Information on the current telephony configuration. 
Hardware Info 6 The device’s hardware configuration. 

System Info 5 Kernel, SDK, baseband, and general information. 

T1 1  
minute 

Location 15 {longitude, latitude, altitude, (anonymized via clustering)}, speed, and accuracy. 
Cell Tower 5 Cell tower ID, type, and reception info. 

Device Status 14 Brightness, volume levels, orientation, and modes. 
WiFi Scan 4 For each visible AP: identifiers, encryption, frequency, and signal strength. 

Bluetooth Scan 9 For each visible device: identifiers, device class (type), parameters, and signal strength. 

T2 15 
seconds 

Accelerometer 51 Statistics on 800 samples captured over a duration of 4 seconds at 200Hz. 
 

For each respective axis: mean, median, variance,  
covariance between axis, middle sample,  

FFT components and their statistics. 
A subset of these features is extracted from the orientation, rotation, and barometer sensors. 

Linear Accelerometer 51 
Gyroscope 51 
Orientation 9 

Rotation Vector 12 
Magnetic Field 51 

Barometer 16 

T3 10 
seconds 

Audio 21 Statistics over 5 seconds. 
Light 3 Luminosity 

T4 5  
seconds 

Global App Stats 98 Information on the CPUs, memory, network traffic, IO interrupts, and connected WiFi AP. 

Local App Stats 70 For each running application: statistics on CPU, memory and network traffic.  
Linux level process information from the system /proc folder. 

Battery 14 Configuration and statistics on power consumption and temperature. 

Table 10: The data points collected by the T4 probe every 5 seconds.
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rsslim Utime pgid  Inactive (file)   util. cpu 0,1,2,3 
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vsize Stime pid  Unevictable total cpu connectedWifi_level 
dalvikPrivateDirty cstime ppid  Mlocked tot_user wifi rx bytes 
dalvikPss cutime tpgid  HighTotal    tot_nice wifi rx packets 
dalvikSharedDirty guest_time flags  HighFree     tot_system wifi tx bytes 
nativePrivateDirty cguest_time wchan  LowTotal     tot_idle wifi rx packets 
nativepss num_threads exit_signal  LowFree      tot_iowait mobile rx bytes 
nativeshareddirty priority state  SwapTotal    tot_irq mobile rx packets 
otherprivatedirty starttime Importance (Android)  SwapFree     tot_softirq mobile tx bytes 
otherpss Nice importanceReasonCode (Android)  Dirty        ctxt mobile tx packets 
othershareddirty itrealvalue importanceReasonPid (Android)  Writeback    btime total rx bytes 
Lru processor tcomm  AnonPages    processes total rx packets 
minflt rt_priority startcode  Mapped       procs_running total tx bytes 
cminflt 
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MemFree (Android) SUnreclaim  synaptics_rmi4_i2c (touch screen)  
   version name  MemMax (Android) KernelStack cypress_touchkey (back button)  
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k received bytes  MemTotal (Android) PageTables   home_key   

   received packets  MemUsed (Android) CommitLimit  volume_down   
   sent bytes  MemTotal (Linux) Committed_AS volume_up   
   sent packets  MemFree (Linux) VmallocTotal pn547 companion  
      Buffers      VmallocUsed  SLIMBUS sec_headset_detect  
      Cached       VmallocChunk flip_cover function_call_interrupts   
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 charge_type level status   SwapCached   
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or
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Int. AvailableBlocks Int. FreeBytes Ext. BlockSize  
current_avg online technology   Active       Int. BlockCount Int. TotalBytes Ext. AvailableBytes  
health plugged temperature   Inactive    Int. FreeBlocks Ext. AvailableBlocks Ext. FreeBytes  
icon_size present voltage   Active (anon)    Int. BlockSize Ext. BlockCount Ext. TotalBytes  
invalid_charger scale    Inactive (anon) Int. AvailableBytes Ext. FreeBlocks   
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