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ABSTRACT 

The exponential increase of Internet of Things (IoT) devices have 

resulted in a range of new and unanticipated vulnerabilities 

associated with their use. IoT devices from smart homes to smart 

enterprises can easily be compromised. One of the major 

problems associated with the IoT is maintaining security; the 

vulnerable nature of IoT devices poses a challenge to many 

aspects of security, including security testing and analysis. It is 

trivial to perform the security analysis for IoT devices to 

understand the loop holes and very nature of the devices itself. 

Given these issues, there has been less emphasis on security 

testing and analysis of the IoT. In this paper, we show our 

preliminary efforts in the area of security analysis for IoT devices 

and introduce a security IoT testbed for performing security 

analysis. We also discuss the necessary design, requirements and 

the architecture to support our security analysis conducted via the 

proposed testbed. 

CCS Concepts 

• Security and privacy ➝ Systems Security ➝ Vulnerability 

management • Formal methods and theory of security ➝ 

Security requirements; Formal security models. 

Keywords 

Internet of Things (IoT), Security, Privacy, Testbed Framework. 

1. INTRODUCTION 
The Internet of Things (IoT) are the combination of physical 

objects with sensors, actuators, and controllers with connectivity 

to the public world via the Internet. The exponential increase in 

the use of the IoT and the information that can be accessed via the 

IoT devices are susceptible to the hackers. In this regard, the 

security issues associated with the IoT and protecting the IoT 

devices will be of key importance.  

Currently, there are several types of IoT devices available in the 

market each with different capabilities. Today IoT devices are 

chosen based on their specs and price alone. Security has not 

played a major role, despite the fact that it poses a major 

challenge to IoT devices which by their very nature are connected 

to the Internet. Apparently, security is a major challenge of IoT. 

Since IoT devices will have: a) an internet connection, implying 

that a hacker can get access to the device and b) a connection to 

the physical devices. SHODAN [1], the IoT search engine, reveals 

the dark side of the connected IoT devices. Devices, ranging from 

cameras to industrial controllers that are connected to the Internet 

have proven to be easily manipulated [4] [5]. In addition, several 

vulnerabilities have been discovered using SHODAN [2] [3]. This 

indicates that IoT devices are prone to attacks, and there is a 

critical need to consider security measures for IoT devices.  

Additional vulnerabilities have been discovered in various IoT 

devices, further demonstrating that security vulnerabilities are a 

common problem for most IoT devices [7] [11] and the associated 

protocols, such as ZigBee [34], Wi-Fi [35], etc. Though there has 

been some prior research regarding security analysis for the IoT 

devices, this has not provided a comprehensive approach to test 

and analyze all types of IoT devices, regardless of their 

capabilities and protocols.  

Considering the above, in this paper we perform security 

analysis aiming towards a holistic approach. Specifically, we 

evaluate the security loop holes of the IoT devices by choosing 

the pen testing approach as our preliminary effort. We have 

chosen state of the art IoT devices available in the consumer 

market such as Amazon Echo [39], Nest Cam [40], Philips Hue 

[41], SENSE Mother [42], Samsung SmartThings [43], Withings 

HOME [44], WeMo Smart Crock-Pot [45], and Netatmo Security 

Camera [46] to conduct our security analysis. 

To perform the security analysis in a holistic way we are also 

proposing an security IoT testbed in which various IoT devices, 

such as smart home devices, smart wearables, etc., as well as 

Wireless Sensor Networks (WSNs), are tested against a set of 

security requirements. The testbed consists of hardware and 

software components for experiments of wide-scale testing 

deployments. Variety of tests can be conducted by the proposed 

testbed such as standard, context-based, data, and side-channel. 

The IoT testbed offers different types of testing environments 

which simulate various sensor activity (GPS, movement, Wi-Fi, 

etc.) and performs predefined and customized security tests. In 

addition, any relevant simulator and/or measurement and analysis 

tool can be deployed in the testbed environment in order to 

perform comprehensive testing. The testbed also collects data 
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while performing the security analysis to conduct a security 

forensic analysis. Finally, a report is produced via the testbed 

setup, which lists the type of IoT device tested, its connectivity 

and the communication protocols supported, and the security test 

cases executed and their status (PASS or FAIL).  

As we aim to perform the security analysis in a holistic way 

using the testbed, we also propose a set of requirements that are 

needed to perform such security analysis on IoT devices. We 

divide these requirements into functional and non-functional 

requirements. Furthermore, we present a novel architecture for 

performing security analysis via the testbed. The architecture 

presented in this paper is a layer-based platform model with a 

modular structure. Based on our approach, any type of IoT device 

such as smart appliances, smart city devices, smart wearable 

devices, etc. can be tested. 

To perform the security analysis using the testbed, we address 

the following questions: In what ways are the state of the art IoT 

devices vulnerable and what are the loopholes that cause IoT 

devices to become vulnerable? How can we build a holistic 

solution to perform a complex security analysis for IoT devices? It 

is necessary to understand and answer these questions before IoT 

devices become a part of every household. Though this paper 

represents our initial efforts to build a thorough comprehensive 

solution for complex security analysis, the main contributions of 

this paper are threefold: 

 We propose an IoT security testbed to perform the security 

analysis. 

 We propose a set of requirements and a novel architecture 

which is modular and adaptable for the security analysis of 

diverse types of IoT devices. 

 We conduct security analysis for state of the art IoT 

devices. 

The structure of the paper is as follows: after introducing our 

concepts in Section 1, related work is discussed in Section 2. In 

Section 3, we introduce our system design. We discuss the 

necessary requirements for performing security analysis in 

Section 4, and introduce the system architecture in Section 5. In 

Section 6, we discuss detailed security analysis for chosen IoT 

devices. In Section 7 we discuss our findings, and conclude in 

Section 8. 

2. RELATED WORK 
Although the IoT is an exponentially growing research field, 

there has been less emphasis on the security issues surrounding 

the IoT, with just a few state of the art works dedicated to security 

analysis for IoT devices [7] [11] [12] [17] [18] [19] [20]. 

In [7] the authors analyze and identify a backdoor for both 

consumer and industrial IoT devices, however the security 

analysis focuses only on home automation system and smart 

meter. In [11], the authors perform an empirical security 

evaluation of the popular SmartThings framework for 

programmable smart homes. They also conduct a market-scale 

over privilege analysis of existing apps to determine how well the 

SmartThings capability model protects physical devices and 

associated data. While both [7] and [11] perform security analysis 

on IoT devices, they each focus on specific IoT devices, and a 

logical holistic approach aimed at providing a comprehensive 

solution for security analysis is missing in the above mentioned 

work. 

The authors in [12] present a security analysis of Arduino Yun 

to show that Arduino Yun is vulnerable to a number of attacks, 

while in [17], researchers examine the security of smart locks for 

the home and examine two classes of attacks to show that existing 

smart locks are vulnerable to attack. However, in both of the 

papers mentioned above, the research is again targeted at just a 

specific IoT device and without consideration of the security 

issues facing IoT devices as a whole.   

The authors in [18] investigate the Constrained Application 

Protocol (CoAP), an application layer protocol for constrained 

devices in the IoT. Their analysis highlights the main security 

drawbacks and supports the need for a new integrated security 

solution. The security of the CoAP is also explored in [36] via the 

Datagram Transport Layer Security (DTLS) communications 

protocol; this research discusses the many issues incurred and 

proposes solutions. In [19], the authors analyze a specific 

authentication and access control protocol and find that the 

protocol is vulnerable to compromised device attacks and replay 

attacks. They also provide enhancements for different aspects 

corresponding to the security gaps found in the protocol. In [20], 

the authors provide a threat model based security analysis which 

can be used to determine where efforts should be invested in order 

to secure IoT systems. However, in all the work mentioned above, 

the key point has been to focus on the security analysis of the 

protocols for the IoT, as opposed to achieve a holistic solution for 

advanced security analysis. 

As we are proposing security IoT testbed, there has been few 

testbeds for IoT devices proposed in current state of the art 

research [6], however most of the recent work on IoT testbeds 

focuses on a single technology domain (e.g., WSNs) [8] [9] [10] 

[15]. Other research takes a wider approach to the study of IoT 

testbeds and focuses on multiple technology domains [13] [14].  

MoteLab [8] was one of the first testbed systems for WSNs. 

Still in use today, it has also served as the basis for various other 

testbeds such as Indriya [15]. The Kansei testbed [9] is one of the 

most surveyed testbeds, providing various advanced functions, 

including co-simulation support, mobility support using mobile 

robots, event injection capabilities, and more. CitySense [10] is a 

public mesh testbed deployed on light poles and buildings. FIT 

IoT-LAB [13] provides a very large scale infrastructure facility 

suitable for testing small wireless sensor devices and 

heterogeneous communicating objects. However, all of the above 

mentioned IoT testbeds focus solely on WSNs. The T-City 

Friedrichshafen [14] testbed, operated by Deutsche Telekom, 

combines innovative information and communication 

technologies, together with a smart energy grid, to test innovative 

healthcare, energy, and mobility services. Although it considers 

various IoT devices, making it multi-domain, the T-City 

Friedrichshafen testbed fails to take into account security aspects. 

INFINITE [16], the Industrial Internet Consortium approved 

testbed, encompasses all of the major technologies, domains, and 

platforms for industrial IoT environments, covering the cloud, 

networks, mobile, sensors, and analytics perspectives of IoT. 

However, INFINITE overlooks the aspect of security. 

Based on our review of the existing related research in the IoT 

realm and the observed gaps in the area of security analysis in this 

domain, a more logical holistic approach to security analysis is 

required. Such an approach, based on a dedicated testbed and 

novel architecture, will lead to a comprehensive and effective 

solution for the advanced security analysis of any IoT device and 

protocol. 

3. SYSTEM DESIGN 
In this section we introduce our system design to perform 

security analysis using the testbed. The system design involves the 

security IoT testbed setup which consists primarily of three 

machines which are used to run and support the security analysis. 

The three machines interact with each other and are used to ensure 

the testbed's functionality. The IoT devices, measurement tools, 

4



access point and the shielded room, are also part of the 

comprehensive testbed setup. 

The shielded room is as shown in Figure 1. The communication 

capabilities of the testbed are via Wi-Fi, Bluetooth and ZigBee. 

We have established an access point within the shielded room, to 

ensure that all the IoT devices can connect to the Internet without 

interference from any signals outside the shielded room. The 

server has been configured to store test results, reports, conducts, 

and maintain project details. 

 

 

Figure 1. Shielded Room Setup in the iTrust Lab at SUTD. 

The three machines are as follows: (1) The Orchestrating 

Machine (OM) is located outside the shielded room. The OM runs 

National Instruments’ (NI) TestStand [31] which acts as an 

orchestrator to run and generate the report following a test. (2) 

The Control and Communication Machine (CCM) which is 

located within the shielded room, controls and connects the 

measurement tools and any IoT devices. The CCM runs NI’s 

LabVIEW [32], and the IoT devices are connected to the CCM for 

purposes such as turning the IoT device ON/OFF, power control, 

measuring power consumption, etc. (3) The Analysis Machine 

(AM) is also located inside the shielded room. The purpose of the 

AM is to run the testing tools [22] – [27] needed to support 

various test cases. All three machines are interconnected and can 

speak to each other. 

 

 
 

Figure 2. Physical Design Setup of the Testbed with the OM, 

CCM, and AM. 

4. SYSTEM REQUIREMENTS 
The requirements of the security analysis for the IoT can be 

classified and formulated on various abstraction levels. The 

highest abstraction level reflects the security objectives. 

This section provides an overview of the functional and non-

functional requirements. The functional requirements include the 

behavioral requirements for a system to be operational, while the 

non-functional requirements describe the key performance 

indicators. However, these requirements are general for 

performing holistic security analysis in a testing environment, in 

our case the testbed. 

4.1 Functional Requirements 
The functional requirements are the conditions or capabilities 

needed in the system, such as testbed. For example, the tests 

supported, test definition, analysis of the test results, etc. 

Moreover, these requirements describe the series of steps that are 

needed in order to perform a holistic security analysis of any IoT 

device. Table 1 presents a concise list of functional requirements 

for security analysis. 

Functional Requirements Description 

Action initialization Ability to simulate real world conditions and 

initialize the testing process. 

Detection and Identification 

of IoT devices 

Ability to detect and identify all the IoT devices.  

Adding/removing a test case Ability to add/remove a test case (test cases relate 

to different types of security analysis). 

Automatically running a test 

case 

Ability to run the test case automatically with 

minimal or no intervention for all connected 

devices. 

Logging the status of each 

test case 

Ability to log the status of each test case in real-

time. 

Report generation Ability to generate a report for all test cases 

executed. 

4.1.1 Initialization, Detection and Identification 
One of the primary functional requirements is to establish a 

realistic environment for the various tests performed. By using the 

simulators, stimulators, and any other tools needed, the testbed 

should simulate real world conditions in order to test the IoT 

devices in different contexts and in the settings in which they 

operate in the real world. The next requirement is the detection 

and identification of the IoT devices present in the testbed 

environment. During the detection and identification process, a 

log file should be created consisting of the IoT device OS, the 

processes running, actions being performed, etc. This information 

will be used for any subsequent anomaly detection. 

4.1.2 Security Tests 
We take a broad and flexible holistic approach to security 

analysis, looking beyond individual devices at the big picture and 

the complexity of the IoT landscape. The testbed must support a 

range of security tests, each targeting a different security aspect. 

The testbed should detect various vulnerabilities that IoT devices 

can be prone to and provide analysis and reports regarding these 

vulnerabilities. For example, a security testbed should be able to 

deal with some of the vulnerabilities presented by the OWASP 

IoT project [21]. The testbed should be capable of running 

automated tests based on specific requirements (e.g., extract all 

tests that are relevant to the accelerometer sensor) or the device 

type (e.g., perform all tests that are relevant to IP cameras). 

Furthermore, the testbed should provide success criteria for each 

test (e.g., binary pass/fail or a scale from 1 [pass] to 5 [fail]), 

which may be based on a predefined threshold provided by the 

system operator in advance. 

4.1.3 Logging and Analysis 
Once the security tests are concluded, the testbed should be 

capable of logging the tests. The system collects various data 

during the test execution, including network traffic information 

(e.g., about Wi-Fi, Bluetooth, and ZigBee operation), IoT device 

internal status information (e.g., CPU utilization, memory 

consumption, and file system activity), etc. This information 

Table 1. Functional Requirements for Security Analysis 
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should be stored as a log file for further analysis. For some tests 

the system operator should be able to define a decision rule 

specifying whether the device passed the test or not. 

4.2 Non-Functional Requirements 
The non-functional requirements are the set of attributes which 

characterize the testbed. The non-function requirements are as 

follows. 

4.2.1 Usability 
Usability ensures the testbed’s ease of use (in terms of defining 

tests, configuring input, interpreting output, etc.) without the need 

for extensive efforts on the part of the user. 

4.2.2 Security-Related 
 Reliability: is the ability to perform security analysis under 

the stated conditions for a specific period of time.  

 Anti-Forensic: is the capability to detect and subsequently 

prevent malicious applications on the IoT device (if it has 

been infected) from being activated. 

 Security: is the ability to ensure authorized access to the 

system.  

 Accountability (including non-repudiation): is the 

capability to keep audit records to support independent 

review of access to resources. 

 Controlled: is the ability of the testbed to prevent malicious 

IoT devices from being activated during security analysis. 

4.2.3 Adaptive 
To take a holistic approach for performing security analysis, the 

security testbed should be able to adapt to new application domain 

concepts and support various communication types. 

 Scalability: is the capability of the testbed to increase total 

throughput under an increased load when resources (typically 

hardware) are added. 

 Performance: is the speed of operation of the testbed. 

Performance requirements pertain to throughput 

requirements which define how much the testbed can 

accomplish within a specified amount of time. 

 Flexibility: is the capability to modify the testbed and adapt 

according to any IoT device and communication type.  

5. SYSTEM ARCHITECTURE 
In this section, we present the system architecture for the 

proposed security analysis of IoT devices via a testing 

environment, in our case the testbed. The need for a system 

architecture is to make sure that the security analysis can be done 

in a logical and modular approach. Hence, any of the IoT devices 

can be tested with less modifications to the testbed setup. The 

architecture presented here will be adaptable and tunable to any 

IoT devices regardless of specification and protocols. The abstract 

functional architecture model, illustrated in Figure 3, is designed 

based on the requirements described in Section 4. We also show 

how the modules presented in this section will interact with the 

OM, CCM and AM presented in Section 3. The suggested 

functional model is a layer-based platform model with a modular 

structure as follows.  

5.1 Adaptable and Tunable Modules 

5.1.1 Management and Reports Module (MRM)  
This module is responsible for a set of management and control 

actions via the OM such as starting/initializing the test, enrolling 

new devices, simulators, tests, measurement and analysis tools, 

and communication channels, and generating the final reports 

upon completion of the test. The operator (the user) interfaces 

with the system through this module using one of the user 

interfaces (CLI\SSH\SNMP\WEB-UI) in order to initiate the test, 

as well as to receive the final reports. 

5.1.2 Security Testing Manager Module (STMM) 
This module is responsible for the actual testing sequence 

executed by CCM for the security analysis (according to the 

requirements and specifications for an adequate security testbed). 

The module interacts with the Security Testing Module in order to 

execute the required set of tests, in the right order and mode, 

based on predefined configurations provided by the user (based on 

the config file loaded in the MRM). 

5.1.3 Security Testing Module (STM) 
This module performs standard security testing based on 

vulnerability assessment and penetration test methodology, in 

order to assess the security level of the IoT Devices under Test 

(IoT DUT). The STM is an operational module which executes a 

set of security tests as plugins via the AM (such as port scanning, 

fingerprinting, list known vulnerabilities, vulnerabilities scan, and 

more), each of which performs a specific task in the 

testing/analysis process. In this regard, different security testing 

tools available online are utilized, including the Nmap security 

scanner tool for network discovery and security auditing [22], the 

Wireshark tool for network protocol analysis [23], Aircrack [24] 

which is used to assess the Wi-Fi network, Metasploit used for 

penetration testing [25], and all tools running under the Kali 

Linux penetration testing environment [26]. Other security tools, 

such as Nessus [27], OpenVAS [28], Cain and Abel [29], and 

OSSEC [30], as well as dedicated security tools, are integrated 

and employed in the testbed as needed.   

The STM module also supports a context-based testing mode, 

in which it generates various environmental stimuli for each 

sensor/device under test. In this mode of operation, the STM 

simulates different environmental triggers and runs the security 

tests, in order to identify and detect context-based attacks that 

may be launched by the IoT DUT. Using the provided set of 

simulators and stimulators (e.g., a GPS simulator that simulates 

different locations and trajectories, movement simulators such as 

robotic hands, etc.), the testbed system realistically generates 

Figure 3. Security Analysis Framework - Abstract 

Functional Architecture Model. 
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arbitrary real-time stimulations, ideally for all sensors of the tested 

IoT device. Finally, the STM interacts with the Measurements and 

Analysis Module in order to monitor and analyze the test 

performed. 

5.1.4 Measurements and Analysis Module (MAM) 
This module employs a variety of measurement and analysis 

components (both software and hardware-based), including: data 

collection, data analysis and security rating modules, and more. 

MAM is present in AM, which enables the system to interface 

with external modules via dedicated plugins, as part of the testbed 

infrastructure. The measurement components include different 

network sniffers for communication monitoring such as Wi-Fi, 

Bluetooth, and ZigBee sniffers, and device monitoring tools for 

measuring the internal status of the IoT DUT (e.g., CPU, memory, 

file system, system calls, etc.). The analysis components process 

the collected data and evaluate the results according to a 

predefined success criterion (which is defined for a specific tested 

IoT device and/or tested scenario).  

5.2 Testing Sequence 
The testing process shown in Figure 3 starts with the operator 

loading a configuration file into the system via the MRM 

component. Based on the configuration loaded, both standard and 

context-based security testing can be performed using the STM 

component, by selecting a set of penetration security tests and the 

appropriate simulators for the test (as illustrated by the red line in 

Phase 1 and the black dashed line in Phase 2 of Figure 3, 

respectively). During the testing process, different simulators are 

employed in order to realistically simulate the environment in 

which IoT devices operate. Also, different measurement and 

analysis tools are employed using the MAM component, in order 

to collect relevant information about the test performed (including 

network traffic, internal status of the IoT DUT, etc.). This testing 

process is controlled by the STMM component. The results 

obtained for the tests conducted are then stored in the system 

database component. Finally, a forensic analysis is performed by 

the MRM component, and the final results of the overall testing 

process are then generated and sent to the operator (as illustrated 

by the green dashed line in Phase 3 of Figure 3). The testing 

process handles the security analysis of an IoT DUT as a series of 

steps which is explained in the following Section 6. 

6. SECURITY ANALYSIS 
In this section we present our preliminary efforts in the area of 

security analysis for the IoT. The security analysis is conducted 

via the testbed and by considering the requirements and 

architecture as explained in Section 3, 4 and 5. We have chosen 

state of the art IoT devices such as Amazon Echo, Nest Cam, 

Philips Hue, SENSE Mother, Samsung SmartThings, Withings 

HOME, WeMo Smart Crock-Pot and Netatmo Security Camera. 

We have chosen four use cases for testing, i.e., port scanning, 

fingerprinting, process enumeration, and vulnerability scanning. 

6.1 Use Cases 
In general, the OM (running NI TestStand and MRM) starts the 

test. The sequence of steps written in TestStand initiates the test 

by asking the CCM (running NI LabVIEW and STMM) to 

perform an intense scan to find the IoT devices present in the 

shielded room. Once the scan is complete, the results are sent 

from the CCM to the OM, and the results will contain a list of the 

IoT devices and their IP and MAC addresses. The user can select 

any IoT device from the list for further testing. Once the IoT 

device is chosen, the next step in the sequence is to choose the test 

to be performed. The OM displays the list of tests available, e.g., 

fingerprinting, vulnerability scan, etc., and the user can choose 

one or more tests to perform with the selected IoT device. 

Once the IoT device and test(s) have been determined, the OM 

sends the information to the CCM, and the CCM sends the 

information to the AM with all the relevant information (including 

the IP address) needed to perform the test. The AM (which runs 

the testing tools, STM and MAM) will perform the test, and upon 

completion of the test, save the report on a local server and inform 

the CCM that the test has been completed. The OM retrieves the 

report from the CCM via the FTP and gives the user the option to 

conclude the test or see the detailed report. The detailed report is 

displayed on the OM. Since the report is present on the local 

server, the user has access to the report anytime. 

6.1.1 Port Scanning 
The goal of port scanning is to investigate the detectability of 

IoT devices by observing wireless/wired communication 

channels. More specifically, port scanning attempts to identify the 

existence of the device and detect open and vulnerable ports. The 

port scanning report also provides the risk level for each port 

discovered. 

After the initial test process as explained above, the AM will 

run Nmap to discover the open ports via the SSH setup on 

selected IoT device. We ran port scanning for each of the IoT 

devices mentioned in this paper, however the report presented in 

this paper is based on the Philips Hue device. 

After Nmap finishes the port scan, the results are saved as an 

XML file. A custom Python script on the AM will be used to 

extract a list of open ports discovered from the XML file. The 

XML file is looped line by line, checking for the keyword 

Discovered. Any line containing the keyword Discovered is added 

to a file containing a list of open ports. Finally, a custom Python 

script compares the open port against a list of top vulnerable open 

ports [33] and identifies the vulnerable ports for reporting. If the 

word Discovered is not found in the XML file, the whole XML 

file is copied as the output result, which displays everything that is 

scanned.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Port Scanning Report for the Philips Hue Device. 

 

We have established a metric score based on [33] to evaluate 

the risk level of open ports. The risk level is set as: 0 – safe, <15 – 

minor risk, 15< && <30 – major risk, and >30 – critical risk. 

After obtaining the scan results from Nmap, the scan results are 

compared with the scores of the top vulnerable ports (which 

contains the list of top vulnerable ports and the port numbers, a 

description of the ports, and a metric score given to each port), to 

provide the Overall Results of the test. The Overall Results 

contains a list of open ports, ports that are considered vulnerable, 

Port Scanning Results 

 
All available ports discovered: 

80/tcp open tcpwrapped 

 

Ports that are considered vulnerable: 

80: A web server is running on this port 

Score: 3 

 

Risk Level: 

Safe 

 

Metric Score: 

3 
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and the metric ratings. For example, the ports that were 

considered vulnerable with services running include: (1) 80 - A 

web server was running on this port with a score of 3, (2) 5900 - 

A VNC server was running on this port with a score of 3, etc. To 

determine the Risk Level of the IoT device, a custom Python 

script calls on the MetricScore file, retrieves the metric number, 

and determine the RISK from a predefined Risk Margin. In the 

case of the Philips Hue device, the Risk Level is safe and the 

Metric Score is 3, and the detailed port scanning report for Philips 

Hue device is shown in Figure 4. 

6.1.2 Fingerprinting 
By monitoring communication traffic to/from the device the 

goal of finger printing is to identify the device’s IP and MAC 

addresses, as well as the type of device, manufacturer, operating 

system, etc. 

In order to successfully fingerprint for a specified IoT device, 

the AM uses Nmap, dhcpdump, and Scapy python library. We 

performed fingerprinting for every IoT device mentioned above, 

however the report presented in this paper is based on the Nest 

Cam device. 

We begin the fingerprinting process by creating a subprocess in 

the shell using the subprocess.Popen() function in Python. The 

output is dhcpResults.txt which contains the DHCP dump of any 

IoT device that has made a DHCP discovery or DHCP request. 

This process continuously runs in the background while the script 

is still being executed. The nmap_done_checker() function checks 

whether Nmap has completed the process by constantly checking 

the output nmapResults.txt for the key phrase “Nmap done.” In 

addition, nmap_done_checker() also identifies the MAC and IP 

addresses of the IoT DUT, which will be used later during the 

deauthentication step. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Fingerprinting Report for the Nest Cam Device. 

 

While the dhcpdump process is still running, the deauth() 

function tasked with forcing DHCP requests, which will result in 

inputs for the dhcpResults.txt file. The deauth2.py uses a Scapy 

library which allows for the deauthentication of a device with the 

specified MAC address. The mac_catcher() function opens up the 

text file nmapResults.txt and identifies the MAC address that 

exists in the text file itself. The mac_finder() function searches for 

the DHCP dump for the MAC address in the text file in order to 

get the “Parameter Request List” of the IoT device itself. The 

Parameter Request List is helpful in obtaining the device’s OS 

fingerprint. 

The chunk_siever() function creates a list of numbers from the 

Parameter Request List, which will be used later for comparison 

against the OS fingerprint list provided by PacketFence’s [38] 

DHCP fingerprints. The Comparator() function compares the list 

obtained in the previous function against the 

dhcp_fingerprints.txt. This comparison allows the system to 

identify which OS the IoT device is using. Finally, the end result 

of this entire process is contained in an output file called 

dhcp_fingerprinting_results.html. The report shown in Figure 5 is 

the fingerprinting report for the Nest Cam IoT device. 

6.1.3 Process Enumeration 
The goal of process enumeration is to monitor the device’s 

activities and list all services running on the device, in order to 

understand the state of the device and identify the protocol used 

and port number. 

To start the process enumeration process the AM runs the 

nmapScan Python script, which conducts an intense scan on the 

selected IoT device to reveal any open UDP or TCP ports. We 

performed process enumeration for all the IoT devices mentioned 

above, however the report presented in this paper is based on the 

following devices: Philips Hue, Withings HOME, Samsung 

SmartThings and Amazon Echo. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Process Enumeration Reports for the Philips Hue, 

Withings HOME, Samsung SmartThings and Amazon Echo. 

 

The custom Python script nmapScan creates an output called 

ScanResults.xml which is used by the processEnumeration() 

function. First, this function filters the port numbers and various 

types of services, states, and protocols from the ScanResults.xml. 

Once filtered, then it is allowed to be formatted into html format, 

with the different services highlighted. Finally, the results are 

given as an output file in ProcessEnumerationResults.html. The 

results only contain the known ports, ignoring the unknown ports 

as their vulnerabilities are also unknown. Figure 6 contains a 

process enumeration report for the following IoT devices: Philips 

Hue, Withings HOME, Samsung SmartThings, and Amazon 

Echo. 

Fingerprinting Results 

 
Device IP Address:      

192.168.2.141 

 

Device MAC Address:      

18:b4:30:53:18:42 

 

Manufacturer:      

Nest Labs 

 

OS Information:      

Description = LaCie NAS 

 

Additional OS Information:  

[ ]    

 

Possible Device:      

NestCam IP Camera 

Process Enumeration Results 

 
Service: tcpwrapped 

State: open 

Port Number: 80 

Protocol: tcp 

-------------------------------------------- 

Service: snmp 

State: open|filtered 

Port Number: 161 

Protocol: udp 

-------------------------------------------- 

Service: svrloc 

State: open|filtered 

Port Number: 427 

Protocol: udp 

-------------------------------------------- 

Service: ms-sql-s 

State: open|filtered 

Port Number: 1433 

Protocol: udp 
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6.1.4 Vulnerability Scan 
The goal of vulnerability scanning is to search for additional 

classes of vulnerabilities by understanding and measuring the 

Common Vulnerability Exploit (CVE) and Common Vulnerability 

Scoring System (CVSS) [37]. The National Vulnerability 

Database (NVD) [37] has been maintaining a list of vulnerabilities 

from 2005 onwards, and the metric system calculated [37] helps 

us determine impact and exploitability sub-scores, maintain a 

database of attacks, and evaluate selected attacks on the tested IoT 

device. We run the vulnerability scan on the OS of the IoT device, 

and therefore to start vulnerability scan, a fingerprinting output 

(i.e., the OS) is provided as input. We ran the vulnerability scan 

for each IoT device mentioned above, however the report 

presented in this paper is based on the WeMo Smart Crock-Pot 

IoT device. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

The checkCVE function utilizes multiple python libraries in order 

to check the vulnerabilities from [37]. The queryer() function 

creates a string that contains appropriate html formatting and then 

opens the allitems2005.csv which contains all the CVE and  

 

vulnerabilities from the year 2005. The function queryer() also 

goes through the csv file line by line and searches the CVE 

number, using the get request function to extract the vulnerability 

details of the specific CVE number. Finally, the htmlFormatter() 

function, allows the output to be highlighted where needed. Figure 

7 presents the report for the WeMo Smart Crock-Pot IoT device. 

7. DISCUSSION  
The use cases we studied in Section 6 demonstrated a number 

of vulnerabilities. From the port scanning examination, we found 

that IoT device under test had open and vulnerable ports which 

would be easy for attackers to access. In addition, we identified 

services running on these ports that were not intended to be 

running, pointing to another vulnerability. We were also able to 

successfully fingerprint the IoT devices to understand the device 

type, OS, etc., which helps to obtain more information about the 

device vulnerability. Based on this initial testing we have labeled 

the tested IoT devices as safe or high risk (using our metric 

system), however deeper analysis is required in order to gain more 

insight about the IoT devices tested. The vulnerability scan 

provided impact and exploitability sub-scores, and the attack 

vector indicates that the network is exploitable and the attacker 

can voluntarily interact with attack mechanisms. Table 2, presents 

an overview of the test results for each of the IoT devices tested 

so far. Though we have identified other criteria of fingerprinting, 

we have just highlighted the IP and OS of the device in Table 2. 

To our understanding, our preliminary testing efforts and findings 

for the selected IoT devices, constituting our initial groundwork in 

security analysis for IoT devices, have demonstrated the 

vulnerability level of IoT devices.     

8. CONCLUSION AND FUTURE WORK 
In this paper, we describe the security analysis of IoT devices 

performed in the testbed using penetration testing methodologies 

such as port scanning, fingerprinting, process enumeration, and 

vulnerability scan. We introduced the security IoT testbed and 

provided the general requirements needed to conduct security 

analysis within a test environment such as the testbed. A brief 

description of the design and architecture needed for security 

analysis is also provided. Our work on security analysis was 

conducted with state of the art IoT devices, and the reports 

presented in our work show that these devices are vulnerable. 

Although this represents our preliminary efforts toward a 

holistic approach for advanced security analysis, it is already clear 

that state of the art IoT devices are vulnerable; further work is 

required to better understand the vulnerabilities of these popular 

devices and improve their security. In the future, we plan to 

expand upon this research and conduct more complex security 

analysis by developing new attack and defense models. We would 

like to expand the testing capabilities from standard as well as to

IoT Device Port Scanning  

(Risk Level: RL and 

Metric Score: MS) 

Fingerprinting 

(Detection Criteria: IP, MAC, 

Manufacturer, OS, Device) 

Process Enumeration (Service 

Running: SR, Port and 

Protocol: P) 

Vulnerability Scanning 

(Impact Subscore: IS and 

Exploitability Subscore: ES) 

Amazon Echo RL: Safe, MS: 3 IP: 192.168.2.115, OS: AWS SR: ms-sql-s, Port: 1433, P: udp IS: 6.4, ES: 8.6 

Nest Cam RL: Safe, MS: 4 IP: 192.168.2.141, OS: LaCie NAS SR: freeciv, Port: 5555 , P: tcp IS: 4.9 ,ES: 8.6 

Philips Hue RL: Safe, MS: 3 IP: 192.168.2.139, OS: Linux Kernel SR: tcpwrapped, Port: 80, P: tcp IS: 2.9, ES: 10.0 

SENSE Mother RL: Minor Risk, MS: 10 IP: 192.168.2.194, OS: Unknown SR: krb524, Port: 4444, P: udp IS: 10.0, ES: 3.9 

Withings HOME RL: Safe, MS: 5 IP: 192.168.2.156, OS: LaCie NAS SR: snmp , Port: 161, P: udp IS: 2.9, ES: 8.6 

WeMo Smart Crock-Pot RL: Minor Risk, MS: 9 IP: 192.168.2.182, OS: Unknown SR: zeroconf, Port: 5353, P: udp IS: 2.9, ES: 4.9 

Netamo Security Camera RL: Minor Risk, MS: 8 IP: 192.168.2.123, OS: Unknown SR: nat-t-ike, Port: 4500, P: udp IS: 4.9, ES: 8.6 

Samsung SmartThings RL: Safe, MS: 3 IP: 192.168.2.190, OS: Unknown SR: svrloc, Port: 427, P: udp IS: 6.4, ES: 5.5 

Table 2: Overall Results of Security Analysis with Selected IoT Devices. 

Vulnerability Scanning Results 
 

CVE Number: 

CVE-2006-5793 

 

Impact 

CVSS Severity (version 2.0): 

CVSS v2 Base Score: 

2.6 LOW 

 

Vector: 

(AV:N/AC:H/Au:N/C:N/I:N/A:P) (legend) 

 

Impact Subscore: 2.9 

 

Exploitability Subscore: 4.9 

 

CVSS Version 2 Metrics: 

Access Vector: Network exploitable 

Victim must voluntarily interact with attack 

mechanism 

 

Access Complexity: High 

 

Authentication: Not required to exploit 

 

Impact Type: Allows disruption of service 

Figure 7: Vulnerability Scan Report for the WeMo 

Smart Crock-Pot IoT Device. 
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side-channel testing (e.g., the detection of context-based attacks 

requires the execution of security testing in various contexts). 

Beyond this line of testing, we have also considered conducting 

deeper memory analysis with specific IoT devices. Furthermore, 

we intend to expose our testbed to additional IoT devices by 

testing other devices and inviting outside users to make use of the 

testbed to test their IoT devices. 

We plan to further develop the architecture for our proposed 

security analysis system in order to make the architecture more 

adaptable and tunable. This will enable us to test IoT devices 

more easily with any protocol and communication capabilities. 

Furthermore, as we aim for modular architecture, our future work 

will center on using the various modules needed depending on the 

tested device and the test itself. In conclusion, our future efforts 

will center on developing methods and models for advanced 

security analysis. 
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