
Let the Cat Out of the Bag: A Holistic Approach Towards

Security Analysis of the Internet of Things
Vinay Sachidananda

iTrust, Singapore University of
Technology and Design

Singapore 487372
sachidananda@sutd.edu.sg

Jinghui Toh
iTrust, Singapore University of

Technology and Design
Singapore 487372

jinghui_toh@sutd.edu.sg

Shachar Siboni
CSRC, Ben-Gurion University

of the Negev
Beer-Sheva, 84105, Israel
sibonish@post.bgu.ac.il

Suhas Bhairav
iTrust, Singapore University of

Technology and Design
Singapore 487372

suhas_setikere@sutd.edu.sg

Asaf Shabtai
CSRC, Ben-Gurion University

of the Negev
Beer-Sheva, 84105, Israel

shabtaia@bgu.ac.il

Yuval Elovici
iTrust, Singapore University of

Technology and Design
Singapore 487372

yuval_elovici@sutd.edu.sg

ABSTRACT

The exponential increase of Internet of Things (IoT) devices have

resulted in a range of new and unanticipated vulnerabilities

associated with their use. IoT devices from smart homes to smart

enterprises can easily be compromised. One of the major

problems associated with the IoT is maintaining security; the

vulnerable nature of IoT devices poses a challenge to many

aspects of security, including security testing and analysis. It is

trivial to perform the security analysis for IoT devices to

understand the loop holes and very nature of the devices itself.

Given these issues, there has been less emphasis on security

testing and analysis of the IoT. In this paper, we show our

preliminary efforts in the area of security analysis for IoT devices

and introduce a security IoT testbed for performing security

analysis. We also discuss the necessary design, requirements and

the architecture to support our security analysis conducted via the

proposed testbed.

CCS Concepts

• Security and privacy ➝ Systems Security ➝ Vulnerability

management • Formal methods and theory of security ➝

Security requirements; Formal security models.

Keywords

Internet of Things (IoT), Security, Privacy, Testbed Framework.

1. INTRODUCTION
The Internet of Things (IoT) are the combination of physical

objects with sensors, actuators, and controllers with connectivity

to the public world via the Internet. The exponential increase in

the use of the IoT and the information that can be accessed via the

IoT devices are susceptible to the hackers. In this regard, the

security issues associated with the IoT and protecting the IoT

devices will be of key importance.

Currently, there are several types of IoT devices available in the

market each with different capabilities. Today IoT devices are

chosen based on their specs and price alone. Security has not

played a major role, despite the fact that it poses a major

challenge to IoT devices which by their very nature are connected

to the Internet. Apparently, security is a major challenge of IoT.

Since IoT devices will have: a) an internet connection, implying

that a hacker can get access to the device and b) a connection to

the physical devices. SHODAN [1], the IoT search engine, reveals

the dark side of the connected IoT devices. Devices, ranging from

cameras to industrial controllers that are connected to the Internet

have proven to be easily manipulated [4] [5]. In addition, several

vulnerabilities have been discovered using SHODAN [2] [3]. This

indicates that IoT devices are prone to attacks, and there is a

critical need to consider security measures for IoT devices.

Additional vulnerabilities have been discovered in various IoT

devices, further demonstrating that security vulnerabilities are a

common problem for most IoT devices [7] [11] and the associated

protocols, such as ZigBee [34], Wi-Fi [35], etc. Though there has

been some prior research regarding security analysis for the IoT

devices, this has not provided a comprehensive approach to test

and analyze all types of IoT devices, regardless of their

capabilities and protocols.

Considering the above, in this paper we perform security

analysis aiming towards a holistic approach. Specifically, we

evaluate the security loop holes of the IoT devices by choosing

the pen testing approach as our preliminary effort. We have

chosen state of the art IoT devices available in the consumer

market such as Amazon Echo [39], Nest Cam [40], Philips Hue

[41], SENSE Mother [42], Samsung SmartThings [43], Withings

HOME [44], WeMo Smart Crock-Pot [45], and Netatmo Security

Camera [46] to conduct our security analysis.

To perform the security analysis in a holistic way we are also

proposing an security IoT testbed in which various IoT devices,

such as smart home devices, smart wearables, etc., as well as

Wireless Sensor Networks (WSNs), are tested against a set of

security requirements. The testbed consists of hardware and

software components for experiments of wide-scale testing

deployments. Variety of tests can be conducted by the proposed

testbed such as standard, context-based, data, and side-channel.

The IoT testbed offers different types of testing environments

which simulate various sensor activity (GPS, movement, Wi-Fi,

etc.) and performs predefined and customized security tests. In

addition, any relevant simulator and/or measurement and analysis

tool can be deployed in the testbed environment in order to

perform comprehensive testing. The testbed also collects data

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from

Permissions@acm.org.

IoTPTS'17, April 2, 2017, Abu Dhabi, United Arab Emirates.
© 2017 ACM. ISBN 978-1-4503-4969-7/17/04…$15.00.

DOI: http://dx.doi.org/10.1145/3055245.3055251

3

while performing the security analysis to conduct a security

forensic analysis. Finally, a report is produced via the testbed

setup, which lists the type of IoT device tested, its connectivity

and the communication protocols supported, and the security test

cases executed and their status (PASS or FAIL).

As we aim to perform the security analysis in a holistic way

using the testbed, we also propose a set of requirements that are

needed to perform such security analysis on IoT devices. We

divide these requirements into functional and non-functional

requirements. Furthermore, we present a novel architecture for

performing security analysis via the testbed. The architecture

presented in this paper is a layer-based platform model with a

modular structure. Based on our approach, any type of IoT device

such as smart appliances, smart city devices, smart wearable

devices, etc. can be tested.

To perform the security analysis using the testbed, we address

the following questions: In what ways are the state of the art IoT

devices vulnerable and what are the loopholes that cause IoT

devices to become vulnerable? How can we build a holistic

solution to perform a complex security analysis for IoT devices? It

is necessary to understand and answer these questions before IoT

devices become a part of every household. Though this paper

represents our initial efforts to build a thorough comprehensive

solution for complex security analysis, the main contributions of

this paper are threefold:

 We propose an IoT security testbed to perform the security

analysis.

 We propose a set of requirements and a novel architecture

which is modular and adaptable for the security analysis of

diverse types of IoT devices.

 We conduct security analysis for state of the art IoT

devices.

The structure of the paper is as follows: after introducing our

concepts in Section 1, related work is discussed in Section 2. In

Section 3, we introduce our system design. We discuss the

necessary requirements for performing security analysis in

Section 4, and introduce the system architecture in Section 5. In

Section 6, we discuss detailed security analysis for chosen IoT

devices. In Section 7 we discuss our findings, and conclude in

Section 8.

2. RELATED WORK
Although the IoT is an exponentially growing research field,

there has been less emphasis on the security issues surrounding

the IoT, with just a few state of the art works dedicated to security

analysis for IoT devices [7] [11] [12] [17] [18] [19] [20].

In [7] the authors analyze and identify a backdoor for both

consumer and industrial IoT devices, however the security

analysis focuses only on home automation system and smart

meter. In [11], the authors perform an empirical security

evaluation of the popular SmartThings framework for

programmable smart homes. They also conduct a market-scale

over privilege analysis of existing apps to determine how well the

SmartThings capability model protects physical devices and

associated data. While both [7] and [11] perform security analysis

on IoT devices, they each focus on specific IoT devices, and a

logical holistic approach aimed at providing a comprehensive

solution for security analysis is missing in the above mentioned

work.

The authors in [12] present a security analysis of Arduino Yun

to show that Arduino Yun is vulnerable to a number of attacks,

while in [17], researchers examine the security of smart locks for

the home and examine two classes of attacks to show that existing

smart locks are vulnerable to attack. However, in both of the

papers mentioned above, the research is again targeted at just a

specific IoT device and without consideration of the security

issues facing IoT devices as a whole.

The authors in [18] investigate the Constrained Application

Protocol (CoAP), an application layer protocol for constrained

devices in the IoT. Their analysis highlights the main security

drawbacks and supports the need for a new integrated security

solution. The security of the CoAP is also explored in [36] via the

Datagram Transport Layer Security (DTLS) communications

protocol; this research discusses the many issues incurred and

proposes solutions. In [19], the authors analyze a specific

authentication and access control protocol and find that the

protocol is vulnerable to compromised device attacks and replay

attacks. They also provide enhancements for different aspects

corresponding to the security gaps found in the protocol. In [20],

the authors provide a threat model based security analysis which

can be used to determine where efforts should be invested in order

to secure IoT systems. However, in all the work mentioned above,

the key point has been to focus on the security analysis of the

protocols for the IoT, as opposed to achieve a holistic solution for

advanced security analysis.

As we are proposing security IoT testbed, there has been few

testbeds for IoT devices proposed in current state of the art

research [6], however most of the recent work on IoT testbeds

focuses on a single technology domain (e.g., WSNs) [8] [9] [10]

[15]. Other research takes a wider approach to the study of IoT

testbeds and focuses on multiple technology domains [13] [14].

MoteLab [8] was one of the first testbed systems for WSNs.

Still in use today, it has also served as the basis for various other

testbeds such as Indriya [15]. The Kansei testbed [9] is one of the

most surveyed testbeds, providing various advanced functions,

including co-simulation support, mobility support using mobile

robots, event injection capabilities, and more. CitySense [10] is a

public mesh testbed deployed on light poles and buildings. FIT

IoT-LAB [13] provides a very large scale infrastructure facility

suitable for testing small wireless sensor devices and

heterogeneous communicating objects. However, all of the above

mentioned IoT testbeds focus solely on WSNs. The T-City

Friedrichshafen [14] testbed, operated by Deutsche Telekom,

combines innovative information and communication

technologies, together with a smart energy grid, to test innovative

healthcare, energy, and mobility services. Although it considers

various IoT devices, making it multi-domain, the T-City

Friedrichshafen testbed fails to take into account security aspects.

INFINITE [16], the Industrial Internet Consortium approved

testbed, encompasses all of the major technologies, domains, and

platforms for industrial IoT environments, covering the cloud,

networks, mobile, sensors, and analytics perspectives of IoT.

However, INFINITE overlooks the aspect of security.

Based on our review of the existing related research in the IoT

realm and the observed gaps in the area of security analysis in this

domain, a more logical holistic approach to security analysis is

required. Such an approach, based on a dedicated testbed and

novel architecture, will lead to a comprehensive and effective

solution for the advanced security analysis of any IoT device and

protocol.

3. SYSTEM DESIGN
In this section we introduce our system design to perform

security analysis using the testbed. The system design involves the

security IoT testbed setup which consists primarily of three

machines which are used to run and support the security analysis.

The three machines interact with each other and are used to ensure

the testbed's functionality. The IoT devices, measurement tools,

4

access point and the shielded room, are also part of the

comprehensive testbed setup.

The shielded room is as shown in Figure 1. The communication

capabilities of the testbed are via Wi-Fi, Bluetooth and ZigBee.

We have established an access point within the shielded room, to

ensure that all the IoT devices can connect to the Internet without

interference from any signals outside the shielded room. The

server has been configured to store test results, reports, conducts,

and maintain project details.

Figure 1. Shielded Room Setup in the iTrust Lab at SUTD.

The three machines are as follows: (1) The Orchestrating

Machine (OM) is located outside the shielded room. The OM runs

National Instruments’ (NI) TestStand [31] which acts as an

orchestrator to run and generate the report following a test. (2)

The Control and Communication Machine (CCM) which is

located within the shielded room, controls and connects the

measurement tools and any IoT devices. The CCM runs NI’s

LabVIEW [32], and the IoT devices are connected to the CCM for

purposes such as turning the IoT device ON/OFF, power control,

measuring power consumption, etc. (3) The Analysis Machine

(AM) is also located inside the shielded room. The purpose of the

AM is to run the testing tools [22] – [27] needed to support

various test cases. All three machines are interconnected and can

speak to each other.

Figure 2. Physical Design Setup of the Testbed with the OM,

CCM, and AM.

4. SYSTEM REQUIREMENTS
The requirements of the security analysis for the IoT can be

classified and formulated on various abstraction levels. The

highest abstraction level reflects the security objectives.

This section provides an overview of the functional and non-

functional requirements. The functional requirements include the

behavioral requirements for a system to be operational, while the

non-functional requirements describe the key performance

indicators. However, these requirements are general for

performing holistic security analysis in a testing environment, in

our case the testbed.

4.1 Functional Requirements
The functional requirements are the conditions or capabilities

needed in the system, such as testbed. For example, the tests

supported, test definition, analysis of the test results, etc.

Moreover, these requirements describe the series of steps that are

needed in order to perform a holistic security analysis of any IoT

device. Table 1 presents a concise list of functional requirements

for security analysis.

Functional Requirements Description

Action initialization Ability to simulate real world conditions and

initialize the testing process.

Detection and Identification

of IoT devices

Ability to detect and identify all the IoT devices.

Adding/removing a test case Ability to add/remove a test case (test cases relate

to different types of security analysis).

Automatically running a test

case

Ability to run the test case automatically with

minimal or no intervention for all connected

devices.

Logging the status of each

test case

Ability to log the status of each test case in real-

time.

Report generation Ability to generate a report for all test cases

executed.

4.1.1 Initialization, Detection and Identification
One of the primary functional requirements is to establish a

realistic environment for the various tests performed. By using the

simulators, stimulators, and any other tools needed, the testbed

should simulate real world conditions in order to test the IoT

devices in different contexts and in the settings in which they

operate in the real world. The next requirement is the detection

and identification of the IoT devices present in the testbed

environment. During the detection and identification process, a

log file should be created consisting of the IoT device OS, the

processes running, actions being performed, etc. This information

will be used for any subsequent anomaly detection.

4.1.2 Security Tests
We take a broad and flexible holistic approach to security

analysis, looking beyond individual devices at the big picture and

the complexity of the IoT landscape. The testbed must support a

range of security tests, each targeting a different security aspect.

The testbed should detect various vulnerabilities that IoT devices

can be prone to and provide analysis and reports regarding these

vulnerabilities. For example, a security testbed should be able to

deal with some of the vulnerabilities presented by the OWASP

IoT project [21]. The testbed should be capable of running

automated tests based on specific requirements (e.g., extract all

tests that are relevant to the accelerometer sensor) or the device

type (e.g., perform all tests that are relevant to IP cameras).

Furthermore, the testbed should provide success criteria for each

test (e.g., binary pass/fail or a scale from 1 [pass] to 5 [fail]),

which may be based on a predefined threshold provided by the

system operator in advance.

4.1.3 Logging and Analysis
Once the security tests are concluded, the testbed should be

capable of logging the tests. The system collects various data

during the test execution, including network traffic information

(e.g., about Wi-Fi, Bluetooth, and ZigBee operation), IoT device

internal status information (e.g., CPU utilization, memory

consumption, and file system activity), etc. This information

Table 1. Functional Requirements for Security Analysis

5

should be stored as a log file for further analysis. For some tests

the system operator should be able to define a decision rule

specifying whether the device passed the test or not.

4.2 Non-Functional Requirements
The non-functional requirements are the set of attributes which

characterize the testbed. The non-function requirements are as

follows.

4.2.1 Usability
Usability ensures the testbed’s ease of use (in terms of defining

tests, configuring input, interpreting output, etc.) without the need

for extensive efforts on the part of the user.

4.2.2 Security-Related
 Reliability: is the ability to perform security analysis under

the stated conditions for a specific period of time.

 Anti-Forensic: is the capability to detect and subsequently

prevent malicious applications on the IoT device (if it has

been infected) from being activated.

 Security: is the ability to ensure authorized access to the

system.

 Accountability (including non-repudiation): is the

capability to keep audit records to support independent

review of access to resources.

 Controlled: is the ability of the testbed to prevent malicious

IoT devices from being activated during security analysis.

4.2.3 Adaptive
To take a holistic approach for performing security analysis, the

security testbed should be able to adapt to new application domain

concepts and support various communication types.

 Scalability: is the capability of the testbed to increase total

throughput under an increased load when resources (typically

hardware) are added.

 Performance: is the speed of operation of the testbed.

Performance requirements pertain to throughput

requirements which define how much the testbed can

accomplish within a specified amount of time.

 Flexibility: is the capability to modify the testbed and adapt

according to any IoT device and communication type.

5. SYSTEM ARCHITECTURE
In this section, we present the system architecture for the

proposed security analysis of IoT devices via a testing

environment, in our case the testbed. The need for a system

architecture is to make sure that the security analysis can be done

in a logical and modular approach. Hence, any of the IoT devices

can be tested with less modifications to the testbed setup. The

architecture presented here will be adaptable and tunable to any

IoT devices regardless of specification and protocols. The abstract

functional architecture model, illustrated in Figure 3, is designed

based on the requirements described in Section 4. We also show

how the modules presented in this section will interact with the

OM, CCM and AM presented in Section 3. The suggested

functional model is a layer-based platform model with a modular

structure as follows.

5.1 Adaptable and Tunable Modules

5.1.1 Management and Reports Module (MRM)
This module is responsible for a set of management and control

actions via the OM such as starting/initializing the test, enrolling

new devices, simulators, tests, measurement and analysis tools,

and communication channels, and generating the final reports

upon completion of the test. The operator (the user) interfaces

with the system through this module using one of the user

interfaces (CLI\SSH\SNMP\WEB-UI) in order to initiate the test,

as well as to receive the final reports.

5.1.2 Security Testing Manager Module (STMM)
This module is responsible for the actual testing sequence

executed by CCM for the security analysis (according to the

requirements and specifications for an adequate security testbed).

The module interacts with the Security Testing Module in order to

execute the required set of tests, in the right order and mode,

based on predefined configurations provided by the user (based on

the config file loaded in the MRM).

5.1.3 Security Testing Module (STM)
This module performs standard security testing based on

vulnerability assessment and penetration test methodology, in

order to assess the security level of the IoT Devices under Test

(IoT DUT). The STM is an operational module which executes a

set of security tests as plugins via the AM (such as port scanning,

fingerprinting, list known vulnerabilities, vulnerabilities scan, and

more), each of which performs a specific task in the

testing/analysis process. In this regard, different security testing

tools available online are utilized, including the Nmap security

scanner tool for network discovery and security auditing [22], the

Wireshark tool for network protocol analysis [23], Aircrack [24]

which is used to assess the Wi-Fi network, Metasploit used for

penetration testing [25], and all tools running under the Kali

Linux penetration testing environment [26]. Other security tools,

such as Nessus [27], OpenVAS [28], Cain and Abel [29], and

OSSEC [30], as well as dedicated security tools, are integrated

and employed in the testbed as needed.

The STM module also supports a context-based testing mode,

in which it generates various environmental stimuli for each

sensor/device under test. In this mode of operation, the STM

simulates different environmental triggers and runs the security

tests, in order to identify and detect context-based attacks that

may be launched by the IoT DUT. Using the provided set of

simulators and stimulators (e.g., a GPS simulator that simulates

different locations and trajectories, movement simulators such as

robotic hands, etc.), the testbed system realistically generates

Figure 3. Security Analysis Framework - Abstract

Functional Architecture Model.

6

arbitrary real-time stimulations, ideally for all sensors of the tested

IoT device. Finally, the STM interacts with the Measurements and

Analysis Module in order to monitor and analyze the test

performed.

5.1.4 Measurements and Analysis Module (MAM)
This module employs a variety of measurement and analysis

components (both software and hardware-based), including: data

collection, data analysis and security rating modules, and more.

MAM is present in AM, which enables the system to interface

with external modules via dedicated plugins, as part of the testbed

infrastructure. The measurement components include different

network sniffers for communication monitoring such as Wi-Fi,

Bluetooth, and ZigBee sniffers, and device monitoring tools for

measuring the internal status of the IoT DUT (e.g., CPU, memory,

file system, system calls, etc.). The analysis components process

the collected data and evaluate the results according to a

predefined success criterion (which is defined for a specific tested

IoT device and/or tested scenario).

5.2 Testing Sequence
The testing process shown in Figure 3 starts with the operator

loading a configuration file into the system via the MRM

component. Based on the configuration loaded, both standard and

context-based security testing can be performed using the STM

component, by selecting a set of penetration security tests and the

appropriate simulators for the test (as illustrated by the red line in

Phase 1 and the black dashed line in Phase 2 of Figure 3,

respectively). During the testing process, different simulators are

employed in order to realistically simulate the environment in

which IoT devices operate. Also, different measurement and

analysis tools are employed using the MAM component, in order

to collect relevant information about the test performed (including

network traffic, internal status of the IoT DUT, etc.). This testing

process is controlled by the STMM component. The results

obtained for the tests conducted are then stored in the system

database component. Finally, a forensic analysis is performed by

the MRM component, and the final results of the overall testing

process are then generated and sent to the operator (as illustrated

by the green dashed line in Phase 3 of Figure 3). The testing

process handles the security analysis of an IoT DUT as a series of

steps which is explained in the following Section 6.

6. SECURITY ANALYSIS
In this section we present our preliminary efforts in the area of

security analysis for the IoT. The security analysis is conducted

via the testbed and by considering the requirements and

architecture as explained in Section 3, 4 and 5. We have chosen

state of the art IoT devices such as Amazon Echo, Nest Cam,

Philips Hue, SENSE Mother, Samsung SmartThings, Withings

HOME, WeMo Smart Crock-Pot and Netatmo Security Camera.

We have chosen four use cases for testing, i.e., port scanning,

fingerprinting, process enumeration, and vulnerability scanning.

6.1 Use Cases
In general, the OM (running NI TestStand and MRM) starts the

test. The sequence of steps written in TestStand initiates the test

by asking the CCM (running NI LabVIEW and STMM) to

perform an intense scan to find the IoT devices present in the

shielded room. Once the scan is complete, the results are sent

from the CCM to the OM, and the results will contain a list of the

IoT devices and their IP and MAC addresses. The user can select

any IoT device from the list for further testing. Once the IoT

device is chosen, the next step in the sequence is to choose the test

to be performed. The OM displays the list of tests available, e.g.,

fingerprinting, vulnerability scan, etc., and the user can choose

one or more tests to perform with the selected IoT device.

Once the IoT device and test(s) have been determined, the OM

sends the information to the CCM, and the CCM sends the

information to the AM with all the relevant information (including

the IP address) needed to perform the test. The AM (which runs

the testing tools, STM and MAM) will perform the test, and upon

completion of the test, save the report on a local server and inform

the CCM that the test has been completed. The OM retrieves the

report from the CCM via the FTP and gives the user the option to

conclude the test or see the detailed report. The detailed report is

displayed on the OM. Since the report is present on the local

server, the user has access to the report anytime.

6.1.1 Port Scanning
The goal of port scanning is to investigate the detectability of

IoT devices by observing wireless/wired communication

channels. More specifically, port scanning attempts to identify the

existence of the device and detect open and vulnerable ports. The

port scanning report also provides the risk level for each port

discovered.

After the initial test process as explained above, the AM will

run Nmap to discover the open ports via the SSH setup on

selected IoT device. We ran port scanning for each of the IoT

devices mentioned in this paper, however the report presented in

this paper is based on the Philips Hue device.

After Nmap finishes the port scan, the results are saved as an

XML file. A custom Python script on the AM will be used to

extract a list of open ports discovered from the XML file. The

XML file is looped line by line, checking for the keyword

Discovered. Any line containing the keyword Discovered is added

to a file containing a list of open ports. Finally, a custom Python

script compares the open port against a list of top vulnerable open

ports [33] and identifies the vulnerable ports for reporting. If the

word Discovered is not found in the XML file, the whole XML

file is copied as the output result, which displays everything that is

scanned.

Figure 4: Port Scanning Report for the Philips Hue Device.

We have established a metric score based on [33] to evaluate

the risk level of open ports. The risk level is set as: 0 – safe, <15 –

minor risk, 15< && <30 – major risk, and >30 – critical risk.

After obtaining the scan results from Nmap, the scan results are

compared with the scores of the top vulnerable ports (which

contains the list of top vulnerable ports and the port numbers, a

description of the ports, and a metric score given to each port), to

provide the Overall Results of the test. The Overall Results

contains a list of open ports, ports that are considered vulnerable,

Port Scanning Results

All available ports discovered:

80/tcp open tcpwrapped

Ports that are considered vulnerable:

80: A web server is running on this port

Score: 3

Risk Level:

Safe

Metric Score:

3

7

and the metric ratings. For example, the ports that were

considered vulnerable with services running include: (1) 80 - A

web server was running on this port with a score of 3, (2) 5900 -

A VNC server was running on this port with a score of 3, etc. To

determine the Risk Level of the IoT device, a custom Python

script calls on the MetricScore file, retrieves the metric number,

and determine the RISK from a predefined Risk Margin. In the

case of the Philips Hue device, the Risk Level is safe and the

Metric Score is 3, and the detailed port scanning report for Philips

Hue device is shown in Figure 4.

6.1.2 Fingerprinting
By monitoring communication traffic to/from the device the

goal of finger printing is to identify the device’s IP and MAC

addresses, as well as the type of device, manufacturer, operating

system, etc.

In order to successfully fingerprint for a specified IoT device,

the AM uses Nmap, dhcpdump, and Scapy python library. We

performed fingerprinting for every IoT device mentioned above,

however the report presented in this paper is based on the Nest

Cam device.

We begin the fingerprinting process by creating a subprocess in

the shell using the subprocess.Popen() function in Python. The

output is dhcpResults.txt which contains the DHCP dump of any

IoT device that has made a DHCP discovery or DHCP request.

This process continuously runs in the background while the script

is still being executed. The nmap_done_checker() function checks

whether Nmap has completed the process by constantly checking

the output nmapResults.txt for the key phrase “Nmap done.” In

addition, nmap_done_checker() also identifies the MAC and IP

addresses of the IoT DUT, which will be used later during the

deauthentication step.

Figure 5: Fingerprinting Report for the Nest Cam Device.

While the dhcpdump process is still running, the deauth()

function tasked with forcing DHCP requests, which will result in

inputs for the dhcpResults.txt file. The deauth2.py uses a Scapy

library which allows for the deauthentication of a device with the

specified MAC address. The mac_catcher() function opens up the

text file nmapResults.txt and identifies the MAC address that

exists in the text file itself. The mac_finder() function searches for

the DHCP dump for the MAC address in the text file in order to

get the “Parameter Request List” of the IoT device itself. The

Parameter Request List is helpful in obtaining the device’s OS

fingerprint.

The chunk_siever() function creates a list of numbers from the

Parameter Request List, which will be used later for comparison

against the OS fingerprint list provided by PacketFence’s [38]

DHCP fingerprints. The Comparator() function compares the list

obtained in the previous function against the

dhcp_fingerprints.txt. This comparison allows the system to

identify which OS the IoT device is using. Finally, the end result

of this entire process is contained in an output file called

dhcp_fingerprinting_results.html. The report shown in Figure 5 is

the fingerprinting report for the Nest Cam IoT device.

6.1.3 Process Enumeration
The goal of process enumeration is to monitor the device’s

activities and list all services running on the device, in order to

understand the state of the device and identify the protocol used

and port number.

To start the process enumeration process the AM runs the

nmapScan Python script, which conducts an intense scan on the

selected IoT device to reveal any open UDP or TCP ports. We

performed process enumeration for all the IoT devices mentioned

above, however the report presented in this paper is based on the

following devices: Philips Hue, Withings HOME, Samsung

SmartThings and Amazon Echo.

Figure 6: Process Enumeration Reports for the Philips Hue,

Withings HOME, Samsung SmartThings and Amazon Echo.

The custom Python script nmapScan creates an output called

ScanResults.xml which is used by the processEnumeration()

function. First, this function filters the port numbers and various

types of services, states, and protocols from the ScanResults.xml.

Once filtered, then it is allowed to be formatted into html format,

with the different services highlighted. Finally, the results are

given as an output file in ProcessEnumerationResults.html. The

results only contain the known ports, ignoring the unknown ports

as their vulnerabilities are also unknown. Figure 6 contains a

process enumeration report for the following IoT devices: Philips

Hue, Withings HOME, Samsung SmartThings, and Amazon

Echo.

Fingerprinting Results

Device IP Address:

192.168.2.141

Device MAC Address:

18:b4:30:53:18:42

Manufacturer:

Nest Labs

OS Information:

Description = LaCie NAS

Additional OS Information:

[]

Possible Device:

NestCam IP Camera

Process Enumeration Results

Service: tcpwrapped

State: open

Port Number: 80

Protocol: tcp

--

Service: snmp

State: open|filtered

Port Number: 161

Protocol: udp

--

Service: svrloc

State: open|filtered

Port Number: 427

Protocol: udp

--

Service: ms-sql-s

State: open|filtered

Port Number: 1433

Protocol: udp

8

6.1.4 Vulnerability Scan
The goal of vulnerability scanning is to search for additional

classes of vulnerabilities by understanding and measuring the

Common Vulnerability Exploit (CVE) and Common Vulnerability

Scoring System (CVSS) [37]. The National Vulnerability

Database (NVD) [37] has been maintaining a list of vulnerabilities

from 2005 onwards, and the metric system calculated [37] helps

us determine impact and exploitability sub-scores, maintain a

database of attacks, and evaluate selected attacks on the tested IoT

device. We run the vulnerability scan on the OS of the IoT device,

and therefore to start vulnerability scan, a fingerprinting output

(i.e., the OS) is provided as input. We ran the vulnerability scan

for each IoT device mentioned above, however the report

presented in this paper is based on the WeMo Smart Crock-Pot

IoT device.

The checkCVE function utilizes multiple python libraries in order

to check the vulnerabilities from [37]. The queryer() function

creates a string that contains appropriate html formatting and then

opens the allitems2005.csv which contains all the CVE and

vulnerabilities from the year 2005. The function queryer() also

goes through the csv file line by line and searches the CVE

number, using the get request function to extract the vulnerability

details of the specific CVE number. Finally, the htmlFormatter()

function, allows the output to be highlighted where needed. Figure

7 presents the report for the WeMo Smart Crock-Pot IoT device.

7. DISCUSSION
The use cases we studied in Section 6 demonstrated a number

of vulnerabilities. From the port scanning examination, we found

that IoT device under test had open and vulnerable ports which

would be easy for attackers to access. In addition, we identified

services running on these ports that were not intended to be

running, pointing to another vulnerability. We were also able to

successfully fingerprint the IoT devices to understand the device

type, OS, etc., which helps to obtain more information about the

device vulnerability. Based on this initial testing we have labeled

the tested IoT devices as safe or high risk (using our metric

system), however deeper analysis is required in order to gain more

insight about the IoT devices tested. The vulnerability scan

provided impact and exploitability sub-scores, and the attack

vector indicates that the network is exploitable and the attacker

can voluntarily interact with attack mechanisms. Table 2, presents

an overview of the test results for each of the IoT devices tested

so far. Though we have identified other criteria of fingerprinting,

we have just highlighted the IP and OS of the device in Table 2.

To our understanding, our preliminary testing efforts and findings

for the selected IoT devices, constituting our initial groundwork in

security analysis for IoT devices, have demonstrated the

vulnerability level of IoT devices.

8. CONCLUSION AND FUTURE WORK
In this paper, we describe the security analysis of IoT devices

performed in the testbed using penetration testing methodologies

such as port scanning, fingerprinting, process enumeration, and

vulnerability scan. We introduced the security IoT testbed and

provided the general requirements needed to conduct security

analysis within a test environment such as the testbed. A brief

description of the design and architecture needed for security

analysis is also provided. Our work on security analysis was

conducted with state of the art IoT devices, and the reports

presented in our work show that these devices are vulnerable.

Although this represents our preliminary efforts toward a

holistic approach for advanced security analysis, it is already clear

that state of the art IoT devices are vulnerable; further work is

required to better understand the vulnerabilities of these popular

devices and improve their security. In the future, we plan to

expand upon this research and conduct more complex security

analysis by developing new attack and defense models. We would

like to expand the testing capabilities from standard as well as to

IoT Device Port Scanning

(Risk Level: RL and

Metric Score: MS)

Fingerprinting

(Detection Criteria: IP, MAC,

Manufacturer, OS, Device)

Process Enumeration (Service

Running: SR, Port and

Protocol: P)

Vulnerability Scanning

(Impact Subscore: IS and

Exploitability Subscore: ES)

Amazon Echo RL: Safe, MS: 3 IP: 192.168.2.115, OS: AWS SR: ms-sql-s, Port: 1433, P: udp IS: 6.4, ES: 8.6

Nest Cam RL: Safe, MS: 4 IP: 192.168.2.141, OS: LaCie NAS SR: freeciv, Port: 5555 , P: tcp IS: 4.9 ,ES: 8.6

Philips Hue RL: Safe, MS: 3 IP: 192.168.2.139, OS: Linux Kernel SR: tcpwrapped, Port: 80, P: tcp IS: 2.9, ES: 10.0

SENSE Mother RL: Minor Risk, MS: 10 IP: 192.168.2.194, OS: Unknown SR: krb524, Port: 4444, P: udp IS: 10.0, ES: 3.9

Withings HOME RL: Safe, MS: 5 IP: 192.168.2.156, OS: LaCie NAS SR: snmp , Port: 161, P: udp IS: 2.9, ES: 8.6

WeMo Smart Crock-Pot RL: Minor Risk, MS: 9 IP: 192.168.2.182, OS: Unknown SR: zeroconf, Port: 5353, P: udp IS: 2.9, ES: 4.9

Netamo Security Camera RL: Minor Risk, MS: 8 IP: 192.168.2.123, OS: Unknown SR: nat-t-ike, Port: 4500, P: udp IS: 4.9, ES: 8.6

Samsung SmartThings RL: Safe, MS: 3 IP: 192.168.2.190, OS: Unknown SR: svrloc, Port: 427, P: udp IS: 6.4, ES: 5.5

Table 2: Overall Results of Security Analysis with Selected IoT Devices.

Vulnerability Scanning Results

CVE Number:

CVE-2006-5793

Impact

CVSS Severity (version 2.0):

CVSS v2 Base Score:

2.6 LOW

Vector:

(AV:N/AC:H/Au:N/C:N/I:N/A:P) (legend)

Impact Subscore: 2.9

Exploitability Subscore: 4.9

CVSS Version 2 Metrics:

Access Vector: Network exploitable

Victim must voluntarily interact with attack

mechanism

Access Complexity: High

Authentication: Not required to exploit

Impact Type: Allows disruption of service

Figure 7: Vulnerability Scan Report for the WeMo

Smart Crock-Pot IoT Device.

9

side-channel testing (e.g., the detection of context-based attacks

requires the execution of security testing in various contexts).

Beyond this line of testing, we have also considered conducting

deeper memory analysis with specific IoT devices. Furthermore,

we intend to expose our testbed to additional IoT devices by

testing other devices and inviting outside users to make use of the

testbed to test their IoT devices.

We plan to further develop the architecture for our proposed

security analysis system in order to make the architecture more

adaptable and tunable. This will enable us to test IoT devices

more easily with any protocol and communication capabilities.

Furthermore, as we aim for modular architecture, our future work

will center on using the various modules needed depending on the

tested device and the test itself. In conclusion, our future efforts

will center on developing methods and models for advanced

security analysis.

REFERENCES
[1] SHODAN, https://www.shodan.io/.

[2] Patton, Mark, et al. "Uninvited connections: a study of

vulnerable devices on the internet of things (IoT)." In Proc.

of JISIC , IEEE, 2014.

[3] Linda, Markowsky, et.al, "Scanning for vulnerable devices in

the Internet of Things." In Proc. of IDAACS, IEEE, 2015.

[4] Computerworld, http://www.computerworld.com/.

[5] The Next Web, http://thenextweb.com/.

[6] Gluhak, Alexander, et al. "A survey on facilities for

experimental internet of things research." IEEE

Communications Magazine 49.11, 2011.

[7] Wurm, Jacob, et al. "Security analysis on consumer and

industrial iot devices." In Proc. of ASP-DAC, IEEE, 2016.

[8] G. Werner-Allen et.al, "Motelab: A wireless sensor network

testbed." In Proc. of IPSN, IEEE, 2005.

[9] Arora, Anish, et al. "Kansei: A high-fidelity sensing testbed."

IEEE Internet Computing 10.2 (2006): 35.

[10] Bers, Josh, et al. "Citysense: The design and performance of

an urban wireless sensor network testbed." In Proc. of

International Conference on Technologies for Homeland

Security, IEEE, 2008.

[11] Earlence, Fernandes, et.al, Security Analysis of Emerging

Smart Home Applications. In Proc. of IEEE S&P, 2016.

[12] Alberca, Carlos, et.al, "Security Analysis and Exploitation of

Arduino devices in the Internet of Things." In Proc. of the

ACM International Conference on Computing Frontiers.

ACM, 2016.

[13] FIT IoT-LAB: a very large scale open testbed,

https://www.iot-lab.info/.

[14] German Telekom and City of Friedrichshafen,

“Friedrichshafen Smart City,” 2010,

http://www.telekom.com/dtag/cms/content/dt/en/395380.

[15] M. Doddavenkatappa, et.al, "Indriya: A Low-Cost, 3D

Wireless Sensor Network Testbed," In Proc. of

TRIDENTCOM, 2011.

[16] INFINITE Testbed, http://www.iotinfinite.org/.

[17] Ho, Grant, et al. "Smart locks: Lessons for securing

commodity internet of things devices." In Proc. of

ASIACCS, ACM, 2016.

[18] Alghamdi, et.al, "Security analysis of the constrained

application protocol in the Internet of Things." In Proc. of

FGCT, IEEE, 2013.

[19] Ndibanje, et.al, "Security analysis and improvements of

authentication and access control in the internet of things." In

Proc. of Sensors 14.8, 2014.

[20] Atamli, et.al, "Threat-based security analysis for the internet

of things." In Proc. of SIoT, IEEE, 2014.

[21] OWASP, IoT Top Ten Vulnerabilities

https://www.owasp.org/index.php/OWASP_Internet_of_Thi

ngs_Project.

[22] Nmap, https://nmap.org/.

[23] Wireshark, https://www.wireshark.org/.

[24] Aircrack-ng, http://aircrack-ng.org/.

[25] Metasploit, Penetration Testing Tool,

https://www.metasploit.com/.

[26] Kali Linux, https://www.kali.org/.

[27] Nessus, http://www.tenable.com/products/nessus-

vulnerability-scanner.

[28] OpenVAS, http://openvas.org/.

[29] Cain & Abel, a password recovery tool for Microsoft

Operating Systems, OXID.IT, http://www.oxid.it/cain.html.

[30] OSSEC, Open Source HIDS SECurity,

http://ossec.github.io/.

[31] National Instruments TestStand,

http://www.ni.com/teststand/.

[32] National Instruments LabVIEW,

http://www.ni.com/labview/.

[33] Tenable, http://www.tenable.com/sc-report-

templates/vulnerability-reporting-by-common-ports.

[34] Behrang, Fouladi, et.al, “Honey, I’m Home!!, Hacking

ZWave Home Automation Systems,” Black Hat USA 2013.

[35] Egli, et.al, "Susceptibility of wireless devices to denial of

service attacks." White paper, Netmodule AG,

Niederwangen, Switzerland (2006).

[36] Rahman, et.al, "Security analysis of IoT protocols: A focus

in CoAP." In Proc. of ICBDSC, IEEE, 2016.

[37] https://nvd.nist.gov/.

[38] https://packetfence.org/dhcp_fingerprints.conf

[39] Amazon Echo, https://www.amazon.com/Amazon-Echo-

Bluetooth-Speaker-with-WiFi-Alexa/dp/B00X4WHP5E

[40] Nest Cam, https://nest.com/camera/meet-nest-cam/.

[41] Philips Hue, http://www2.meethue.com/en-sg/.

[42] SENSE Mother, https://sen.se/store/mother/.

[43] Samsung SmartThings, https://www.smartthings.com/.

[44] Withings HOME,

https://www.withings.com/us/en/products/home.

[45] WeMo Smart Crock-Pot, https://www.crock-pot.com/wemo-

landing-page.html.

[46] NETATMO Security Camera,

https://www.netatmo.com/product/security/welcome.

10

