Alon Schclar, Lior Rokach, Amir Amit
Intelligent Data Analysis, vol. 21, no. 3, pp. 467-489, 2017
We present a novel approach for the construction of ensemble classifiers based on dimensionality reduction. The ensemble members are trained based on dimension-reduced versions of the training set. In order to classify a test sample, it is first embedded into the dimension reduced space of each individual classifier by using an out-of-sample extension algorithm. Each classifier is then applied to the embedded sample and the classification is obtained via a voting scheme. We demonstrate the proposed approach using the Random Projections, the Diffusion Maps and the Random Subspaces dimensionality reduction algorithms. We also present a multi-strategy ensemble which combines AdaBoost and Diffusion Maps. A comparison is made with the Bagging, AdaBoost, Rotation Forest ensemble classifiers and also with the base classifier. Our experiments used seventeen benchmark datasets from the UCI repository. The results obtained by the proposed algorithms were superior in many cases to other algorithms.