Fansmitter: Acoustic Data Exfiltration from (Speakerless) Air-Gapped Computers

Because computers may contain or interact with sensitive information, they are often air-gapped and in this way kept isolated and disconnected from the Internet. In recent years the ability of malware to communicate over an air-gap by transmitting sonic and ultrasonic signals from a computer speaker to a nearby receiver has been shown. In order to eliminate such acoustic channels, current best practice recommends the elimination of speakers (internal or external) in secure computers, thereby creating a so-called ‘audio-gap’.
In this work, we present Fansmitter, a malware that can acoustically exfiltrate data from air-gapped computers, even when audio hardware and speakers are not present. Our method utilizes the noise emitted from the CPU and chassis fans which are present in virtually every computer today. We show that a software can regulate the internal fans’ speed in order to control the acoustic waveform emitted from a computer. Binary data can be modulated and transmitted over these audio signals to a remote microphone (e.g., on a nearby mobile phone). We present Fansmitter’s design considerations, including acoustic signature analysis, data modulation, and data transmission. We also evaluate the acoustic channel, present our results, and discuss countermeasures. Using our method we successfully transmitted data from air-gapped computer without audio hardware, to a smartphone receiver in the same room. We demonstrated the effective transmission of encryption keys and passwords from a distance of zero to eight meters, with bit rate of up to 900 bits/hour. We show that our method can also be used to leak data from different types of IT equipment, embedded systems, and IoT devices that have no audio hardware, but contain fans of various types and sizes.

Skip to content